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Abstract— Optimal control problems involving time-
dependent decisions from a finite set have gained much
interest lately, as they occur in practical applications with
a high potential for optimization. A typical application is
automobile driving with gear shifts. Recent work [7], [8],
[9] lead to a tremendous speedup in computational times to
obtain optimal solutions, allowing for more complex scenarios.
In this paper we extend a benchmark mixed-integer optimal
control problem to a more complicated case in which a
periodic solution on a closed track is considered. Our generic
solution approach is based on a convexification and relaxation
of the integer control constraint. It may also be used for
other objectives, such as energy minimization. Using the
direct multiple shooting method we solve the new benchmark
problem and present numerical results.

I. INTRODUCTION

Mixed–integer optimal control problems (MIOCPs) in

ordinary differential equations (ODEs) have gained increas-

ing interest over the last years, see [12], [13], [14] for

further references. This is probably due to the fact that the

underlying processes have a high potential for optimization.

Typical examples are the choice of gears in transport, [7],

[8], [14], [9], or processes in chemical engineering involving

on-off valves, [13]. From a mathematical point of view

the integer requirement makes this problem class extremely

challenging. The fact that optimal trajectories for problems

in which the integrality constraint has been relaxed may

contain sensitivity-seeking or path-constrained arcs that have

no meaning from the application point of view requires thus

efficient and stable algorithms.

Although the first MIOCPs, namely the optimization of

subway trains that are equipped with discrete acceleration

stages, were already solved in the early eighties for the city of

New York, [4], the so–called indirect methods used there do

not seem appropriate for generic large–scale optimal control

problems with underlying nonlinear differential algebraic

equation systems. Instead direct methods have become the

methods of choice for most practical problems. See [2] for

an overview.

In direct methods infinite–dimensional control functions

are discretized by basis functions and corresponding finite–

dimensional parameters that enter into the optimization prob-

lem. The drawback of direct methods with binary control

functions obviously is that they lead to high–dimensional

vectors of binary variables. For many practical applications

a fine control discretization is required, however. Therefore,

techniques from mixed–integer nonlinear programming like

Branch&Bound or Outer Approximation will work only on

limited and small time horizons because of the exponentially

growing complexity of the problem, [15], [9].

We propose to use an outer convexification with respect

to the binary controls. The reformulated control problem

has two main advantages compared to standard relaxations1.

First, especially for time-optimal control problems, the opti-

mal solution of the relaxed problem often exhibits a bang–

bang structure, and is thus already integer feasible. Second,

theoretical results have recently been found, [12], [14], that

show that even for path-constrained and sensitivity-seeking

arcs the optimal solution of the relaxed problem yields the

exact lower bound on the minimum of the integer problem.

This allows to calculate the loss of performance, if a coarser

control discretization grid, a simplified switching structure

for the optimization of switching times, or heuristics are

used.

In a recent publication [9], the strength of this ap-

proach was shown by solving a benchmark mixed-integer

control problem which has its origin in automobile test-

driving and involves discrete controls for the choice of

gears. Time-optimal reference solutions obtained by a direct

approach, solving a mixed-integer nonlinear program via

Branch&Bound were known for this problem, [7]. The new

approach reproduces the published reference solutions with

computational costs reduced by several orders of magnitude.

This gain in computational efficiency allows to extend

the problem to more complicated scenarios. In this paper

we investigate optimal long-term solutions on closed tracks,

incorporated by periodicity constraints of the type

x(0) = x(T )

into the optimization problem. The numerical results show

the broad applicability and merit of the proposed algorithm.

II. PROBLEM FORMULATION

In this section we will give a description of the car model

and the reference test course.

1in the following we will use the expression relaxed whenever a control
constraint µ(t) ∈ {a1, . . . , an} is relaxed to w(t) ∈ [a1, an].
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A. Car model

We consider a car model derived under the simplifying

assumption that rolling and pitching of the car body can be

neglected. Only a single front and rear wheel is modelled,

located in the virtual center of the original two wheels.

