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Abstract— In this paper, interconnected retarded nonlinear
systems are considered. Both the constant discrete and dis-
tributed time-delays in the subsystems and the interconnections
are addressed. A sufficient small-gain type condition for integral
input-to-state stability with respect to external inputs is pro-
vided in the framework of Lyapunov-Krasovskii functionals.

I. INTRODUCTION

Time delay has been a major topic in the area of systems

control since it is often a source of instability. Delays are

unavoidable in practice for interconnected systems and net-

works which are spatially distributed. This paper addresses

the stability of interconnected retarded nonlinear systems

with discrete as well as distributed time-delays in both

the subsystems and the interconnecting channels. A small-

gain condition is proposed to verify integral input-to-state

stability with respect to external inputs. The condition may

result providing new delay-dependent or delay-independent

stability criteria.

In the literature of nonlinear delay-free control theory, a

great deal of effort has been put into the problem of finding

useful conditions under which interconnected systems are

stable. A major development which plays an important role

in nonlinear system analysis and design is the input-to-

state stable small-gain theorem (see [9], [20], [18]), which

is applicable to the interconnection of input-to-state stable

(ISS) subsystems. In the paper [7], small-gain type theorems

for interconnected systems involving integral input-to-state

stable (iISS) subsystems are derived from the state dependent

scaling formulation.

Small-gain type conditions for interconnected nonlinear

delay-free systems, with time-delays in the interconnecting

channels, have been considered in [3], [16] recently. In [3]

delay-independent stability of a feedback interconnection of

nonlinear delay-free systems with finite L2-gain are studied.

Time-varying delays are also considered. In [16] a trajectory-

based version of the input-to-output stability small-gain the-

orem is presented. In [4], a small gain theorem for monotone

systems without external signals is developed in an abstract

Banach space setting, which can yield global attractivity of
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time-delay systems as a special case under the assumption

of the existence of bounded trajectories. An IOS/ISS small-

gain theorem has recently been introduced in [10] for a wide

class of time-varying systems which may include hybrid,

impulsive and retarded systems. In the literature of time-

delay systems, the idea of decomposing a single system

into an interconnection of dynamic and static systems has

been also popular, and small-gain arguments have also been

utilized there. In [2], the relationship between the Lyapunov-

Krasovskii method and a delay-independent version of the

small-gain type criterion is studied for stability of systems

with time-delay and memoryless linear growth nonlinearity.

For linear time-delay systems, the equivalence of several

Lyapunov-based stability conditions and the application of

the scaled small-gain technique to an uncertain comparison

system is shown in [22]. The effects of time-delays and

disturbances were treated in [21], where a Razumikhin-type

theorem that guarantees ISS of retarded nonlinear systems is

established using the ISS small-gain theorem. In [12] the ISS

small gain arguments are applied to the problem of stabiliza-

tion of nonlinear systems in the presence of quantization and

bounded communication delays. In [15], Lyapunov criteria

employing functionals which provide sufficient conditions

for the ISS and the iISS of retarded systems are given.
In this paper, we extend considerably the results in [7] to

more general systems with time-invariant non-commensurate

discrete as well as distributed time delays. With respect to

[10], we focus attention on Lyapunov-Krasovskii functionals

and iISS property of retarded systems. This paper provides a

small-gain type condition for retarded systems which are the

feedback interconnection of retarded subsystems admitting

suitable storage functionals and supply rates. The main

features of the result are:
(i) discrete as well as distributed time-delays can appear

not only in the interconnecting channels, but also in the

individual subsystems;
(ii) Lyapunov-Krasovskii functionals characterizing stabil-

ity of interconnected systems are constructed, on the basis

of Lyapunov-Krasovskii functionals for each subsystem;
(iii) interconnections of iISS subsystems are considered;
(iv) we address stability with respect to external signals,

and include global asymptotic stability as a special case.
To the best of the authors’ knowledge, there have been

no studies achieving all the four points. It is widely known

that the notion of ISS introduced by Sontag in [17] allows

us to remove too restrictive requirements of finite L2-gain

systems and the L2-gain technique. The class of ISS systems

is a strict subset of iISS systems which can cover a much

larger class of practically important systems than the ISS

ones [1]. The characterization of ISS and iISS in terms of
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Lyapunov-Krasovskii functionals developed in [15] is here

exploited. Proofs are omitted due to the space limitation.

