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Abstract— This paper presents a neural-based control
method for a modular robotic fish with a pair of two-degree-
of-freedom pectoral fins and a tail fin. A central pattern
generator (CPG) model that consists of a network of neural
oscillators (NOs) is utilized to generate the target joint angle.
The properties of NO network and basic strategies of joint angle
control is numerically investigated. Through the coordinated
control of the propulsors, a diversity of swimming patterns
are implemented. Experiments are conducted to validate the
effectiveness of the proposed method.

I. INTRODUCTION

Biorobotic autonomous underwater vehicles (BAUV) have

become an active research field in the last few years [1].

The use of biologically-inspired propulsion and maneuvering

mechanisms can bring several advantages over the conven-

tionally used screw type propellers, such as high efficiency,

great agility, increased noise reduction, and so on. With the

increasing understanding of the swimming mechanisms of

aquatic animals and the progress in material, sensor, control

and fabrication technologies, the nautical technology that

we have been acquainted with will be revolutionized in the

future.

As one of the most common aquatic animals, fish have

received considerable attention from both the biological

and engineering communities for their excellent swimming

performances. The evolutionary Darwinian process of “nat-

ural selection” guarantees that the body morphology, fin

design and locomotory style of fish are nearly optimal for

their specific habitat. Based upon the propulsive structures

employed for locomotion, the swimming of fish can be

classified into two categories: body and/or caudal fin (BCF)

swimming and median and/or paired fin (MPF) swimming

[2]. BCF swimmers generate thrust by bending their bodies

into a backward moving propulsive wave that extends from

the nose to caudal fin. The variation in wavelength and the

amplitude envelope of the propulsive wave further split the

BCF swimming into several subcategories, from anguilliform

swimming that involves the undulation of the whole body, the

carangiform swimming in which the undulation is confined

to the last third of the body length, to the ostraciiform
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swimming characterized by the pendulum-like oscillation of

the caudal fin. The MPF swimming is also categorized into

different types according to the propulsors that contribute to

thrust generation and the extent to which propulsion is based

upon undulatory versus oscillatory motion.

Recent years have seen the emergence of various swim-

ming machines that mimic the morphology and locomotion

of fish. The pioneering work on fish-like robot was performed

by Triantafyllou who built the well-known RoboTuna and

experimentally validated its effectiveness of drug reduction

in 1994 [3]. Subsequent successful robotic fish include the

mission-scale, autonomous underwater vehicle VCUUV by

Anderson and Kerrebrock [4], the pectoral fin driven robotic

fish “BlackBass” by Kato [5], the behavior-based robotic fish

by Liu et al. [6], the fin-actuated agile maneuvering robotic

fish by Morgansen et al. [7], the undulating fin mechanism

by Low [8], et al.. Excellent reviews regarding the state of

art biomimetic robotic fish are provided in [9].

The objective of this paper is to present a neural-based

swimming control method for a modular robotic fish with

multiple propulsors. The robotic fish is constructed with

several waterproofed function modules allowing structure

reconfiguration. A pair of two-degree-of-freedom (2DOF)

pectoral fins, as well as the oscillating caudal fin are uti-

lized to generate the propulsion and maneuvering forces.

Neurophysiological studies have shown that the rhythmic

movements in locomotion, such as walking, running, swim-

ming and flying are controlled by central pattern generators

(CPGs), which are neuron networks that produce coordi-

nated oscillatory signals in the absence of sensory input

or descending inputs from higher cognitive elements [10].

The biologically inspired neural-based method allows online

gait generation of the swimming locomotion. Compared

with trajectory-tracking method that generates joint angle

command according a prescribed reference trajectory, the

neural-based method enables smooth transitions between

gaits, allows integration of sensory feedback, and demon-

strates adaptation to both perturbations in the environment

and modifications of the control parameter.

The rest of the paper is organized as follows. Section II

briefly introduces the mechatronic design of the robotic fish

prototype. Section III addresses the neural-based control of

swimming locomotion and several swimming patterns are

designed based on coordinated control of the propulsors.