Motion of the car body is considered on the horizontal plane

only. Four controls represent the driver’s choice on steering

and velocity, and are listed in Table I. We denote the control

space by U .

Control Range Unit Description

wδ [−0.5, 0.5] rad
s

Steering wheel angular veloc.

FB [0, 1.5 · 104] N Total braking force
φ [0, 1] – Accelerator pedal position
µ {1, . . . , 5} – Selected gear

TABLE I

CONTROLS USED IN THE CAR MODEL.

The dynamics are described by a system of ordinary dif-

ferential equations. The individual system states are listed in

Table II, while Figure 1 visualizes the choice of coordinates,

angles, and forces.

State Unit Description

cx m Horizontal position of the car
cy m Vertical position of the car
v m

s
Magnitude of directional velocity of the car

δ rad Steering wheel angle
β rad Side slip angle
ψ rad Yaw angle

wz
rad
s

Yaw angle velocity

TABLE II

COORDINATES AND STATES USED IN THE CAR MODEL.

The center of gravity is denoted by (cx, cy) and is obtained

by integrating the directional velocity,

ċx(t) = v(t) cos
(

ψ(t) − β(t)
)

, (1)

ċy(t) = v(t) sin
(

ψ(t) − β(t)
)

. (2)

Acceleration into the direction of driving is obtained from

the sum of forces attacking the car’s mass m,

v̇(t) =
1

m

(

(Fµ
lr − FAx) cosβ(t) + Flf cos

(

δ(t) + β(t)
)

(3)

− (Fsr − FAy) sinβ(t) − Fsf sin
(

δ(t) + β(t)
)

)

.

The steering wheel’s angle, i.e., the angle of the front wheel

w.r.t. the general orientation of the car’s longitudinal axis, is

obtained from the corresponding controlled angular velocity,

δ̇(t) = wδ. (4)

The slip angle’s denotes the deviation of the car’s direction of

movement from its longitudinal axis.Its change is controlled

by the steering wheel and counteracted by the sum of forces

attacking perpendicular to the car’s direction of driving,

β̇(t) = wz(t) −
1

m v(t)

(

(5)

(Flr − FAx) sinβ(t) + Flf sin
(

δ(t) + β(t)
)

+ (Fsr − FAy) cosβ(t) + Fsf cos
(

δ(t) + β(t)
)

)

.

The yaw angle representing the orientation of the car’s

longitudinal axis against the horizontal coordinate axis is

obtained by integrating over its change wz,

ψ̇(t) = wz(t), (6)

which in turn is the integral over the sum of forces attack-

ing the front wheel in direction perpendicular to the car’s

longitudinal axis of orientation,

ẇz(t) =
1

Izz

(

Fsf lf cos δ(t) − Fsr lr (7)

− FAy eSP + Flf lf sin δ(t)
)

.

Fig. 1. Coordinates and forces in the single-track car model.

We now list and explain the individual forces used in this

ODE system. We first discuss lateral and longitudinal forces

attacking at the front and rear wheels. In view of the convex

reformulation we’ll undertake later, we consider the gear µ
to be fixed and denote dependencies on the selected gear by

a superscript µ like, e.g., in wµ
mot.

The side (lateral) forces on the front and rear wheels as

functions of the slip angles αf and αr according to the so-

called ”magic formula“ due to [11] are

Fsf,sr(αf,r) := Df,r sin
(

Cf,r arctan
(

Bf,r αf,r (8)

− Ef,r(Bf,r αf,r − arctan(Bf,r αf,r))
)

)

.

The front slip angle itself is obtained from

αf := δ(t) − arctan

(

lf ψ̇(t) − v(t) sinβ(t)

v(t) cosβ(t)

)

(9)

while the rear slip angle is

αr := arctan

(

lr ψ̇(t) + v(t) sinβ(t)

v(t) cosβ(t)

)

. (10)
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The longitudinal force at the front wheel is composed from

braking force FBf and resistance due to rolling friction FRf

Flf := −FBf − FRf. (11)

Assuming a rear wheel drive, the longitudinal force at the

rear wheel is given by the transmitted engine torque Mwheel

and reduced by braking force FBr and rolling friction FRr.