NOTATION: The symbol | · | stands for the Euclidean norm of

a real vector. The interval [0,∞) in the space of real numbers

R is denoted by R+. A measurable function u : R+ →
R

m, m positive integer, is said to be essentially bounded if

ess supt≥0 |u(t)| < +∞, where ess supt≥0 |u(t)| = inf{a ∈
[0, +∞] : λ({t ∈ R+ : |u(t)| > a}) = 0}, λ denoting the

Lebesgue measure. For a measurable and essentially bounded

function u : R+ → R
m, ‖u‖∞ = ess supt≥0 |u(t)|. For

given times 0 ≤ T1 < T2, we indicate with u[T1,T2) : R+ →
R

m the function given by u[T1,T2)(t) = u(t) for all t ∈
[T1, T2) and = 0 elsewhere. A function u is said to be locally

essentially bounded if, for any T > 0, u[0,T ) is essentially

bounded. A function ω : R+ → R+ is said to be positive

semidefinite and denoted by ω ∈ P0 if it is continuous and

satisfies ω(0) = 0. A function ω ∈ P0 is said to be positive

definite if ω(s) > 0 holds for all s > 0, and written as ω ∈ P .

A function is of class K if it belongs to P and is strictly

increasing; of class K∞ if it is of class K and is unbounded.

A function β : R
2
+ → R+ is of class KL if for each fixed

t the function s → β(s, t) is of class K and for each fixed

s the function t → β(s, t) is non-increasing and goes to

zero as t → +∞. For given (maximum involved time-delay)

∆ > 0, n1, n2 positive integers, Ci, i = 1, 2, denote the

spaces of continuous functions mapping the interval [−∆, 0]
into R

ni and for φi ∈ Ci, ‖φi‖∞ = sup−∆≤θ≤0 |φi(θ)|.
C denotes the space of continuous functions mapping the

interval [−∆, 0] into R
n1+n2 and, again, for φ ∈ C, ‖φ‖∞ =

sup−∆≤θ≤0 |φ(θ)|. Let Ma,i : Ci → R+ and Ma : C → R+,

i = 1, 2, be continuous functionals such that there exist γ
a,i

,

γa,i, γ
a
, γa ∈ K∞ such that

γ
a,i

(|φi(0)|) ≤ Ma,i(φi) ≤ γa,i(‖φi‖∞), ∀φi ∈ Ci (1)

γ
a
(|φ(0)|) ≤ Ma(φ) ≤ γa(‖φ‖∞), ∀φ ∈ C (2)

hold. For any continuous function xi(s), i = 1, 2, defined

on −∆ ≤ s < a, a > 0, and any fixed t, 0 ≤ t < a, the

standard symbol xi,t will denote the element of Ci defined

by xi,t(θ) = xi(t + θ), −∆ ≤ θ ≤ 0.

II. PRELIMINARIES

Let us consider an interconnected system described by

ẋ1(t) = f1(x1,t, x2,t, r1(t)),

ẋ2(t) = f2(x2,t, x1,t, r2(t)), (3)

x1,0 = ξ1,0, x2,0 = ξ2,0,

where, for i = 1, 2, xi(t) ∈ R
ni ; ri(t) ∈ R

mi is an external

input (measurable, locally essentially bounded); ni and mi

are positive integers; ξi,0 ∈ Ci; fi : Ci × C3−i ×R
mi → R

ni

is a functional which is Lipschitz on any bounded set1.

We use the notation combining vectors such as x(t) =
[x1(t)

T , x2(t)
T ]T ∈ R

n, r(t) = [r1(t)
T , r2(t)

T ]T ∈ R
m,

ξ0 = [ξT
1,0, ξ

T
2,0]

T ∈ C, f() = [f1()
T , f2()

T ]T , φ =
[φT

1 , φT
2 ]T ∈ C. It is assumed that fi(0, 0, 0) = 0, i = 1, 2,

thus ensuring that x(t) = 0 is the solution corresponding to

1To guarantee that the system (3) admits a unique maximal solution x(t)
which is locally absolutely continuous[5], [11].

zero input and zero initial conditions (i.e. the trivial solution).

