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Abstract— In this paper the coverage control for mobile sen-
sor networks is studied. The novelty is to consider an anisotropic
sensor model where the performance of the sensor depends not
only on the distance but also on the orientation from the sensor
to the target. Moreover we consider sensors with limited-range
sensing defined by a probabilistic model and we assume that
each robot is equipped with omni-directional communication
capability. A gradient-based distributed algorithm is designed
to maximize the joint detection probabilities of the events in
the region of interest by the sensors. Simulations illustrate the
results.

I. INTRODUCTION

Stimulated by the technological advances and the develop-

ment of relatively inexpensive communication, computation,

and sensing devices, the interest in the research area of

coordinated networked control has majorly increased over the

past years. One example is the deployment of autonomous

vehicles to perform challenging tasks such as search and re-

covery operations, manipulation in hazardous environments,

surveillance and also environmental monitoring for pollu-

tion detection and estimation. Deploying multiple agents to

perform tasks is advantageous compared to the single agent

case: It provides robustness to agent failure and allows to

handle more complex tasks.

In this paper, we consider a mobile sensing network of

vehicles equipped with sensors to sample the environment.

The goal is to drive the sensors/agents to the position such

that a given region is optimally covered by the sensors. Some

relevant works on the coverage control problem are [1]–[12].

In [1] the agents move to the optimal configuration which

minimizes an objective function. The approach is based on

Voronoi tessellation and Lloyd algorithm. Briefly speaking,

the agents partition the given region into subregions given

by Voronoi partitions and move towards the centroid of

its subregion and increase its sensing radius until all the

area is covered. The same problem is considered in [2]

with a more realistic model by introducing “limited-range

interactions” of the sensors, i.e the sensing range is restricted

to a bounded region. Power-aware coverage algorithms for

mobile networks are proposed in [3] in order to balance

the energy expenditure accross the network and make nodes

with high power compensate for nodes with low power. The

advantage of the Voronoi approach is that the control law is

distributed by its nature.
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Alternative approaches are introduced in [4], [5], [7]. In

[4] the authors consider a probabilistic network model and a

density function to represent the frequency of random events

taking place over the mission space. The authors develop

an optimization problem that aims at maximizing coverage

using sensors with limited ranges, while minimizing commu-

nication cost. A potential-field-based approach to deployment

problem in an unknown environment is presented in [5]. An

algorithm also based on artificial potential-field is proposed

in [6] that maximizes the area coverage of a network while

satisfying the constraint that every node has at least K neigh-

bors. Dimarogonas, et.al [7] proposed an inverse agreement

control strategy that forces the agents to disperse in the

workspace. Here each agent follows a flow, whose inverse

would lead the team to an agreement. Coverage control

problem based on receding horizon control is considered in

[8].

Moreover, dynamic coverage is considered in [9]. Here,

the agents move such that every point in a given area is

sensed with a pre-specified coverage level C∗. The same

problem is introduced in [10] by considering information

decay i.e. each point in the area is decaying w.r.t. time so that

the robots must revisit them periodically. Dynamic coverage

under some practical assumptions such as bounded sensing

and actuation capacities of the vehicles are addressed in [11],

[12].

However, in the works mentioned above, only a uniform

(isotropic) sensor model is considered. In this paper, in

contrast to the above papers, we consider the coverage

problem with an anisotropic sensor model where the per-

formance of the sensor depends not only on the distance

but also on the orientation to the target. This model is

more realistic since most of the sensors such as cameras,

directional microphones, radars etc are anisotropic. In [13]

we consider coverage control with anisotropic sensor based

on Voronoi tessellation combined with an adapted Lloyd

algorithm and a gradient descent, similar to the approach

in [1]. The consideration of a general anisotropic sensor

model results in an anisotropic Voronoi tesselation which is

difficult to analyze. In [13], the distributed optimal control

law for the coverage problem is derived assuming a fixed

and equal sensor orientation and we assume a specific class

of anisotropic sensors with elliptic sensing performance level

sets instead of circles as for the isotropic case.

