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Abstract— In this paper, the observer-based fault detection
problem over an unreliable digital channel is studied. The
channel qualities, which are usually called Quality of Service
(QoS), i.e. packet loss probability and quantization error, are
first analyzed in the view of control engineering, and they are
transferred into stochastic parameters and system uncertainties.
Then it is shown that the fault detection system can be modeled
in a framework of stochastic uncertain systems. With a given
observer the requirements of QoS for an expected fault de-
tection performance are established by solving an optimization
problem with the help of linear matrix inequalities (LMIs).
Then for the given QoS of a channel, the optimal observer for
fault detection is also derived. Finally the integrated design of
QoS and the fault detection system is discussed.

I. INTRODUCTION

In last decades, networked control systems (NCS) have

received more and more attentions due to their promising

applications in industrial processes and mechatronic systems

(robotics, automotive and etc). By using networks, large

and complex implementation as well as the modularity and

reconfigurability can be realized in the control system. In fact

NCS consists of two subsystems: the control part and the

communication part. The modern communication channels

are usually digital and unreliable. It may encounter packet

losses and quantization errors due to disturbances from

the environment or limitations of the channel itself. Those

unreliabilities are used to represent the QoS of the digital

channel, and they can significantly influence the performance

of control systems. Therefore on one hand the design of NCS

must take QoS into account and in the other hand the digital

network should be designed to provide proper QoS in order

to guarantee the performance of NCS. An integrated design

of NCS considering the control part and the communication

part is also of interests.

There are many contributions have been published about

how to deal with the unreliabilities of the system. In [7]

[8] [10] [11] [12] [14] and [16], packet loss was intensively

analyzed. The optimal control with packet losses was studied

in [7] by applying dynamic programming technique. In [8]

and [11] the state estimation problems with packet loss were

solved with the help of Kalman filtering theory. In [10]
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[12] and [14] the systems with packet losses were modeled

as Markov jumping systems and the so-called stochastic

stability of the system can be achieved. The fault detection

system considering packet losses was designed in [16] by

using Markov jumping system theory. There are also many

works discussing the quantized feedback control systems.

The coarsest memoryless static quantizer [1] [2] [5] [6]

and dynamic quantizer [9] were designed which guarantee

the system stability. Those works indicate that the feedback

information can be useful with different levels of resolutions

for different levels of system performances. In order to

stabilize the system the minimum feedback information must

be enough to compensate for the increase in the uncertainty

due to the quantization [5]. Those contributions are mainly

concentrated on dealing with QoS, rather than integrated

design of control and communication parts of NCS. Besides,

[3] and [4] studied the fault detection problem of stochastic

systems.

In this paper an observer-based fault detection system

over unreliable digital channels is designed by applying a

framework of stochastic uncertain systems. The stochastic

uncertain system can describe deterministic uncertainties and

also stochastic uncertainties. We first study QoS, including

packet losses and quantization errors, of digital channels

and reformulate them in terms of stochastic variables and

system uncertainties. An observer is proposed to estimate

the system outputs and generate residual signals. Such an

observer is also called fault detection filter (FDF). Residual

signals are evaluated and compared with a threshold to test

the occurrences of system faults. The process, FDF and the

digital channel are then modeled as a whole system in the

framework of the stochastic uncertain system. Based on that,

an integrated design of FDF and communication channels is

proposed.

This paper is organized as follows. In section II, we

formulated the fault detection problem over unreliable digital

channels and analyze the characteristics of the channels. In

section III, preliminaries of the framework of stochastic un-

certain systems are introduced and then the design approach

of the FDF and digital channels is presented. In section IV, a

numerical example is given to illustrate the results. Finally,

a conclusion is given in section V.

II. PROBLEM FORMULATION

The communication channel always encounter unreliabil-

ities, e.g. packet loss and quantization error. Fig. 1 gives the

structure of the system under consideration. The measure-

ment signals first go through source encoder where the sig-
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nals are transferred into a binary sequence after quantization.