Swimming performances of the robotic fish are experimen-

tally evaluated in section IV. Finally, concluding remarks for

this paper are provided in section V.
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Fig. 1. Mechanical configuration of the robotic fish.

II. MODULAR ROBOTIC FISH PROTOTYPE

The robotic fish is composed of a head module, a pair of

pectoral fin modules and two tail modules. To generate the

propulsive and maneuvering forces, a wing-like pectoral fin

is attached to each pectoral fin module and a crescent-shaped

tail fin to the rear tail module. The number of tail module can

be adjusted according to which kind of swimming the robotic

fish is aimed to mimic, for example, one for ostraciiform and

five or more for anguilliform swimming. In this case, two

tail modules are adopted to form a carangiform swimming

robotic fish. The head module provides housings for the

power and electronics. Two R/C servomotors Futaba S9451

are fixed symmetrically at the bottom of the head module,

and the rotating shafts connected with the servomotors run

through dynamic sealing structure filled with grease back-

wardly to provide the heaving motion of the pectoral fins.

The pectoral fin modules are placed symmetrically at the rear

lower position of the head module and are supported on both

sides of the semi-cylindrical part. A R/C servomotor Futaba

S3103 sits in the interior cavity of pectoral fin module and

the rotation of the servomotor is referred to as the pitching

motion of the pectoral fin. Each tail module encapsulates

a R/C servomotor Hitec HS-755HB for body deflection of

the robotic fish. The head module and the tail modules

are interconnected sequentially by mechanical linkage. The

anterior tail module is screwed to the head module and the

rotating shaft of each tail module is connected to its hinder

element with mechanical linkage, allowing relative rotation

between elements. Fig. 1 shows the mechanical configuration

of the robotic fish.

The modular robotic fish is designed for free swimming.

Four rechargeable Ni-Cd cells of 2500mAh capacity provide

the robotic fish about one hour power autonomy. The control

unit is the microcontroller AT91SAM7A3 that incorporates

a high-performance ARM7TDMI core running at 48MHz

and a wide range of peripherals from ATMEL Corporation.

A dual axis accelerometer ADXL202 is used to measure

the accelerations in the pitch and roll axes. The controller

connects a RF module through UART port for radio control

and measures the duty cycle of the PWM signal generated

by the accelerometer. Six PWM signals are generated by the

microcontroller to control the motion of the joints. Table

I summarizes the technical specifications of the modular

robotic fish prototype.

TABLE I

SPECIFICATIONS OF MODULAR ROBOTIC FISH PROTOTYPE

ITEM VALUE

Dimension (L × W × H) 460mm × 270mm × 280mm
Weight 2.2kg (with 2 tail modules)
Microcontroller AT91SAM7A3, 48MHz
Actuator R/C Servomotor
Power Supply DC, 4.8V, 2500mAh
Operation Mode Radio Control, 444MHz
Sensor Dual Axis Accelerometer

Fig. 2. A neural oscillator with two mutually inhibiting neurons.

III. LOCOMOTION CONTROL OF ROBOTIC FISH

A. Neural Oscillator Model

The locomotion of vertebrate animals is characterized

by the coordinated alternation of flexion and extension of

muscles. Such rhythmic motor patterns are produced by the

activities of complex networks of neurons located in the

spinal cord known as CPGs [11]. The intrinsic membrane

properties of the neurons that form the network and the prop-

erties of the synaptic connectivity among them determine the

behavior of these networks. By providing sensory feedback

and descending inputs from higher cognitive elements, the

timing characteristics of the CPG can be modulated and as

a result different motor behaviors can be generated. The

appealing features of CPGs include the learning ability of

adapting their operation to a variety of body and environment

changes, and the potential to lead to distributed, thus fault-

tolerant and robust, motion control architectures.