The effective engine torque Mµ
mot is transmitted twice. We

denote by iµg the gearbox transmission ratio corresponding

to the selected gear µ, and by it the axle drive’s fixed

transmission ratio. R is the rear wheel radius.

Fµ
lr :=

iµg it
R

Mµ
mot(φ) − FBr − FRr. (12)

The engine’s torque, depending on the acceleration pedal’s

position φ, is modeled as follows:

Mµ
mot(φ) := f1(φ) f2(w

µ
mot) + (1 − f1(φ)) f3(w

µ
mot),

(13)

f1(φ) := 1 − exp(−3 φ), (14)

f2(wmot) := −37.8 + 1.54 wmot − 0.0019 w2
mot, (15)

f3(wmot) := −34.9 − 0.04775 wmot. (16)

Here, wµ
mot is the engines rotary frequency in Hertz. For a

given gear µ it is easily computed from the car’s speed by

wµ
mot :=

iµg it
R

v(t). (17)

The total braking force FB is controlled by the driver. For

its distribution to front and rear wheels we choose

FBf :=
2

3
FB, FBr :=

1

3
FB. (18)

The braking forces FRf and FRr due to rolling resistance are

obtained from

FRf(v) := fR(v)
m lr g

lf + lr
, FRr(v) := fR(v)

m lf g

lf + lr
, (19)

where the velocity-dependent amount of friction is modeled

by

fR(v) := 9 · 10−3 + 7.2 · 10−5 v (20)

+ 5.038848 · 10−10 v4.

Finally, drag force due to air resistance is given by FAx, while

we assume that no sideward drag forces (e.g., side wind) are

present.

FAx :=
1

2
cw ρ A v2(t), FAy := 0. (21)

The model parameters m, g, lf, lr, lr, eSP, R, Izz, cw, ρ,

A, it, and iµg and the Pacejka coefficients Bf,r, Cf,r, Df,r, Ef,r

can be found in [7], [8], and [9].

B. Test course

We realize test courses by constraining the car’s position

onto a prescribed track at any time t ∈ [t0, tf]. To facilitate

the formulation of the extended periodic benchmark prob-

lems we chose an elliptic track with axes of a = 170 meters

and b = 80 meters respectively, centered in the origin. The

track’s width is W = 7.5 meters, five times the car’s width

B = 1.5 meters. The set of feasible positions is hence

X (t) =
{

[

(a+ r) cos η, (b+ r) sin η
]

∣

∣

∣
r ∈ [−W/2,W/2] ⊂ R

}

, (22)

η(t) = arctan
cy(t)

cx(t)
. (23)

Note that the special case cx(t) = 0 leading to η(t) = ±π
2

requires separate handling.

This model has a shortcome, as switching to a low gear

is possible also at high velocities, although this would lead

to an unphysically high engine speed. Therefore we extend

it by additional constraints on the car’s engine speed

800 =: nMIN
eng ≤ neng ≤ nMAX

eng := 8000, (24)

in the form of equivalent velocity constraints

πnMIN
eng R

30iti
µ
g

≤ v(t) ≤
πnMAX

eng R

30iti
µ
g

(25)

for all t ∈ T and the active gear µ(t). We write this as

reng(v(t), µ(t)) ≥ 0.

C. Optimal control problem

We denote with x the state vector of the ODE system and

by f the corresponding right-hand side function. The vector

u shall be the vector of continuous controls, whereas the

integer control µ(·) will be written in a separate vector,

x :=
[

cx, cy, v, δ, β, ψ,wz

]⊺

, u :=
[

wδ, FB, φ
]⊺

.