Note that the formulation (3) accepts non-commensurate

discrete as well as distributed time-delays not only in the

interconnecting channels, but also in the individual subsys-

tems. This paper does not assume the exact knowledge of

functionals fi, i = 1, 2. Instead, we associate each subsystem

described by fi with supply rates and assume the knowledge

of dissipation inequalities as follows:
Assumption 1: There exist locally Lipschitz functionals

Vi : Ci → R+, i = 1, 2, such that

αi(Ma,i(φi)) ≤ Vi(φi) ≤ αi(Ma,i(φi)), (4)

D+Vi(φi, φ3−i, ri) ≤ ρi(φi, φ3−i, ri), (5)

∀ φj ∈ Cj , j = 1, 2,∀ ri ∈ R
mi ,

where

D+Vi(φi, φ3−i, ri) = lim sup
h→0+

Vi(φ
h
i ) − Vi(φi)

h
(6)

φh
i (s)=

[

φi(s + h), s ∈ [−∆,−h),
φi(0)+(s+h)fi(φi, φ3−i, ri), s ∈ [−h, 0];

αi, αi are K∞ functions, and ρi : Ci ×C3−i ×R
mi → R are

continuous functionals satisfying ρi(0, 0, 0) = 0.
Each subsystem described by fi is said to be dissipative

with respect to storage functional Vi and supply rate ρi.
For a locally Lipschitz functional Vcl : C → R+,

D+Vcl(φ, r), where φ ∈ C, r ∈ R
m, is defined as follows:

D+Vcl(φ, r) = lim sup
h→0+

Vcl(φ
h) − Vcl(φ)

h
,

φh(s) =

[

φ(s + h), s ∈ [−∆,−h),
φ(0) + (s + h)f(φ, r), s ∈ [−h, 0].

Using this derivative, in this paper, the interconnected system

(3) is said to be dissipative with respect to the storage

functional Vcl and a supply rate ρcl if

D+Vcl(φ, r) ≤ ρcl(φ1, φ2, r1, r2), ∀φ∈C, ∀r∈R
m (7)

holds for a continuous functional ρcl : C1×C2×R
m1×R

m2 →
R satisfying ρcl(0, 0, 0, 0) = 0. The final goal of this paper

is the study of iISS and ISS properties of the interconnected

system (3). These properties can be characterized as special

cases of the dissipativity introduced above. For this sake, we

borrow the following definitions from [17], [1], [15].
Definition 1: If the solution x(t) of the interconnected

system (3) exists for all t ≥ 0 and furthermore satisfies

|x(t)| ≤ β(‖x0‖∞, t) + γr(‖r[0,t)‖∞), (8)

for all t ≥ 0, with β ∈ KL, γr ∈ K, the system (3) is said

to be ISS with respect to input r and state x.
Definition 2: If the solution x(t) of the interconnected

system (3) exists for all t ≥ 0 and furthermore satisfies

χ(|x(t)|) ≤ β(‖ξ0‖∞, t) +

∫ t

0

γr(|r(τ)|)dτ, (9)

for all t ≥ 0, with β ∈ KL, χ ∈ K∞, γr ∈ K, the system

(3) is said to be iISS with respect to input r and state x.
Definition 3: A locally Lipschitz functional Vcl : C → R+

such that the inequalities

αcl(|φ(0)|) ≤ V (φ) ≤ αcl(Ma(φ)), ∀φ ∈ C, (10)

D+Vcl(φ, r) ≤ −αcl(Ma(φ)) + σr(|r|),∀φ∈C, r∈R
m(11)
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hold for some αcl, αcl, αcl ∈ K∞, σr ∈ P0 is said to be an

ISS Lyapunov-Krasovskii functional for system (3).

Definition 4: A locally Lipschitz functional Vcl : C → R+

such that the inequalities

αcl(Ma(φ)) ≤ V (φ) ≤ αcl(Ma(φ)),∀φ ∈ C, (12)

D+Vcl(φ, r)≤ −αcl(Ma(φ)) + σr(|r|),∀φ∈C, r∈R
m(13)

hold for some αcl, αcl ∈ K∞, αcl ∈ P , σr ∈ P0 is said to

be an iISS Lyapunov-Krasovskii functional for system (3).

The following theorem is given in [15] (functionals are

chosen locally Lipschitz according to results in [13], [14]).

Theorem 1: If there exists an ISS (iISS) Lyapunov-

Krasovskii functional for system (3), then system (3) is ISS

(iISS, respectively) with respect to input r and state x.

III. DISSIPATIVITY

This section shows that the problem of verifying dissipa-

tivity of retarded interconnected systems can be formulated

into the following.