Then it is transmitted via the channel where the transmitted

packets can be lost. The process is a linear time invariant

discrete system

x(k +1) = Ax(k)+Bu(k)+Edd(k)+E f f (k)

y(k) = Cx(k)+Fdd(k)+Ff f (k)

u(z) = K(z)y(z) (1)

where x ∈ Rn is the state vector, y ∈ Rm is the measurements,

u∈Rp is the control inputs, d ∈Rnd is the disturbance vector,

and f ∈ Rn f is the fault vector. A, B, C, Ed , E f , Fd , Ff are

known matrices with compatible dimensions. K(z) stands for

the output feedback controller applied in the process, which

can be a static or dynamic one. Let

xcl(k) =

[

x(k)
xc(k)

]

where xc(k) is the state of the output feedback controller.

Then the close-loop system of (1) can be written as

xcl(k +1) = Aclx(k)+Ed,cld(k)+E f ,cl f (k)

y(k) = Cclxcl(k)+Fd,cld(k)+Ff ,cl f (k) (2)

The fault detection (FD) system receives the transmitted

Fig. 1. Remote Fault Detection System

measurements after source decoding at the remote side,

and then it generates the residual signals. The controller is

located at the process side. The control law is assumed to be

known to the fault detection system. In this fault detection

system only the process measurements are transmitted over

the digital channel, and therefore u is not directly available

at the remote side. Hence we suggest the following FDF for

the closed-loop system (2) with deterministic disturbances

x̂cl(k +1) = Acl x̂(k)+L(yrec(k)− ŷ(k))

ŷ(k) = Ccl x̂(k)

r(k) = yrec(k)− ŷ(k) (3)

where r ∈ Rm is the residual signal. yrec is the received mea-

surements at the remote side. L is the observer gain which

should be designed to ensure the stability and the dynamics

of the FDF. From the viewpoint of residual generation, it may

be of additional advantage to adopt the closed-loop FD, e.g.

using a decoupling controller will reduce an MIMO problem

to a number of SISO problem.

The unreliabilities of networks considered in this paper

include packet losses and quantization errors. First the

measurements can be lost during the transmission and we

assume its probability is Pl . Second we assume that the

source encoder applies the following logarithmic quantizer

suggested by [2]

Q(v) =







ρ iv0 if 1
1+δq

ρ iv0 < v ≤ 1
1−δq

ρ iv0,v > 0

0 if v = 0

−Q(−v) if v < 0

where 0 < ρ < 1 is the quantization density, v0 > 0 is the

maximum possible value of v, and

δq =
1−ρ

1+ρ
.

From [2], it is known that a suitable model for the log-

arithmic quantizer Q(v) with parameter δq consists in the

following multiplicative random map

Q(v) = (1+∆q)v

where ∆q ∈ [−δq,δq]. Hence δq stands for the bound of the

uncertainty introduced by the quantizer.

It is clear that the QoS of the considered channel can be

described with Pl and δq.

III. FAULT DETECTION SYSTEM DESIGN

The fault detection system should be designed to minimize

the influence of disturbance so that an occurrence of faults

can be detected earlier. In this section, we first give a

framework of stochastic uncertain systems. Then we analyze

and design the fault detection system with packet losses and

quantization errors by applying the framework.

A. A framework of stochastic uncertain systems

In order to design the fault detection system over commu-

nication channels, we first introduce the following stochastic

uncertain system

x(k +1) = (A0 +∆A)x(k)+(Ew,0 +∆Ew)w(k)

r(k) = (C0 +∆C)x(k)+(Fw,0 +∆Fw)w(k) (4)

where x ∈ Rn denotes the state vector, r ∈ Rm denotes the

output vector and w ∈ Rnw denotes the inputs of the system.

A0, C0, Ew,0 and Fw,0 are known real matrices of compatible

dimension and
[

∆A ∆Ew

∆C ∆Fw

]

=

[

∆A0 ∆Ew,0

∆C0 ∆Fw,0

]

+
l

∑
i=1

[

Ai +∆Ai Ew,i +∆Ew,i

Ci +∆Ci Fw,i +∆Fw,i

]

pi

where
[

∆A j ∆Ew, j

∆C j ∆Fw, j

]

=

[

E j

Fj

]

∆
[

G J
]

with known matrices A j, C j, Ew, j, Fw, j and E j, Fj, G, J,

j = 0, · · · , l of appropriate dimensions and

∆∆T ≤ I. (5)
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Here pT (k) = [p1(k) · · · pl(k)] represents the stochastic model

uncertainties with

p̄(k) = E(p(k)) = 0,E(p(k)p(k)T ) = diag(σ 2
1 , · · · ,σ2

l )

where σi, i = 1, · · · , l are known. It is further assumed that

p(0), p(1),· · · , are independent.