With this notation, the resulting mixed-integer optimal con-

trol problem reads as

min
tf,x(·),u(·),µ(·)

tf (26a)

s.t. ẋ(t) = f
(

t, x(t), u(t), µ(t)
)

, (26b)
[

cx, cy

]

(t) ∈ X (t) (26c)

reng(v(t), µ(t)) ≥ 0, (26d)
[

wδ, FB, φ, µ
]

(t) ∈ U , (26e)

x(t0) = x(tf), (26f)

cy(t0) = 0. (26g)

where (Eq. 26b) through (Eq. 26e) shall hold for all t ∈
[t0, tf]. By employing the objective function (Eq. 26a) we

strive to minimize the total time tf required to traverse the

test course. As is formulated in (Eq. 26c), the car must be

positioned within the test course’s boundaries X (t) at any

time. The system’s periodicity constraints are given by (Eq.

26f) (plus an offset of 2π for the yaw angle ψ). The car’s

initial vertical position on the track is fixed to zero without

loss of generality for better comparability of results.
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III. GENERAL PROBLEM CLASS AND ALGORITHM

In this section we will abstract the control problem to a

more general class and propose algorithms for the solution.

A. General problem class

The mixed-integer optimal control problem formulated in

Section II-C belongs to a broader class of equality- and

inequality-constrained optimal control problems on dynamic

processes modeled by ODE systems. We consider the fol-

lowing class of optimal control problems:

min
tf,p

x(·),u(·),µ(·)

M
(

tf, x(tf), p
)

(27a)

s.t. ẋ(t) = f
(

t, x(t), u(t), µ(t), p
)

∀t ∈ T , (27b)

0 ≤ c
(

t, x(t), u(t), p
)

∀t ∈ T , (27c)

0 ≤ rin
(

x(tin1 ), . . . , x(tinNin
), p
)

, (27d)

0 = req
(

x(teq
1 ), . . . , x(teq

Neq
), p
)

, (27e)

µ(t) ∈ Ω ∀t ∈ T . (27f)

Herein, let t ∈ [t0, tf] =: T ⊂ R be a fixed time horizon,

and let x(t) ∈ R
nx describe the state vector of the dynamic

process at any time t ∈ T . Further, let u(t) ∈ R
nu be

the vector of continuous controls influencing the dynamic

process, and let µ(t) ∈ R
nµ be a vector of integer control

functions, constrained to values from a discrete set Ω. Finally

we denote by p ∈ R
np a vector of time-independent model

parameters. Point inequalities and equalities are defined on

suited time grids {tini } and {teq
i }. We require the ODE

system’s right hand side function f , the objective function

M , the path constraint function c, and the equality as well

as the inequality point constraint functions req and rin to be

sufficiently often continuously differentiable with respect to

all arguments.

B. The direct multiple shooting method

This section briefly sketches the direct multiple shooting

method, first described by [3] and [5] and extended in a

series of subsequent works (see, e.g., [10]). The purpose

of this method is to transform the infinite-dimensional OCP

presented in Section III-A (neglecting the integer variables)

into a finite-dimensional nonlinear program (NLP) by dis-

cretization of the control functions on a time grid t0 < t1 <
. . . < tNshoot

= tf. For this, let bij : T → R
nu , 1 ≤ j ≤ nqi

be a set of sufficiently often continuously differentiable base

function of the control discretization for the shooting interval

[ti, ti+1] ⊂ T . Further, let qi ∈ R
nqi be the corresponding

set of control parameters, and define for 0 ≤ i < Nshoot

ûi(t, qi) :=

nqi
∑

j=1

qij bij(t), t ∈ [ti, ti+1]. (28)

The control space is hence reduced to functions that can be

written as in (28), depending on finitely many parameters qi.
The right-hand side function f and the constraint functions c,
req, and rin are assumed to be adapted accordingly. Multiple

shooting variables si are introduced on the time grid to

parameterize the differential states. The node values serve

as initial values for an ODE solver computing the state

trajectories independently on the shooting intervals 0 ≤ i <
Nshoot.