Problem 1: Given locally Lipschitz functionals Vi : Ci →
R+ and continuous functionals ρi : Ci × C3−i × R

mi → R,

find continuous functions λi : R+ → R+ satisfying

λi(s) > 0 ∀ s ∈ (0, +∞),

∫ +∞

1

λi(s)ds = +∞, (14)

for i = 1, 2 such that

λ1(V1(φ1))ρ1(φ1, φ2, r1) + λ2(V2(φ2))ρ2(φ2, φ1, r2)

≤ ρe(φ1, φ2, r1, r2)

∀φj ∈ Cj , ∀rj ∈ R
mj , j = 1, 2 (15)

holds for some continuous functional ρe : C1 × C2 × R
m1 ×

R
m2 → R satisfying

ρe(φ1, φ2, 0, 0) ≤

−ρ(|φ1(0)| + |φ2(0)|) ∀φ1∈C1, φ2∈C2 (16)

with a function ρ ∈ P .

When C1 and C2 are replaced by R
n1 and R

n2 , respec-

tively, the functionals ρ1, ρ2 and ρe become functions and

Problem 1 reduces to the problem proposed by [7] for delay-

free systems. The following lemma confirms a chain-type

rule for the upper bound of the upper right-hand derivative of

a composite mapping, which links Problem 1 to Lyapunov-

Krasovskii functionals of retarded interconnected system (3).

Lemma 1: Given a locally Lipschitz functional Vi : Ci →
R+ and a continuous function λi : R+ → R+, let Wi :
Ci → R+ be a continuous functional defined as Wi(φi) =
∫ Vi(φi)

0
λi(s)ds. Then,

D+Wi(φi, φ3−i, ri) ≤ λi(Vi(φi))D
+Vi(φi, φ3−i, ri), (17)

where

D+Wi(φi, φ3−i, ri) = lim sup
h→0+

Wi(φ
h
i ) − Wi(φi)

h
. (18)

We are now in position to link Problem 1 to dissipativity

associated with global asymptotic stability of the intercon-

nected system (3).

Theorem 2: If there is a solution {λ1, λ2} to Problem 1,

then the trivial solution of the interconnected system (3) with

r(t) ≡ 0 is globally asymptotically stable. Moreover, the

locally Lipschitz functional Vcl : C → R+ defined as

Vcl(φ) =

∫ V1(φ1)

0

λ1(s)ds +

∫ V2(φ2)

0

λ2(s)ds (19)

is such that, for some αcl, αcl ∈ K∞,

αcl(Ma,1(φ1) + Ma,2(φ2)) ≤ Vcl(φ) ≤

αcl(Ma,1(φ1) + Ma,2(φ2)) (20)

holds, and the interconnected system (3) satisfies

D+Vcl(φ, r) ≤ ρe(φ1, φ2, r1, r2), ∀φ ∈ C, ∀r ∈ R
m. (21)

The extension to local stability properties is possible by

removing the second condition in (14). In fact, without the

second condition in (14), we can still obtain Lemma 1 and

Theorem 2 with αcl ∈ K.
Some dissipativity properties which are stronger than

GAS, such as ISS and iISS, are not guaranteed by (16).

The next section elaborates on this point and shows another

Lyapunov-Krasovskii functional replacing (19).

IV. MAIN RESULTS: iISS

In order to derive the iISS property, this section solves

Problem 1 so that the supply rate ρe of the interconnected

system (3) is in the form of (13). Since the subsystems only

satisfy Assumption 1, we cannot manipulate the supply rates

of the subsystems as freely as we can do with delay-free ISS

subsystems [19]. However, we may be still able to obtain a

particular supply rate which is useful in achieving our goal.

The following lemma provides us with such a way.
Lemma 2: Consider, for i = 1, 2,

αi, σi,1, σi,2, . . . , σi,hi
∈ K, σr,i ∈ P0, (22)

with hi a positive integer, and a non-decreasing continuous

function λi : R+ → R+. Assume that

lim
s→∞

αi(s) < ∞ ⇒ lim
s→∞

λi(s) < ∞ (23)

holds. If functionals Vi, Ma,i : Ci → R+ satisfy

αi(Ma,i(φi)) ≤ Vi(φi) ≤ αi(Ma,i(φi)), ∀φi ∈ Ci, (24)

for some αi, αi ∈ K∞, it holds that

λi(Vi(φi))







−αi(Ma,i(φi)) +

hi
∑

j=1

σi,j(wi,j) + σr,i(zi)







≤ −α̃i(Ma,i(φi)) +

hi
∑

j=1

σ̃i,j(wi,j) + σ̃r,i(zi)

∀φi ∈ Ci, ∀wi,j , zi ∈ R+, j = 1, 2, . . . , hi, (25)

where α̃i, σ̃i ∈ K and σ̃ri ∈ P0 are

α̃i(s) = δ

(

1−
1

τi

)

λi(αi(s))αi(s) (26)