For the system we give the following theorem.

Theorem 1: Given system (4) and a constant µ > 0, then

‖r‖2 =

√

∞

∑
0

E(r(k)T r(k)) < µ‖w‖2,

if the following linear matrix equality holds for some Y > 0

and ε > 0
























−S SN0 SR0 0

. . .

− 1

σ2
l

S SNl SRl 0

∗ · · · ∗ −S0 0

[

GT

JT

]

∗ · · · ∗ ∗ −I 0

∗ · · · ∗ ∗ ∗ −I

























< 0 (6)

with

N j =

[

A j E j

C j Fj

]

,R j =

[

E j

Fj

]

, j = 0, · · · , l,

S =

[

Y 0

0 εI

]

,S0 =

[

Y 0

0 µ2εI

]

.

Proof: See Appendix.

This linear matrix inequality can be solved via existing

efficient numerical methods.

B. Residual Dynamics

Define e(k) = xcl(k)− x̂cl(k), and then we can get the

following augmented system if there is no packet loss:
[

xcl(k +1)
e(k +1)

]

=

[

Acl 0

−L∆qCcl Acl −LCcl

][

xcl(k)
e(k)

]

+

[

Ed,cl

Ed,cl −LFd,cl −L∆qFd,cl

]

d(k)

+

[

E f ,cl

E f ,cl −LFf ,cl −L∆qFf ,cl

]

f (k)

and

r(k) =
[

∆qCcl Ccl

]

[

x(k)
e(k)

]

+(Fd,cl +∆qFd,cl)d(k)

+(Ff ,cl +∆qFf ,cl) f (k)
.

If a packet loss occurs at the time instant k, we apply

yrec(k) = ŷ(k). Then the residual dynamics is governed by
[

xcl(k +1)
e(k +1)

]

=

[

Acl 0

0 Acl

][

xcl(k)
e(k)

]

+

[

Ed,cl

Ed,cl

]

d(k)+

[

E f ,cl

E f ,cl

]

f (k)

and

r(k) =
[

0 0
]

[

xcl(k)
e(k)

]

.

We assume that the packet loss is independent and identically

distributed with probability Pl . Then in fault-free case, i.e.

f = 0, the above system can be reformulated in the manner

of (4) with

A0 =

[

Acl 0

0 Acl − (1−Pl)LCcl

]

,

A1 =

[

0 0

0 −LCcl

]

,

∆A0 =

[

0 0

(1−Pl)δqL∆Ccl 0

]

,∆A1 =

[

0 0

δqL∆Ccl 0

]

,

C0 =
[

0 (1−Pl)Ccl

]

,C1 =
[

0 Ccl

]

,

∆C0 =
[

(1−Pl)δq∆Ccl 0
]

,∆C1 =
[

δq∆Ccl 0
]

and for the disturbance inputs d,

Ed,0 =

[

Ed,cl

Ed,cl − (1−Pl)LFd,cl

]

,

Ed,1 =

[

0

−LFd,cl

]

,

∆Ed,0 =

[

0

(1−Pl)δqL∆Fd,cl

]

,∆Ed,1 =

[

0

δqL∆Fd,cl

]

Fd,0 = (1−Pl)Fd,cl ,Fd,1 = Fd,cl ,

∆Fd,0 = (1−Pl)δq∆Fd,cl ,∆Fd,1 = δq∆Fd,cl

and

p1 = Pl , if there is no packet loss

p1 = −(1−Pl), if there is packet loss

σ2
1 = (1−Pl)Pl

where ∆∆T ≤ I. Those uncertainties can be written as
[

∆A j ∆Ed, j

∆C j ∆Fd, j

]

=

[

E j

Fj

]

∆
[

G J
]

, j = 0,1

with

E0 =

[

0 0

(1−Pl)δqL 0

]

,E1 =

[

0 0

δqL 0

]

,

F0 =
[

(1−Pl)δq 0
]

,F1 =
[

δq 0
]

,

G =
[

Ccl 0
]

,J =

[

Fd,cl

0

]

.