ẋi(t) = f(t, xi(t), ûi(t, qi), p) ∀t ∈ [ti, ti+1], (29)

xi(ti) = si. (30)

One advantage of the multiple shooting approach is the

ability to use state-of-the-art adaptive integrator methods,

see, e.g., [1]. Obviously we obtain from the above IVPs

Nshoot trajectories, which in general will not combine to a

single continuous trajectory. Thus, continuity across shooting

intervals needs to be ensured by additional matching condi-

tions entering the NLP as equality constraints,

si+1 = xi(ti+1; si, qi, p). (31)

Here we denote by xi(ti+1; si, qi, p) the solution of the IVP

on shooting interval i, evaluated in ti+1, and depending

on the initial values si, control parameters qi, and model

parameters p.

The path constraints c(·) are discretized on an appropri-

ately chosen grid. To ease the notation, we assume in the

following that all constraint grids match the shooting grid.

From this discretization and parameterization results a

highly structured NLP of the form

min
s,q,p

M
(

sNshoot
, p
)

(32a)

s.t. 0 = si+1 − xi(ti+1; si, qi, p) (32b)

0 ≤ c
(

ti, si, ûi(ti, qi), p
)

(32c)

0 ≤ rin
(

s0, s1, . . . , sNshoot
, p
)

, (32d)

0 = req
(

s0, s1, . . . , sNshoot
, p
)

. (32e)

where 0 ≤ i < Nshoot. We solve this large-scale, but struc-

tured NLP by a tailored sequential quadratic programming

(SQP) method. This includes an extensive exploitation of the

arising structures, in particular block-wise high-rank updates

and condensing for a reduction of the size of the quadratic

problems (QP) to that of a single-shooting method. For more

details see [5], [10].

C. Convex relaxation of integer controls

We convexify problem (27) with respect to the integer

control functions µ(·) as first suggested in [12]. We assign

one control function wi(·) to every possible control µi ∈ Ω.

This corresponds to nw = |Ω| controls, which may be a large

number. In practice, however, there often is a small set of

admissible choices resp. most of the elements of Ω can be

excluded logically. Here nw would correspond to the number

of remaining feasible choices. Examples are the selection

of a distillation column tray [12], of an inlet stream port

[13], or of a gear in the presented case. In all examples
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nw is linear in the number of choices. Furthermore, in

most practical applications the binary control functions enter

linearly (such as valves that indicate whether a certain term

is present or not). Therefore the drawback of an increased

number of control functions is outweighed by the advantages

concerning the avoidance of integer variables associated with

the discretization in time for most applications we know of.

By convexifying (27) with respect to µ(·), we obtain the

following optimal control problem on T .

min
tf,p

x(·),u(·),w(·)

M
(

tf, x(tf), p
)

(33a)

s.t. ẋ(t) =

nw
∑

i=1

f
(

x(t), µi, u(t), p
)

wi(t), (33b)

0 ≤ c
(

t, x(t), u(t), p
)

, (33c)

0 ≤ rin
(

x(tin1 ), . . . , x(tinNin
), p
)

, (33d)

0 = req
(

x(teq
1 ), . . . , x(teq

Neq
), p
)

, (33e)

w(t) ∈ {0, 1}nw , (33f)

1 =

nw
∑

i=1

wi(t). (33g)

There obviously is a bijection µ(t) = µi ↔ wi(t) = 1
between the solutions of problems (27) and (33), compare

[12]. The relaxation of problem (33) consists in replacing

constraint (33f) by

w(t) ∈ [0, 1]nw ∀ t ∈ T . (34)

This formulation has two main advantages. First, for many

optimal control problems the optimal solution will have a

bang–bang character, therefore the solution of the relaxed

problem will yield the optimal integer solution. Second,

for problems that fit into the class (33) a theory has been

developed that allows to deduce information on the opti-

mal integer solution from the optimal value of the relaxed

problem, even if this solution is not bang–bang, but path-

constrained or sensitivity-seeking. See [12], [14] for theory

and applications.