σ̃i,j(s) =











λi(θi,j(s))σi,j(s)
if lim

v→∞
αi(v) ≥ τihiσi,j(s)

lim
v→∞

λi(v)σi,j(s) otherwise

(27)

σ̃ri(s) =











λi(θri(s))σri(s)
if lim

v→∞
αi(v) ≥ τriσri(s)

lim
v→∞

λi(v)σri(s) otherwise

(28)
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defined with

θi,j(s) = αi ◦ α−1
i ◦ τihiσi,j(s)

θri(s) = αi ◦ α−1
i ◦ τriσri(s)

for any δ ∈ (0, 1) and τi, τri ∈ (1,∞) satisfying

1 −
1

τi

−
1

τri

≥ δ

(

1 −
1

τi

)

.

The next lemma provides particular functions α̃i and σ̃i,j

having a nice property by selecting λ1 and λ2.

Lemma 3: Given (22) and αi, αi∈K∞ satisfying αi(s)≤
αi(s), ∀s ∈ R+, for i = 1, 2, we assume that one of

(A1) lim
s→∞

α2(s) = ∞ ∧ lim
s→∞

α1(s) = ∞

(A2) lim
s→∞

α2(s) = ∞ ∧ lim
s→∞

σ2(s) < ∞

(A3) lim
s→∞

σ1(s) < ∞ ∧ lim
s→∞

σ2(s) < ∞

holds, where

σi(s) = hi max
j=1,2,...,hi

{σi,j(s)} (29)

Consider α̃i, σ̃i ∈ K and σ̃ri ∈ P0 given by (26), (27) and

(28). Let Ma,i,Mσ,3−i,j : Ci → R
+, i = 1, 2, be functionals

fulfilling

Ma,1(φ1) ≥ Mσ,2,j(φ1), ∀φ1∈C1, j =1, 2, . . . , h2 (30)

Ma,2(φ2) ≥ Mσ,1,j(φ2), ∀φ2∈C2, j =1, 2, ...h1 (31)

If there exist ci > 1, i = 1, 2 such that

c1σ1 ◦ α−1
2 ◦ α2 ◦ α−1

2 ◦ c2σ2(s)
≤ α1◦α−1

1 ◦α1(s), ∀s∈R
+ (32)

is satisfied, then there exist αcl,i∈K, i = 1, 2, such that

2
∑

i=1

{

−α̃i(Ma,i(φi))

+(1+ǫi)

h1
∑

j=1

σ̃i(Mσ,i,j(φ3−i)) + σ̃r,i(|ri|)
}

≤
2

∑

i=1

{−α̃cl,i(Ma,i(φi)) + σ̃r,i(|ri|)} ,

∀φ1∈C1, r1∈R
m1 , ∀φ2∈C2, r2∈R

m2 (33)

holds for each ǫi ∈ [0, ci−1) with

λ1(s)=

[

α2 ◦ µ̂−1
1 ◦

1

τ1
α1 ◦ α−1

1 (s)

] [

1

τ1
α1 ◦ α−1

1 (s)

]ψ

(34)

λ2(s)=
k2

(k2−1)

√

k1

τ1

[

µ̂1◦ α−1
2 (s)

]ψ+1
(35)

for any k1, k2, τ1, δ, ψ ∈ R and any µ̂1 ∈ K satisfying

µi(s) = (1+ǫi)σi(s), ki > 1, i = 1, 2 (36)

0 <
√

τ1/k1 < δ < 1 (37)

0 ≤ ψ, 1 < τ1,

(

τ1

k1

)ψ

≤ (τ1 − 1)(k2 − 1) (38)

µ1(s) ≤ µ̂1(s), ∀s ∈ R
+ (39)

lim
s→∞

α1(s) ≤ lim
s→∞

µ̂1(s), ∀s ∈ R
+ (40)

k1µ̂1 ◦ α−1
2 ◦ α2 ◦ α−1

2 ◦ k2µ2(s)
≤ α1◦α−1

1 ◦α1(s), ∀s∈R
+ (41)

Furthermore, α̃cl,1, α̃cl,2∈K∞ holds if α1, α2∈K∞.

The existence of k1, k2, τ1, δ, ψ ∈ R and µ̂1 ∈ K fulfilling

(36)-(41) is guaranteed when (32) and one of (A1), (A2) and

(A3) is satisfied. The key point of Lemma 3 is that ǫi > 0 is

allowed in (33), which makes a remarkable contrast to the

previous techniques for delay-free systems.