It is clear that, the whole system is characterized with the

QoS parameters Pl , δq as well as the observer gain L. Packet

losses are caused by the disturbance in communication chan-

nels. Therefore Pl is influenced by the working environment

and usually can not be designed. The quantization parameter

δq is obviously determined by the applied quantizer in source

coding. A lager δq implies a smaller quantization density ρ ,

that means a coarser quantizer can be applied. The observer

gain L is a free design parameter. Hence we formulate the

fault detection system design as three optimization problems:

Problem 1: Design of the digital channel. For a given

observer gain L, if the packet loss probability Pl is known,

find the maximum allowable δq such that

‖r‖2

‖d‖2
< µ (7)
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where µ > 0 is a given constant.

Problem 2: Design of the FDF. For given communication

channel, i.e. Pl and δq are known, find an observer gain L

such that
‖r‖2

‖d‖2
→ min (8)

is fulfilled.

Problem 3: Integrated design of the digital channel and

FDF. Given µ > 0 and Pl , find an observer gain L and δq

such that (7) is satisfied.

The basic idea of the optimization problems is to design

the channel parameters and/or observer gain, such that the

influence of disturbances on the fault detection system is

bounded or minimized. All three problems can be solved

with the help of Theorem 1.

In Problem 1 the maximum allowable δq is determined

in order to achieve the expected fault detection performance

with a given L. The following corollary gives the result.

Corollary 1: Given the process (2), FDF (3) with a known

L, and a constant µ > 0, if the packet loss probability Pl

is known, the maximum allowable δq satisfying (7) can be

obtained by solving the following optimization problem

max
Y>0,ε>0

δq

subject to inequality (6) with

N j =

[

A j Ed, j

C j Fd, j

]

,R j =

[

E j

Fj

]

, j = 0, · · · , l.

In Problem 2 the optimal observer gain L is designed for

the fault detection over a given channel.

Corollary 2: Given the process (2), FDF (3), packet loss

probability Pl , and quantization parameter δq, the optimal

observer gain L satisfying (8) can be selected by solving

min
Y1>0,Y2>0,X2

µ2

with µ > 0 subject to
















−S 0 Π13 Π14 Π15 0

∗ − 1

σ2
l

S Π23 Π24 Π25 0

∗ ∗ Y 0 0 GT

∗ ∗ ∗ µ2εI 0 JT

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ −I

















< 0 (9)

with

S =

[

Y 0

0 εI

]

,Y =

[

Y1 0

0 Y2

]

,

Π13 =





Y1Acl 0

0 Y2Acl − (1−Pl)X2Ccl

0 ε(1−Pl)Ccl



 ,

Π14 =





Y1Ed,cl

Y2Ed,cl − (1−Pl)X2Fd,cl

ε(1−Pl)Fd,cl



 ,

Π15 =





0 0

(1−Pl)δqX2 0

ε(1−Pl)δq 0



 ,

Π23 =





0 0

0 −X2Ccl

0 εCcl



 ,

Π24 =





0

−X2Fd,cl

εFd,cl



 ,

Π25 =





0 0

δqX2 0

εδq 0





and L = Y−1
2 X2.

In Problem 3 the observer is designed such that the

requirements on QoS of digital channels for an expected

FD performance are minimized, that means the acceptable

uncertainty introduced by the quantization is maximized.

This problem can be solved in the similar way as in Problem

2.

Corollary 3: Given the process (2), FDF (3) and a constant

µ > 0, the observer gain L and maximum allowable δq

solving Problem 3 can be determined by

max
Y1>0,Y2>0,X2

δq

subject to the inequality (9) and L = Y−1
2 X2.

In this case (9) is no longer a linear matrix inequality, but

it can be solved by using iterative methods.

C. Residual evaluation

Since an evaluation of residual signals over the whole time

is usually unrealistic, the evaluation function in this paper is

computed in a time window, which is

‖r‖t =

[

k

∑
i=k−t

r(i)′r(i)

]1/2

where t = 1,2, · · · is an integer denoting the length of the

evaluation window.

In case of no fault, the residual is determined by d(k) and

the threshold can be chosen as Jth = µδd , where ‖d‖2 ≤ δd .