Ichthyology studies reveal that rhythmic patterns of neural

activity exist in both the motion of fin systems and the

axial motion of fish body [12]. Base on this knowledge,

the mathematical model of CPG originally formulated by

Matsuoka [13] is adopted and introduced into the swimming

gait generation of the robotic fish. As illustrated in Fig. 2,

the CPG is modelled as a neural oscillator (NO) that consists

of an extensor neuron and an flexor neuron with mutually

inhibitory connections. Each neuron receives tonic input

that drives neuron oscillation, inputs from other neurons

and sensory feedback signals. The dynamics of the NO is

governed by the following nonlinear differential equations
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(a) Disturbance rejection property.

When 5 ≤ t ≤ 6, Feede
i

= 0.5, Feed
f
i

= 0; otherwise Feede
i

= 0,

Feed
f
i

= 0.

(b) Entrainment to cyclic external input signal.
When 4 ≤ t ≤ 7, Feede

i
= max(0.8sin(8t), 0),

Feed
f
i

= max(−0.8sin(8t), 0); otherwise Feede
i

= 0, Feed
f
i

= 0.

Fig. 3. Typical output of the neural oscillator. Parameters: Tu = 0.3,

Tv = 0.6, β = 5, α = 2, u0e
i

= 1, u
0f
i

= 1, ∀j, ωij = 0.

that exhibit limit cycle behavior:

Tuu̇e
i = −ue

i − βve
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f
i −
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ωijy
e
j − Feede

i + u0e
i (1)
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e
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f
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f
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f
i −αye

i −
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j=1

ωijy
f
j −Feed

f
i + u

0f
i (3)

Tvv̇
f
i = −v

f
i + y

f
i (4)

y
{e,f}
i = max(u

{e,f}
i , 0) (5)

yi = y
f
i − ye

i (6)

where ue
i and u

f
i are inner states of the extensor and flexor

neurons of the ith NO, respectively; ve
i and v

f
i are variables

representing the degree of the self-inhibition effect of the

neurons; ye
i and y

f
i are outputs of extensor and flexor

neurons; u0e
i and u

0f
i represent tonic excitation that modulate

the amplitude of the oscillator output; β is a constant

representing the degree of the self-inhibition influence on

the inner state; Tu and Tv are time constants characterizing

the output wave shape and its frequency; α is a connecting

weight between flexor and extensor neurons; ωij indicates

the connecting weight between neurons of the ith and jth

NO; Feede
i and Feed

f
i are sensory feedbacks from the

robotic fish; yi is the output of the ith NO.

The equations describing the NO model can not be solved

analytically. The mathematical conditions to achieve stable

Fig. 4. Structure of the neural oscillator network. The NOs numbered
as 1,2,3,4,5,...,n correspond to left pitching joint, left heaving joint, right
heaving joint, right pitching joint, the first tail joint, ... , and the (n − 4)th
tail joint, respectively.
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Fig. 5. Relationship between phase difference and connecting weights.

Parameters: Tu = 0.3, Tv = 0.6, β = 5, α = 2, u0e
i = 1, u

0f
i

= 1,

u0e
j

= 1, u
0f
j

= 1, Feede
i

= 0, Feed
f
i

= 0, Feede
j

= 0, Feed
f
j

= 0.

oscillations are analyzed in [13], and the relationship be-

tween the parameters and the oscillator output is numerically

explored in [14]. An attractive characteristic of NO is that

it can adapt to external sensory input, and the output can

return to its original oscillation after the incoming signal

is removed. In addition, when an oscillatory input signal

is applied, the NO can entrain the input, locking onto the

input frequency. Fig. 3 shows typical simulated outputs of the

NO, demonstrating its disturbance rejection and entrainment

properties.

B. Neural Oscillator Network for Fish-like Swimming

Each joint of the robotic fish is allocated with a NO,

whose output is used as the target joint angle. To generate

fish-like swimming with the modular robotic fish, the neural

oscillations of the joints should be coordinated by assigning

appropriate coupling and synaptic strength between NOs. A

NO network, which is illustrated in Fig. 4 is built to perform

inter-joint coordination. To simplify the structural complexity

of the network, only neighboring NOs are connected. By

coupling the joints, the NOs are mutually entrained and

oscillate in the same period with a fixed phase difference.