D. Calculation of integer solutions

Different methods for the calculation of integer solutions

for mixed-integer optimal control problems, based on a direct

approach, have been described and compared in [12]. Among

them one finds Branch&Bound, Outer Approximation, pe-

nalization heuristics and rounding strategies. All methods

that suffer from a combinatorial explosion when the number

of discretized binary control variables increases have a very

limited applicability, though.

It can often be observed that the solution of the relaxed,

purely continuous problem already yields an integer solution

for almost all control discretizations. In addition, simple

rounding strategies, taking the special ordered set constraint

(33g) into account, often result in integer solutions without

affecting the objective function value.

For cases in which path-constraints play a role or a differ-

ent objective function leads to sensitivity-seeking arcs, we

recommend to use a sum up rounding strategy as developed

in [12], [14] in combination with a switching time optimiza-

tion. Sum up rounding yields integer solutions arbitrarily

close to the optimal integer solution, if a sufficiently fine time

discretization is used. If guaranteed global solutions are an

issue, this approach can be readily combined with methods

in global optimization, of course.

IV. NUMERICAL RESULTS

Numerical results have been computed with the optimal

control software package MUSCOD-II [6]. For integration

an adaptive fourth/fifth-order Runge-Kutta-Fehlberg method

equipped with internal numerical differentiation (IND), cf.

[1], was used. To solve the relaxed problem we apply

homotopies, adding a regularization term ε ·
∫ tf

0
w2

δ(t) dt for

the steering wheel angular velocity to the objective function

and reducing ε down from 10, and doing a similar thing for

the engine speed constraint. The computing time for each

problem is well below two minutes on an AMD Athlon XP

3000+ with 2.166 GHz and 1024 MB of RAM.

Parts of the optimal trajectory are shown in

Figures 2 and 3. The optimal order of gears is

(2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2). The gear switches take

place after 1.87, 5.96, 10.11, 11.59, 12.21, 12.88, 15.82,

19.84, 23.99, 24.96, 26.10, and 26.76 seconds, respectively.

The final time is tf = 27.7372 s.

Fig. 2. The steering angle velocity (control), and some differential states
of the optimal solution: directional velocity, side slip angle β, and velocity
of yaw angle wz plotted over time. The vertical lines indicate gear shifts.

As can be seen in Fig. 3, the car uses the track width

to its full extent, leading to active path constraints. As was

expected, the optimal gear increases in an acceleration phase.

When the velocity has to be reduced, a combination of

braking, no acceleration, and engine brake is used.

The result depends on the engine speed constraint

reng(v(t), µ(t)) that becomes active in the braking phase.

If the constraint is obmitted, the optimal solution switches

directly from the fourth gear into the first one to maximize
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Fig. 3. Elliptic race track seen from above with optimal position and gear choices of the car. Note the exploitation of the slip (sliding) to change the
car’s orientation as fast as possible, when in first gear. The gear order changes when a different maximum engine speed is imposed.

the effect of the engine brake. For nMAX
eng = 15000 braking

occurs in the gear order 4, 2, 1.

Although this was left as a degree of freedom, the opti-

mizer yields a symmetric solution with respect to the upper

and lower parts of the track for all scenarios we considered.

V. CONCLUSIONS

We reformulated and extended a recently published bench-

mark problem in mixed-integer optimal control. With a

solution approach based on an outer convexification and a

relaxation of the integer constraints we obtained periodic

solutions on an elliptic track without any a priori assumptions

on the switching structure. The approach is generic and is

also applicable to different car models, tracks, and to other

objectives, e.g., energy optimality. The tremendous speed-

up compared to previous approaches allows for an extension

to more realistic racing tracks and models, and to nonlinear

model predictive control of switched systems.
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