Then the occurrence of faults can be tested according to the

following logic rule

‖r‖t > Jth ⇒ fault alarm

‖r‖t ≤ Jth ⇒ fault-free

IV. EXAMPLE

To illustrate the results, we take the following dynamic

process as an example:

A =

[

2 1

0 1

]

,B =

[

1 0

0 1

]

,C =

[

1 0

0 1

]

,

Ed =

[

0.1
0.1

]

,Fd = 0,

E f =

[

1

0

]

,Ff = 0,

K =

[

−1.5 0

0 −0.5

]

.
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Here a static output feedback controller is applied in the

process. The sampling rate of the system is 0.1s. The norm

of disturbance ‖d‖2 is bounded by 2 and the packet loss

probability of the given channel is assumed to 0.1. An

actuator fault is generated at t = 250s with f = 0.15. The

length of evaluation time window is 100 time steps.

100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time [s]

||
r|

| t

Fig. 2. Results of Problem 1: Evaluated residual signal ‖r‖t (solid line)
and Jth = 0.9 (dash line).

100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time [s]

||
r|

| t

Fig. 3. Results of Problem 2: Evaluated residual signal ‖r‖t (solid line)
and Jth = 0.6 (dash line).

For Problem 1, with µ2 = 0.2 and a given observer gain

L =

[

0.4 1

0 0.3

]

we obtain the maximum allowable δq = 0.2 according to

Corollary 1, which means the quantizer used in the source

encoder should have ρ > 0.67. The threshold can be set as

Jth = 0.9.

For Problem 2, with δq = 0.2, by applying Corollary 2 we

can get the optimal observer gain

L =

[

0.29 0.73

−0.1394 0.433

]

with µ2 = 0.09. Then the threshold can be set as Jth = 0.6.

For Problem 3, with µ2 = 0.1, according to Corollary 3

the optimal observer gain is

L =

[

−0.0639 −0.0181

0.0086 −0.0127

]

100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

Time [s]

||
r|

| t

Fig. 4. Results of Problem 3: Evaluated residual signal ‖r‖t (solid line)
and Jth = 0.63 (dash line).

and the maximum allowable δq is 0.3. The quantizer will

require ρ > 0.54, and thus a coarser quantizer can be applied

here. The threshold is set as Jth = 0.63.

Fig. 2, 3 and 4 show the simulation results. For different

design problems, the maximum allowable δq and/or an

optimal observer gain L can be designed. With the computed

thresholds, the faults can be detected in time.

V. CONCLUSION

In this paper an observer-based fault detection system over

unreliable digital channels was designed. The QoS, including

quantization error and packet loss probability, were analyzed

and modeled as stochastic variables and system uncertain-

ties. Then the system was described in the framework of

stochastic uncertain systems, where the digital channel and

FDF were considered as a whole system. Based on this

description, three optimization problems for fault detection

were formulated. By solving those problems, the digital

channels and FDF were designed. An integrated design

approach of control part and communication part in NCS was

also proposed. At the end the residual signals were evaluated

and compared with a threshold in order to detect the faults.

APPENDIX

Proof outline of Theorem 1. Let

V (x(k)) = xT (k)Px(k),P > 0.

It is evident that

E(V (x(k +1)))−E(V (x(k))) + E(rT (k)r(k))

− µ2wT (k)w(k) < 0(10)

with µ > 0 ensures

∞

∑
k=0

E(rT (k)r(k))−µ2wT (k)w(k) < 0.

The inequality (10) is equivalent with

l

∑
j=0

σ2
j

[

ĀT
j +∆ĀT

j

ĒT
j +∆ĒT

j

]

P̄
[

Ā j +∆Ā j Ē j +∆Ē j

]

− P̃ < 0
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where

ĀT =
[

AT
0 CT

0

]

,∆ĀT =
[

∆AT ∆CT
]

,

ĒT =
[

ET
w,0 FT

w,0

]

,∆ĒT =
[

∆ET
w ∆FT

w

]

and

P̄ = diag(P, I), P̃ = diag(P,µ2I),σ2
0 = 1.

Define

Pj = σ2
j

[

P 0

0 I

]

,

and

M j =

[

A j +∆A j Ew, j +∆Ew, j

C j +∆C j Fw, j +∆Fw, j

]

,N j =

[

A j Ew, j

C j Fw, j

]

,

j = 0, · · · , l

then (10) can be written as

[

MT
0 · · · MT

l

]







P0 0

. . .

0 Pl













M0

...

Ml







−

[

P 0

0 µ2I

]

< 0

Applying Schur-complement yields














−P−1
0 M0

. . .

−P−1
l Ml

MT
0 · · · MT

p

[

−P 0

0 −µ2I

]















< 0

which is equivalent with














−P−1
0 N0

. . .