In this paper, a more realistic model of anisotropic sensor

is considered. As surveyed above, most of coverage control

schemes are based on the gradient flow approach and this

paper also takes this approach. To the best of our knowledge,
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only an exception is [8], where receding horizon control

strategy is adopted. In addition, instead of using the Voronoi

approach where each sensor is assumed to have its own

sensing region, we apply the joint detection probability

approach motivated by [4]. The advantage of this approach

is that it does away with the hard partitions of the Lloyd

algorithm and can be extended to the three dimensional case

in a straightforward manner as will be shown later. Moreover,

the sensor is assumed to have a limited range which is

defined by a probabilistic model. This model depends on

the distance and orientation from the sensor to the target in

the region of interest. A deployment algorithm is applied to

each mobile sensor in order to maximize the joint detection

probabilities of the events in the region of interest. In [14],

the problem of coverage control with limited anisotropic

sensors is considered, which is an extension of [2]. However,

the sensing performance of the sensor depends only on the

distance from the sensor to the target to be sensed, which is

different with the definition of the anisotropic sensor in this

paper.

This paper is organized as follows: The problem for-

mulation for the limited-range anisotropic sensor model is

presented in section 2. The distributed coverage control laws

are derived in section 3. The extension of the approach to the

three dimensional case is discussed in section 4. We verify

the effectiveness of the control strategy through numerical

simulations in section 5. Finally we present concluding

remarks and address some future works in section 6.

II. PROBLEM FORMULATION

A. Region of Interest and Sensor Model

Let Q be a polyhedron in R2 including its interior.

φ(q) : Q → R+ is a density function which represents

the probability that some event takes place in Q. Regions

with a large value of φ are regions of higher chances of

finding a target. φ(q) satisfies φ(q) ≥ 0 for all q ∈ Q and
∫

Q φ(q) < ∞. We consider a robotic network where each

robot is equipped with limited-range omnidirectional com-

munication and anisotropic sensing capabilities. In this paper,

we interchangeably refer to the elements of the network

as sensors, agents, vehicles, or robots. Furthermore it is

assumed that all the sensors are identical i.e. all sensors

have the identical capabilities for sensing, communication,

computation, and mobility. Let s = (s1, ...,sN) be the location

of the N identical robots/sensors moving in the region Q. Let

θ = (θ1, ...,θN) be the orientation/attitude of N sensors. The

kinematic model of the agents are given by

si(k +1) = si(k)+ui(k), (1)

θi(k +1) = θi(k)+ vi(k). (2)

where k is the iteration index, ui(k) and vi(k) are the

control input for the position and the orientation of sensor

i respectively. When an event occurs at point q, it emits a

signal and this signal is observed by sensor i at location si.

The received signal strength (performance of the sensor) is

assumed to be decayed not only with the distance from the

R

q

s
i

d
i

θ
i

θ

θ

α
i

Fig. 1. Limited-range anisotropic sensor model. The sensing performance
of sensor i depends on the distance di and the orientation αi from sensor i

to the target q

sensor but also with the orientation of the target to the sensor.

We define this type of sensor as an anisotropic sensor model.

The degradation of the sensor performance is represented

by a monotonically decreasing differentiable function pi(q),
which expresses the probability that sensor i detects the event

occuring at q or indicates how poor the sensing performance

is. Lower value of pi(q) means that point q is sensed poorly

by sensor i and vice versa. Formally, the anisotropic sensor

model (see Fig. 1) is given as follows:

Sensor Model 1: Each sensor has a limited sensory do-

main Qi with the maximum sensing range R and the maxi-

mum sensing direction Θ. The sensing ability of each sensor

declines along the radial distance and the radial angle from

the sensor to the point to be sensed. Mathematically, the

sensory domain of each sensor is given by

Qi = {q ∈ Q : di ≤ R
∧

|αi| ≤ Θ}, (3)

where

di = ‖q− si‖,

αi = cos−1

(

(q− si)(cosθi,sinθi)

‖q− si‖

)

,

Θ ∈
(

0,
π

2

]

.