Remark 1: It is stressed that (32) with c1, c2 > 1 requires

lim
s→∞

α2(s) = ∞ ∨ lim
s→∞

α2(s) > lim
s→∞

σ2(s) (42)

Also note that (23) is fulfilled by (34) and (35) with the help

of (40) when one of (A1), (A2) and (A3) is satisfied.

The following theorem is the main result of this paper.

Theorem 3: Suppose that supply rate functionals ρi, i =
1, 2, are as follows:

ρi(φi, φ3−i, ri) =

−αi(Ma,i(φi)) + Si,0σi,0(Ma,3−i(φ3−i)) +
h

∑

j=1

Si,jσi,j

(

γ
a,3−i

(|φ3−i(−∆j)|)
)

+σr,i(|ri|), (43)

where h is a positive integer and, for i = 1, 2, αi are

functions of class K, σr,i ∈ P0, ∆j ∈ (0, ∆], j = 1, 2, . . . , h,

σi,j , j = 0, 1, . . . , h, are functions of class K, Si,k belongs

to {0, 1}, k = 0, 1, . . . , h. Assume that one of the following

three conditions holds:

(H1) lim
s→∞

α2(s) = ∞ ∧ lim
s→∞

α1(s) = ∞,

(H2) lim
s→∞

α2(s) = ∞ ∧ lim
s→∞

σ2(s) < ∞,

(H3) lim
s→∞

σ1(s) < ∞ ∧ lim
s→∞

σ2(s) < ∞,

where σi are defined as

σi(s) =

(

h
∑

k=0

Si,k

)

max
j=0,1,...,h

Si,jσi,j(s) (44)

Suppose that there exist ci > 1, i = 1, 2, such that

c1σ1 ◦ α−1
2 ◦ α2 ◦ α−1

2 ◦ c2σ2(s)
≤ α1◦α−1

1 ◦α1(s), ∀s∈R+ (45)

Then, the interconnected system (3) is iISS with respect to

input r and state x. In addition, it is ISS with respect to input

r and state x in the case of (H1). Furthermore, an iISS (ISS

in the (H1) case) Lyapunov-Krasovskii functional for (3) is

Vcl(φ) =

∫ V1(φ1)

0

λ1(s)ds +

∫ V2(φ2)

0

λ2(s)ds

+
h

∑

j=1

∫ 0

−∆j

F1,j(τ)S1,j σ̃1,j

(

γ
a,2

(|φ2(τ)|)
)

dτ

+
h

∑

j=1

∫ 0

−∆j

F2,j(τ)S2,j σ̃2,j

(

γ
a,1

(|φ1(τ)|)
)

dτ (46)

where λ1, λ2 and σ̃i,j are given in (34), (35) and (27), and

Fi,j : [−∆j , 0] → [1, 1+ǫi] is defined for 0 < ǫi < ci − 1 as

Fi,j(τ) =
−τ

∆j

+ (1 + ǫi)
τ + ∆j

∆j

(47)

Theorem 3 is a natural generalization of the delay-free

systems results in [7] to time-delay systems. In fact, as

the maximum involved delay ∆ → 0, taking into account
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the inequalities (1), the supply rate (43) reduces, for xi ∈
R

ni , ri ∈ R
mi , i = 1, 2, into

ρi(xi, x3−i, ri) = −α̂i(|xi|) + σ̂i (|x3−i|) + σr,i(|ri|),

α̂i(s) = −αi(γa,i
(s)),

σ̂i(s) = Si,0σi,0

(

γa,3−i(s)
)

+
h

∑

j=1

Si,jσi,j

(

γa,3−i(s)
)

The inequality (45) is a small-gain condition.

Time-invariant non-commensurate discrete as well as dis-

tributed time-delays in both the subsystems and the in-

terconnecting channels can be covered effectively by the

dissipative inequalities (5) and the supply rates (43). The

inequality (45) by itself is independent of the delays. Thus,

if the subsystems accept the supply rates (43), i = 1, 2,

for arbitrary time delays, the stability condition given by

Theorem 3 is delay-independent. It can be also intuitively

understood that a delay-independent small-gain condition

can guarantee iISS of the interconnection of two delay-free

subsystems regardless of (discrete as well as distributed)

delays in interconnecting channels.