−P−1
l Nl

NT
0 · · · NT

p

[

−P 0

0 −µ2I

]















+



















E0

F0

...

El

Fl

0



















∆















01

...

0l

GT

JT















T

+















01

...

0l

GT

JT















∆T



















E0

F0

...

El

Fl

0



















T

< 0

Here we introduce a useful lemma to deal with uncertainties.

Lemma 1: [13] [15] Given the matrices H̃ and Ẽ of

appropriate dimensions, then

H̃∆Ẽ + ẼT ∆T H̃T < 0

where ∆ is as in (5), if and only if there exits a scalar ε > 0

such that

[

ε−1/2ẼT ε1/2H̃
]

[

ε−1/2Ẽ

ε1/2H̃T

]

< 0

Applying the lemma, we get














−P−1
0 N0

. . .

−P−1
l Nl

NT
0 · · · NT

p

[

−P 0

0 −µ2I

]















+

ε



















E0

F0

...

El

Fl

0





































E0

F0

...

El

Fl

0



















T

+
1

ε















01

...
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which implies (10). By applying Schur-complement and

similarity transformation, finally we obtain the linear matrix

inequality (6) with Y = εP.

REFERENCES

[1] R. W. Brockett and D. Liberzon, ”Quantized feedback stabilization of
linear systems”, IEEE Trans. Automat. Contr., vol 45, pp 1279-1289,
2000.

[2] N. Elia and S. Mitter, ”Stabilization of linear systems with limited
information”, IEEE Trans. Automat. Contr., vol 46, pp 1384-1400,
2001.

[3] Z. Gao, H. Wang, T. Chai, ”A robust fault detection filtering for
stochastic distribution systems via descriptor estimator and parametric
gain design”, IET Proc. - Control Theory Applications, vol.1, no.5,
pp.1286-1293, 2007.

[4] Z. Gao and D. W. C. Ho, ”State/noise estimator for descriptor systems
with application to sensor fault diagnosis”, IEEE Transactions on

Signal Processing, vol.54, no.4, pp.1316-1326, 2006.
[5] H. Haimovich, M. M. Seron and G. C. Goodwin, ”Geometric charac-

terization of multivariable quadratically stabilizing quantizer”, Int. J.

Control, vol 79, pp 845-857, 2006.
[6] H. Ishii and T. Basar, ”Remote control of LTI systems over networks

with state quantization”, System & Control Letters, vol 54, pp 15-31,
2005.

[7] O. C. Imer, S. Yksel and T. Basar, ”Optimal control of LTI systems
over unreliable communication links”, Automatica, vol 42, pp 1429-
1439, 2006.

[8] Z. Jin, V. Gupta and R. M. Murray, ”State estimation over packet
dropping networks using multiple description coding”, Automatica,
vol 42, pp 1441-1452, 2006.

[9] D. Liberzon, ”Hybrid feedback stabilization of systems with quantized
signals”, Automatica, vol 39, pp 1543-1554, 2003.

[10] P. Seiler and R. Sengupta, ”An H∞ approach to networked control”,
IEEE Trans. Automat. Contr., vol. 50, pp 356-364, 2005.

[11] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. and S. S.
Sastry, ”Kalman filtering with intermittent observations”, IEEE Trans.

Automat. Contr., vol. 49, pp 1453-1464, 2004.
[12] J. Wu and T. Chen, ”Design of networked control systems with packet

dropouts”, IEEE Trans. Automat. Contr., vol. 52, pp 1314-1319, 2007
[13] L. Xie, ”Output feedback H∞ control of systems with parameter

uncertainty”, Int. J. of Control, vol. 63, pp 741-750, 1996.
[14] J. Xiong and J. Lam, ”Stabilization of linear systems over networks

with bounded packet loss”’, Automatica, vol. 43, pp 80-87, 2007
[15] L. Yu and F. Gao, ”Output feedback guaranteed cost control for

uncertain discrete-time systems using linear matrix inequalities”, J.

of Optimization theory and applications, vol. 113, pp 621-634, 2002.
[16] P. Zhang, S. X. Ding, P. M. Frank and M. Sader, ”Fault detection

of networked control systems with missing measurements”, 5th Asian

Control Conference, Melbourne, Australia, 2004.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB06.6

2715