Moreover we make the following assumption on the sensing

performance of the above sensor model.

Assumption 1:

pi(q) = 0,
∂ pi(q)

∂di(q)
= 0,

∂ pi(q)

∂αi(q)
= 0 if q /∈ Qi. (4)

The assumption tells us that the sensor i can only sense the

point inside its region of sensing Qi. One example of the

sensor model that later will be used in the simulation of this

paper is

pi(q) =

{

(di−R)2(αi−Θ)2

R2Θ2 if q ∈ Qi

0 otherwise
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Fig. 2. Joint detection probability. Each point in Q is sensed by all sensors

This sensor model is similar to the one which combines

camera and ultrasonic sensor used in YAMABICO robot (see

[15] for the details).

B. Optimal Coverage Formulation

The optimal coverage is achieved by deploying mobile

sensors into the region of interest so that the probability

that events are detected is maximized. In this paper, sensors

are assumed to make observations independently. Given the

region of interest and sensor model, when an event takes

place at q and it is observed by the sensors, the joint

probability that this event is detected by the sensors can be

written as (see Fig. 2)

P(q,s,θ) = 1−
N

∏
i=1

[1− pi(q)]. (5)

Then the optimal coverage problem can be formulated as an

optimization problem of maximizing the objective function

defined by

F(s,θ) =
∫

Q
φ(q)P(q,s,θ)dq, (6)

which is the expected event detection probability by the

sensors over Q. In the optimization problem, the controllable

variables are the locations and the orientations of mobile

sensors contained in s and θ respectively. The goal of this

paper is to design the control laws ui and vi such that

the region of interest Q is optimally covered i.e. (6) is

maximized.

III. DISTRIBUTED COVERAGE CONTROL

In this paper we apply the gradient flows approach [16]

with the aggregate objective function (6) in order to design

the control laws ui(k) and vi(k) for achieving optimal cov-

erage i.e. to drive the agents such that (6) is maximized. For

this purpose let us take the partial derivatives with respect

to si and θi respetively which lead to

∂F

∂ si

=
∫

Q
φ(q)

∂P(q,s,θ)

∂ si

dq, (7)

∂F

∂θi

=
∫

Q
φ(q)

∂P(q,s,θ)

∂θi

dq. (8)

In the view of (5), without applying assumption 1, the partial

derivative (7) and (8) can be written as

∂F

∂ si

=
∫

Q
φ(q)

N

∏
k=1,k 6=i

[1− pk(q)]

(

∂ pi(q)

∂di

∂di

∂ si

+
∂ pi(q)

∂αi

∂αi

∂ si

)

dq, (9)

∂F

∂θi

=
∫

Q
φ(q)

N

∏
k=1,k 6=i

[1− pk(q)]

(

∂ pi(q)

∂αi

∂αi

∂θi

)

dq. (10)

The gradient above provides direction information for a

mobile sensor to decide its next movement. Thus the control

laws ui(k) and vi(k) are given by

ui(k) = βk

∂F

∂ si(k)
, (11)

vi(k) = γk

∂F

∂θi(k)
. (12)

Here the step size βk,γk are selected in order to guarantee the

convergence of the motion trajectories by using the standard

method (see e.g. [17]).

Note that the control laws (11) and (12) can not be

computed locally by the robots since they require global

information of the environment such as the value of φ(q)
over the whole region of interest Q and the position of

all other robots as observed from (9), (10). By applying

assumption 1, (9) and (10) can be written as

∂F

∂ si

=
∫

Qi

φ(q) ∏
k∈Ni

[1− pk(q)]

(

∂ pi(q)

∂di

∂di

∂ si

+
∂ pi(q)

∂αi

∂αi

∂ si

)

dq, (13)

∂F

∂θi

=
∫

Qi

φ(q) ∏
k∈Ni

[1− pk(q)]

(

∂ pi(q)

∂αi

∂αi

∂θi

)

dq, (14)

where Ni denotes the neighbors of sensor i and is defined as

follows:

Definition 1: The neighbor set of sensor i (Ni) is defined

by:

Ni = {r : ‖si − sr‖ < 2R,r = 1, ...,N,r 6= i}. (15)

Thus we have the following theorem:

Theorem 3.1: Under the assumption 1, each agent can

compute ui and vi locally by using the information

(s j,θ j), j ∈ Ni.