The effective generation of thrust by either the tail fin

or the pectoral fins requires specific phase shift between

joints to be maintained. For two interconnected NOs, the

phase difference mainly depends on the connecting weights

between them. The relationship between the phase difference
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Fig. 6. An implementation example of angle bias. When t < 4, u0e
i

= 1,

u
0f
i

= 1, otherwise u0e
i

= 0.6, u
0f
i

= 1.4. Other parameters: Tu = 0.3,

Tv = 0.6, β = 5, α = 2, u0e
j

= 1, u
0f
j

= 1, Feede
i

= 0, Feed
f
i

= 0,

Feede
j

= 0, Feed
f
j

= 0, ωij = −1, ωji = −0.6.

Fig. 7. An implementation example of oscillation suppression. When t < 4,

u0e
i

= 1, u
0f
i

= 1, u0e
j

= 1, u
0f
j

= 1, otherwise u0e
i

= 0.2, u
0f
i

= 1.8,

u0e
j = 0.4, u

0f
j

= 1.6. Other parameters: Tu = 0.3, Tv = 0.6, β = 5,

α = 2, Feede
i

= 0, Feed
f
i

= 0, Feede
j

= 0, Feed
f
j

= 0, ωij = −1,

ωji = −0.6.

and the connecting weights is numerically investigated. A

series of simulations is carried out with the connecting

weights ωij and ωji each varying from -1 to 1. From Fig.

5, it can be concluded that the phase difference depends on

the quadrant in which the point (ωij , ωji) locates. The plane

is split into two symmetric areas by the line ωij = ωji,

on which the phase difference is zero meaning synchronous

oscillation of the two NOs. In the area where ωij > ωji, the

oscillation of the ith NO lag that of the jth NO in phase.

The phase difference falls into the range of (−π, 0) and is

narrowed as the weights decrease. The same tendency is

observed where ωij < ωji, except that the phase difference

is in the range of (0, π).
Angle bias of the rotating joint is essential to the aquatic

maneuvering of the robotic fish. We achieve angle bias by

applying different tonic excitations to the extensor and flexor

neurons, which in biology innervate corresponding motor

neurons connected with muscles. Fig. 6 shows an example

of implementing angle bias. As illustrated in the figure, the

output wave of the NO is biased towards the neuron with

larger tonic input. It is also noticeable that its adjacent NO

is slightly affected through mutual coupling.

Another control demand for the swimming locomotion of

the robotic fish is to produce static offset deflection of the

joint. Simulation studies suggest that the oscillation of the

NO can be suppressed when tonic inputs to the extensor and

flexor neurons differ drastically. Fig. 7 shows an example of

oscillation suppression. The successful realization of oscil-

lation suppression requires that adjacent NOs don’t oscillate

due to the entrainment properties of the NO.

C. Implementation of Swimming Patterns

Based on the proposed NO network and the above joint

angle control strategies, a great diversity of fish-like swim-

ming patterns can be realized. Here we investigate basic BCF

and MPF swimming patterns as well as hybrid swimming

patterns that require simple coordination of the propulsors.

(1) BCF forward swimming: The robotic fish swims in

a straight line by actuating the tail joints, while the pectoral

fins are held parallel to the horizontal plane. To realize this

pattern, the tonic excitation of the pectoral fins and the

connecting weights associated with them are set to be zero.

Because the thrust is generated by bending the body into a

backward moving propulsive wave, the rhythmic oscillation

of each tail joint should lead its succeeding joints in phase.

(2) BCF turning in advancing: Unequal tonic excitations

are applied on the NO of the tail joint to produce angle

bias, while the other parameters remain the same as the BCF

forward swimming.

(3) BCF sharp turning: The robotic fish first attains a rel-

atively high swimming speed with BCF forward swimming

and suddenly bends the body into a “C” shape by driving the

joints at the tail to their angular limits. The posture holds for

a short period of time and then switches back to its original

swimming behavior. The oscillation suppression strategy is

used here to generate static joint deflection of the tail.