Remark 2: Hypotheses on the supply rates (43) of The-

orem 3 are sufficient conditions for each subsystem to be

iISS with respect to input (x3−i,t, ri) and state xi. In fact,

the choice (43) implies that

ρi = −αi(Ma,i(φi))+σi(γa,3−i(‖φ3−i‖∞))+σr,i(|ri|) (48)

is also a supply rate for the xi subsystem, which yields

χi(|xi(t)|) ≤ βi(‖ξi,0‖∞, t) +
∫ t

0

γi (‖x3−i,τ‖∞) dτ +

∫ t

0

γr,i(|ri(τ)|)dτ

for all t ≥ 0 with βi ∈ KL, χi ∈ K∞, and γi, γr,i ∈ K.

In the case of (H1), the xi subsystem is ISS with respect to

input (x3−i,t, ri) and state xi, i.e. ,

|xi(t)| ≤ βi(‖ξi,0‖∞, t) +

γi

(

sup
τ∈[0,t)

‖x3−i,τ‖∞)

)

+ γr,i(‖(ri)[0,t)‖∞)

for all t ≥ 0 with βi ∈ KL and γi, γr,i ∈ K.

Remark 3: If the x2 subsystem accepts a supply rate in

the form of (43) with S2,0 = S2,1 = ... = S2,h = 0, the

interconnected system (3) becomes a cascade. The condition

(45) can be always met by choosing small σ2,j(s)’s.

Remark 4: If there exist positive numbers Gi,j , j =
0, 1, ..., h, such that G3−i,jαi = σ3−i,j hold for each i = 1, 2
in (43), the ISS Lyapunov-Krasovskii functional of the whole

system becomes simple. For example, if

ρi(φi, φ3−i, ri) = −(Ma,i(φi))
p +

Si,0Gi,0(Ma,3−i(φ3−i))
p +

h
∑

j=1

Si,jGi,j

(

γ
a,3−i

(|φ3−i(−∆j)|)
)p

+ σr,i(|ri|)

holds for i = 1, 2 with some p > 0, the ISS Lyapunov-

Krasovskii functional (46) becomes

Vcl(φ) = V1(φ1) + λ2V2(φ2)

+
h

∑

j=1

∫ 0

−∆j

F1,jS1,jG1,j

(

γ
a,2

(|φ2(τ)|)
)p

dτ

+λ2

h
∑

j=1

∫ 0

−∆j

F2,j(τ)S2,jG2,j

(

γ
a,1

(|φ1(τ)|)
)p

dτ,

where λ2 is any positive real number satisfying G1 < λ2 <
1/G2 and Gi =

∑h

k=0 Si,kGi,k. Note that the existence of

ci >1, i=1, 2 fulfilling (45) can be replaced by G1G2 < 1
in this case.

Remark 5: In the absence of the external signals r1 and

r2, the Lyapunov-Krasovskii functional can be chosen as (46)

with ǫ1 ≥ 0 and ǫ2 ≥ 0.

V. ILLUSTRATIVE EXAMPLES

Example 1) Consider

ẋ1(t) =
1

1 + x2
1(t)

(−x1(t) + x2(t − ∆1) + r1(t))
(49)

ẋ2(t) = −γx2(t) + x2(t − ∆2) +
x1(t − ∆3)

1 + x2
1(t − ∆3)

where x(t) = [x1(t), x2(t)]
T ∈ R

2, r1(t) ∈ R, and γ, ∆i,

i = 1, 2, 3 are positive reals. Let, for φ1 ∈ C1, φ2 ∈ C2,

V1(φ1)=φ2
1(0),

V2(φ2)=φ2
2(0)+

∫ 0

−∆2

(

−τ

∆2
+(1+δ)

τ +∆2

∆2

)

φ2
2(τ)dτ (50)

where a positive real δ has yet to be chosen. Define

Ma,1(φ1)=φ2
1(0), Ma,2(φ2)=φ2

2(0) +

∫ 0

−∆2

φ2
2(τ)dτ (51)

Then, α1(s) = α1(s) = s, α2(s) = s, α2(s) = (1 + δ)s and

γ
a,1

(s) = γa,1(s) = s2, γ
a,2

(s) = s2, γa,2(s) = (1+∆2)s
2.