Proof: Sensors which do not satisfy the condition of

Ni (i.e. ‖si − sr‖ ≥ 2R) will not contribute to the integral in

(13) and (14) since the detection probability pr for a point

q ∈ Qi is equal to zero which is clear from assumption 1.

From (13) and (14), it can be seen that by assuming limited-

range of the sensors, each robot can compute the derivative

by requiring only the local information i.e. each robot only
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Fig. 3. Neighbor Set of sensor 1. Only the information of the sensors which
are in the range 2R from sensor 1 are required to compute the control laws

needs to have the information of other robots and density

function which are in the range of 2R from its position to

compute the next step.

Note that not all agents r that satisfy (15) contribute to

(13) and (14) (i.e. the condition (15) is redundant) since

the condition on the limitation of the sensing direction Θ
is neglected. For example, as shown in Fig. 3, the sensor

located in s3 does not contribute to the integral in (13) and

(14) of sensor 1 even though the condition to be the neighbor

of sensor 1 is satisfied.

Next, we mention some remarks regarding the distributed

control law (13) and (14).

Remark 1: For sensors with different maximum sensing

ranges and directions Ri and Θi respectively, the definition

of the neighbor set of robot i (Ni) in (15) can be generalized

into

Ni = {r : ‖si − sr‖ < 2Rmax,r = 1, ...,N,r 6= i},
where

Rmax = max
i

Ri, i ∈ {1, ...,N}

is the maximum sensing range of all sensors.

Remark 2: The derivative in (13) and (14) can be fully

written as follows:

∂F

∂ si

=
∫

Qi

φ(q) ∏
k∈Ni

[1− pk(q)]

(

∂ pi(q)

∂di

si −q

‖si −q‖ +
∂ pi(q)

∂αi

a+b√
m2 − l2

)

dq,

∂F

∂θi

=
∫

Qi

φ(q) ∏
k∈Ni

[1− pk(q)]

(

∂ pi(q)

∂αi

−z√
m2 − l2

)

dq,

θ
i

ϕ
i

X

Z

Y

s
i

q

α
i

β
i

Fig. 4. Limited-range anisotropic sensor model in three dimensional space

where

a = (cosθi,sinθi),

b =
(q− si)(cosθi,sinθi)(si −q)

y2
,

l = (q− si)(cosθi,sinθi),

m = ‖q− si‖,
z = (q− si)(−sinθi,cosθi).

Remark 3: In order to make it computable on-line, we

discretize it and transform the global coordinate into the local

coordinate system of each sensor in the same way as [4].

Remark 4: One remaining issue for the distributed control

law is the dependency on the global density function in (13)

and (14). To deal with this problem, the same argument can

also be applied as in [4]. At the beginning of the deployment,

all sensors have the same local map i.e. the same copy of

the estimated event density function. During the deployment,

each sensor updates its local map based on the collected

data and the information received from its neighbors. Thus

the control law can be computed by only using the local

information of the sensors.

IV. THREE DIMENSIONAL CASE

The limited-range anisotropic sensor model in this paper

can be generalized into three dimensional case in a straight-

forward manner by working with spherical coordinates as

shown in Fig. 4. Here the orientation of the sensor is defined

by the angles θi,ϕi and each of them has some maximum

value of Θ,Ψ respectively similar to the two dimensional

model. One example of the three dimensional conic sensor

model is given by

pi(q) =

{

(di−R)2(αi−Θ)2(βi−Ψ)2

R2Θ2Ψ2 if q ∈ Q̄i

0 otherwise,

where

Q̄i = {q ∈ Q : di ≤ R
∧

|αi| ≤ Θ
∧

|βi| ≤ ψ}
is the sensory domain. The objective function is defined by
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F(s,θ ,ϕ) =
∫