(4) MPF forward and backward swimming: This swim-

ming behavior can be achieved by the synchronized move-

ments of the paired pectoral fins, with the body and caudal

fin held straight. To generate anteriorly directed thrust, the

phase differences between the heaving NO and the pitching

NO are in the range of (0, π). For phase differences in the

range of (−π, 0), backward swimming can be accomplished.

The parameters on one side should equal the corresponding

parameters on the other side in order for the thrust on both

sides to be equal.

(5) MPF turning: The differentiation of hydrodynamic

forces between the pectoral fins will cause a yawing moment

that is necessary to execute turning maneuvers on the fish

body. An effective method to produce the yawing moment

is to produce anteriorly directed force on one side and

posteriorly directed force on the other side.

(6) Submerging and ascending: Three-dimensional mo-

tion is achieved by adjusting the attack angle of the pectoral

fins, which can be realized through offsetting the pitching

joint with oscillation suppression. As a precondition, the

robotic fish should attain a higher swimming speed with BCF

forward swimming pattern. The attack angle of the pectoral

fin on each side should take the same value in order not to

generate yawing or rolling moments.

(7) Braking: The robotic fish brakes through sudden

rotation of the pectoral fins to a position perpendicular to

the body. The drag caused by the pectoral fin decelerates

and eventually stops the motion of the robotic fish.
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Fig. 8. Average linear speed in BCF forward swimming with different
frequencies and amplitudes. The amplitudes used in each case are: A =
{A5 = 10◦, A6 = 20◦}, B = {A5 = 20◦ , A6 = 30◦}, C = {A5 =
30◦ , A6 = 40◦}.

IV. EXPERIMENTAL RESULTS

To verify the feasibility and effectiveness of the proposed

control methods, several experiments are carried out in an

indoor swimming tank of 2250mm × 1250mm × 350mm.

The robotic fish is marked with specified colors and the

information within the swimming tank is captured by an

overhead CCD camera. The image is transmitted to a PC and

processed with a visual tracking software platform developed

to obtain the position and orientation of the robotic fish in

real time. The two dimensional trajectory of the robotic fish

can also be extracted and recorded for post-analysis.

Experiments with the robotic fish are conducted by testing

the swimming patterns described above. The nonlinear differ-

ential equations that describe the NO network include dozens

of parameters, which precludes the possibility of a thorough

exploration. Since there is no explicit relationship between

the parameters of the NO network and the swimming kine-

matics, i.e. angular offset, oscillatory frequency, amplitude

and phase shift of the joints, simulations are carried out

before the experiment to determine the suitable parame-

ters that generate the desired joint motion. The swimming

performance is tested by varying the concerned kinematic

parameter while holding the others constant.

For BCF forward swimming pattern, the average linear

speed is tested by varying the tail beat frequency ft and

the amplitude of the first tail joint A5 and the second tail

joint A6. Three groups of amplitudes are employed while

the frequency is varied in each case. The phase shift used

to generate the travelling wave is π
2

. The swimming speed,

as illustrated in Fig. 8, increases almost linearly with the

frequency and large amplitude can also provide more thrust.

Due to the open-loop property of motor control system, the

desired amplitudes can not be reached at higher frequency,

which results in the speed saturation at the performance lim-

its of the servomotors. The maximum speed of BCF forward

swimming can reach 0.38 m/s, which is approximately 0.82

body length per second.

The swimming performance of BCF turning in advancing

can be evaluated in terms of turning radius R and turning

rate ω. The angular offsets have been chosen as the principal

parameter for test, although other parameters have been

believed to have, but not such a strong influence on the

TABLE II

SWIMMING PERFORMANCE OF BCF TURNING IN ADVANCING. THE

AMPLITUDES ARE A5 = 20◦ , A6 = 30◦ , AND THE OSCILLATORY

FREQUENCY OF TAIL FIN IS ft = 1Hz .

Anglular offsets (deg) 10 20 30 40

R (m) 1.26 0.94 0.69 0.36

ω (rad/s) 0.49 0.66 0.85 1.09

(a) BCF forward swimming (b) Start of “C” shape bending

(d) Hold the posture (f) Straighten the body

Fig. 9. Snapshots of BCF sharp turning.

turning performance. The turning radii and turning rates of

this swimming pattern with four angular offsets added to

each of the tail joints are listed in table II. According to

the experimental results, the turning radius decreases and

the turning rate increases with the increase of the angular

offsets, so that this behavior can be used not only for small

course adjustment but also for rapid turn in narrow space.