Using the Young’s inequality, we obtain

D+V1 ≤ (−1+ǫ)
φ2

1(0)

1+φ2
1(0)

+
φ2

2(−∆1)

1+φ2
1(0)

+
r2
1

ǫ(1+φ2
1(0))

,

for 1 > ǫ > 0. Thus, the x1 subsystem is iISS with respect to

input (x2, r1) and state x1. A supply rate is (43), with h = 3
(number of all discrete delays in the overall system), S1,0 =
S1,2 = S1,3 = 0, S1,1 = 1, α1(s) = (1 − ǫ) s

1+s
, σ1,1(s) =

s, σr,1(s) = 1
ǫ
s2. The Young’s inequality also yields

D+V2 ≤ (−2γ + 3 + δ)φ2
2(0) +

φ2
1(−∆3)

1 + φ2
1(−∆3)

−
δ

∆2

∫ 0

−∆2

φ2
2(τ)dτ

Thus, if γ > 3+δ
2 , the x2 subsystem is ISS with respect to in-

put x1 and state x2. A supply rate is (43), with S2,0 = S2,1 =

S2,2 = 0, S2,3 = 1, α2(s) = min
{

2γ − 3 − δ, δ
∆2

}

s,

σ2,3(s) = s
1+s

. The condition (45) is satisfied if (1 +

δ)/ min
{

2γ − 3 − δ, δ
∆2

}

< 1 − ǫ. Since ǫ can be chosen

arbitrarily small, we conclude that system (49) is iISS with
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respect to input r1 and state x, provided that there exists a

positive real δ such that the system parameters γ, ∆2 satisfy

1 + δ < min

{

2γ − 3 − δ,
δ

∆2

}

(52)

Whenever (52) is verified, for any value of positive reals

∆1, ∆3, the interconnected system (49) is iISS with respect

to input r1 and state x. For instance, γ = 3,∆2 = 0.2 fulfill

(52) with δ = 1/2. An iISS Lyapunov functional of the

system (49) is Vcl given in (46) with (27) and

λ1 = 1,
1 + δ

min
{

2γ − 3 − δ, δ
∆2

} < λ2 < 1 .

Example 2). Next, we consider

ẋ1(t) = −2x1(t) + x2(t)

ẋ2(t) = x1(t) − 4x2(t) − x2(t)
ρ2(|x(t)|)

1 + |x2(t)|ρ(|x(t)|)
+

γx1(t − ∆)x2(t) + r2(t), (53)

where xi(t) ∈ R, ρ(s) = 4s + 4s2 + s3, s ≥ 0, γ ∈ R

is a parameter, ∆ ≥ 0 is a fixed time-delay. The system

(53) is a particular time-invariant case of the more general

time-varying control system studied in [6]. The authors of

[6] investigated uniform ultimate boundedness of their time-

varying system, while this paper introduces the disturbance

r2 into the time-invariant model to address stability with re-

spect to actuator errors as well as global asymptotic stability.

Let V1(φ1) = φ4
1(0), V2(φ2) = φ2

2(0), Ma,1(φ1) = φ2
1(0),

Ma,2(φ2) = V2(φ2), Thus α1(s) = α1(s) = s2, α2(s) =
α2(s) = s and γ

a,1
(s) = γa,1(s) = γ

a,2
(s) = γa,2(s) = s2.

The following inequalities holds:

D+V1 ≤ −5φ4
1(0) + φ4

2(0)

D+V2 ≤ −φ2
2(0)+

1

7
φ2

1(0)+
γ2

2
φ2

1(−∆1)+ǫφ2
2(0)+

r2
2

ǫ

where ǫ > 0 is arbitrary. Thus, we take h = 1, S1,0 = 1,

S1,1 = 0, S2,0 = 1, S2,1 = 1 and

α1(s) = 5s2, α2(s) = (1 − ǫ)s, σr1
(s) = 0,

σ1(s) = s2, σ2(s) = 2

(

1

7
+

γ2

2

)

s, σr,2(s) =
1

ǫ
s2

The condition (45) becomes in this case

4

(

1

7
+

γ2

2

)2

< 5 (54)

since ǫ is arbitrary. We can conclude, by Theorem 3, that,

for any given value of the delay ∆, the resulting system

(53) is ISS with respect to the disturbance r2, provided that

|γ| < 1.3965 holds. An ISS Lyapunov functional Vcl of the

system (53) is (46) with (27) and

λ1(s) = sψ+0.5, λ2(s) = ks2(ψ+1)

for suitably chosen k > 0 and ψ ≥ 0.

VI. CONCLUSION

This paper has proposed a small-gain condition for iISS

of interconnected retarded nonlinear systems consisting of

iISS subsystems. Constant discrete as well as distributed

time-delays in both the subsystems and the interconnecting

channels are covered by the formulation. Whether to result in

a delay-dependent criterion or a delay-independent stability

criterion depends on system structure and the choice of sup-

ply rates and storage functionals of subsystems. Lyapunov-

Krasovskii functionals characterizing stability of intercon-

nected systems are constructed from Lyapunov-Krasovskii

functionals of individual subsystem.
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