Q
φ(q)P(q,s,θ ,ϕ)dq. (16)

The kinematic model of the agents are given by

si(k +1) = si(k)+ui(k), (17)

θi(k +1) = θi(k)+ vi(k), (18)

ϕi(k +1) = ϕi(k)+wi(k), (19)

and the neighbor of the sensor is defined in a similar manner

as in (15). Moreover, assumption 1 is extended as follow

Assumption 2:

pi(q) = 0,
∂ pi(q)

∂di(q)
= 0,

∂ pi(q)

∂αi(q)
= 0,

∂ pi(q)

∂βi(q)
= 0 if q /∈ Q̄i.

The control laws can be computed as follows:

ui(k) = βk

∂F

∂ si(k)
, (20)

vi(k) = γk

∂F

∂θi(k)
, (21)

wi(k) = ηk

∂F

∂ϕi(k)
, (22)

where the step size βk,γk,ηk are selected in order to guaran-

tee the convergence of the motion trajectories. By applying

assumption 2, the following corollary holds.

Corollary 1: For all agent i, the present control laws

(20), (21) and (22) can be computed by using their local

information (s j,θ j,ϕ j), j ∈ Ni if D > 2R.

The derivatives in (20), (21) and (22) can be computed as

follows.

∂F

∂ si

=
∫

Qi

φ(q) ∏
k∈Ni

[1− pk(q)]

(

∂ pi(q)

∂di

∂di

∂ si

+
∂ pi(q)

∂αi

∂αi

∂ si

+
∂ pi(q)

∂βi

∂βi

∂ si

)

dq,

∂F

∂θi

=
∫

Qi

φ(q) ∏
k∈Ni

[1− pk(q)]

(

∂ pi(q)

∂αi

∂αi

∂θi

)

dq,

∂F

∂ϕi

=
∫

Qi

φ(q) ∏
k∈Ni

[1− pk(q)]

(

∂ pi(q)

∂βi

∂βi

∂ϕi

)

dq.

V. SIMULATION

Here a simulation is presented to verify our algorithm.

Assume that there are four identical mobile sensors that will

cover an area Q of 40 x 40 (meter). The initial position and

orientation of each agent are shown in Fig. 5. The density

function φ(q) is given by :

φ(q) = 3−0.1‖q− x0‖,
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Fig. 5. Region of interest Q and the initial configuration of four mobile
sensors

φ

Fig. 6. Density function of the region of interest Q. The point in the middle
of Q has the highest value.

where x0 = [0,20] (see Fig. 6). Sensing model of each agent

is defined by :

pi(q) =

{

(di−R)2(αi−Θ)2

R2Θ2 if di ≤ R
∧ |αi| ≤ Θ

0 otherwise

where the maximum sensing range R = 5 (meter) and the

maximum sensing direction Θ = π
4

. The results of applying

the control laws (11), (12) are shown in Fig. 7 and Fig.

8 which depict the trajectories and the evolution of the

orientations of the mobile sensors respectively. The mobile

sensors move until they reach the optimal configuration i.e.

the objective function is maximized as shown in Fig. 9. It

can be seen that each agent tried to sense the area with the

highest density function.

VI. CONCLUSION AND FUTURE WORKS

In this paper the coverage control with anisotropic sensor

model is presented. The anisotropic sensors are assumed

to have limited-range sensing and each agent is equipped

with omni-directional communication capability. Moreover,

the sensor is defined by a probabilistic model. Distributed

control algorithms are developed using gradient-based ap-

proach which maximize the joint detection probabilities of
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Fig. 7. Trajectories of the mobile sensors. The mobile sensors are moving
to the center of Q
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Fig. 8. Evolution of the orientations of the mobile sensors. The mobile
sensors are rotating to the center of Q

the events. The efficiency of the proposed algorithm is

confirmed by simulation. In the future, we will incorporate

the energy consumption and communication cost of the

sensors into our coverage control problem.
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