In the experiment of BCF sharp turning, the robotic fish

swims straight to reach an initial speed of 0.3m/s. The “C”

shape posture lasts for 2.8s before robotic fish straightens

its body. Fig. 9 shows a series of snapshots during this

swimming pattern. By employing BCF sharp turning, the

robotic fish can achieve a heading change as large as 120◦.

Tests of MPF-based straight swimming patterns are carried

out by varying the frequency, while the amplitudes are

kept at constant values and the phase difference is held at
π
2

on both sides for forward swimming and −
π
2

on both

sides for backward swimming. Fig.12 shows the forward

and backward swimming speeds at different frequencies. As

BCF forward swimming, the speeds increase in proportion

with the frequency in both cases. However, for the same

frequency, the speed of backward swimming is significantly

less than that of forward swimming, which can be explained

by the fact that the pitching motion occurs at the quarter

chord position of the pectoral fin.

In MPF turning, we employ the same kinematic parame-

ters on both sides, except the phase shift which is π
2

on one

side and −
π
2

on the other side. The turning performance is

tested under different frequencies. The experimental results

are shown in table III. As shown in the table, the turning

radius increases with higher frequency, while the turning rate

remains almost constant under different frequencies.

The accelerometer is used in submerging to measure the
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Fig. 10. Average linear speed in MPF forward and backward swimming.
The amplitudes used in both cases are: A1 = 30◦ , A2 = 40◦, A3 = 30◦,
A4 = 40◦.

TABLE III

SWIMMING PERFORMANCE OF MPF TURNING. THE AMPLITUDES ARE:

A1 = 30◦ , A2 = 40◦ , A3 = 30◦ , A4 = 40◦ .

Frequency (Hz) 0.6 1.0 1.4 1.8

R (m) 0.44 0.61 0.79 0.97

ω (rad/s) 0.31 0.34 0.33 0.32

pitch angle of the fish head, which determines the descending

speed of the robotic fish. BCF forward swimming with tail

beat frequency of 1.5Hz is employed to provide the forward

speed in the test. The relationship between the attack angle

of pectoral fins and the pitch angle of fish head is shown in

Fig. 11. The pitch angle increases at small attack angle and

decreases when the attack angle is larger than 40◦. The drop

in pitch angle is caused by slow forward speed at large attack

angle, which induces considerable drag on the pectoral fins.

The effectiveness of braking is validated by comparing

the deceleration rate of stopping with and without this

swimming pattern. Before braking is executed, the robotic

fish accomplished a swimming speed of 0.3 m/s with BCF

forward swimming. Fig. 12 shows the speed records in inertia

drift and braking. As shown in the figure, the deceleration

rate of the robotic fish is significantly elevated with braking.

V. CONCLUSIONS

The online generation of fish-like swimming based on

CPG brings an array of advantages in addition to the distur-

bance rejection property mentioned above. The neural-based

method allows dynamical change of the swimming kinematic

parameters without causing jerks that may damage the ser-

vomotors. Smooth transitions between swimming patterns,

which can not be realized with sine-based method are also

made possible. The main drawback of this method is the

lack of systematic methodology to set the parameters for a

desired output. Online optimization with genetic algorithm

can be conducted to find the parameters that produce the

most effective swimming.

This paper was concerned with neural-based control of a

modular robotic fish with a pair of 2DOF pectoral fins and

a tail fin. A CPG model consisting of a network of NOs

was utilized for swimming locomotion control and several

swimming patterns were designed based on the coordinated

Fig. 11. Relationship between the attack angle of pectoral fins and the
pitch angle of fish head.

Fig. 12. Speed records in inertia drift and braking. The BCF forward
swimming ends at t = 3s.

control of propulsors. Experimental results demonstrated the

effectiveness of the proposed methods.
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