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Abstract— A general controller synthesis setting for systems
with active, or controlled, singularities under incomplete in-
formation is extended to the cases of the single-impact and
the multi-impact sequences - the main cases of interest in
applications.

I. INTRODUCTION

Dynamical systems with active, or controlled, singularities

is a new class of systems introduced in [2] and [3] for

singularities parametrized by the elasticity coefficient �.

The defining feature of this system class is the presence

of active, or controlled, constraints capable of radically

changing the attainability set of the post-impact system state.

The engagement phase of the system with such constraint

is termed active singularity, and the system motion in the

domain of constraint violation - the singular motion phase.

The development in [3] was, however, confined only to

a single multi-impact, whereas the single impacts and the

single-impact sequences in [2] were considered only under

the full state accessibility. Thus, the most important case

for a variety of applications, including power systems under

faults [1], microgrids [8], [9], mobile sensor networks [7],

impact actuators [6], [12], and robotic manipulators [5], [4],

[10] - that of the output feedback optimal control realized in

terms of the single- and the multi-impact optimal sequences

has not been considered. This gap is partially filled in the

present work. Due to space limitations, the optimal control

law synthesis example is not presented and most of the proofs

are omitted. Subsection V-A reviews the results of [3] on a

single multi-impact to enhance readability.

II. PROBLEM STATEMENT

The conceptual framework described above leads to the

following three distinct objectives:

i) the controller synthesis setting objective - development

of an analytical setting that a) permits computation of the
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optimal control sequences by standard controller synthesis

techniques in auxiliary time, and b) once these sequences are

obtained, admits their reparametrization by � for application

to the original system,

ii) the control law calculation objective - calculation

of an impulsive optimal control sequences that satisfy the

performance criterion, and, finally,

iii) the limit modeling objective - derivation of the limit

system corresponding to the original one.

The present work addresses only objectives i) and iii) - the

controller synthesis setting development and the limit model

derivation. Objective ii) - optimal control law computation -

will be considered elsewhere.

Let the controlled dynamical system be described by the

state vector {(w) = ({s(w)> {y(w))> {s(w) 5 Uq> {y(w) 5 Uq>
where vectors {s and {y are referred to as the sets of

generalized positions and generalized velocities, respectively,

and w 5 [0> W ], where W is sufficiently large.

Suppose that system motion includes interaction with

some elastic constraint. Let the elastic deformation of the

constraint be parametrized by some coefficient � A 0, so

that for finite � the constraint would admit a system motion,

although inhibited, within the domain occupied by it. Let the

constraint-free domain be given by

{({s> w) : J({s> w) A 0} (1)

where J : Uq×[0> W ]$ U is a sufficiently smooth function.

Following Section II, the system motions in the domain

occupied by the constraint and in the constraint-free domain

will be referred to as the singular and the constraint-free

motion phases, respectively.

A. MOTION IN THE CONSTRAINT-FREE AND THE SINGU-

LAR PHASES

Generalizing representation of [2] in the context of the

example of Section II, let the system motion be described

by
{̇s(w) = I

u
s ({s(w)> {y(w)> w)>

{̇y(w) = I
u
y ({s(w)> {y(w)> x(w)> w)+

+�I vy ({s(w)> {y(w)> z
�
1 (�> w)> w> �)

+�I uvy ({s(w)> {y(w)> z
�
2 (�> w)> w> �)>

(2)

where x(w) 5 X � Uu is a control variable (a measur-

able function) in the constraint-free phase, X is a compact

set, I us ({s> {y> x> w) and I uy ({s> {y> x> w) are the generalized

forces in the constraint-free phase, z
�
1 (�> w) is a control
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signal in the singular phase, �I vy ({s> {y> z
�
1 (�> w)> w> �) is a

generalized controlled force arising from a contact with the

constraint in the inhibited area, �I uvy ({s> {y> z
�
2 (�> w)> w> �)

is an additional generalized controlled force in the constraint-

free phase governed by a control signal z
�
2 (�> w) (a measur-

able function), and � is the sensor output signal.

The first of the latter two forces,

�I vy ({s> {y> z
�
1 (�> w)> w> �), is characterized by

I vy ({s> {y> z
�
1 > w> �) = 0> if

1) J({s> w) A 0 or

2) J({s> w) = 0 and
g

gw

¯̄
¯̄
Iu
s

J({s> w) = J
0

{s({s> w)I
u
s ({s> {y> w) +J

0

w({s> w) = 0

(3)

where J0{s and J0w denote partial derivatives with respect

to {s and w, respectively, and
g

gw

¯̄
¯̄
Iu
s

J({s> w) denotes the

time derivative of J({s> w) along the trajectories of {̇s(w) =
I us ({s(w)> {y(w)> w). Noting that J({s> w) does not depend

on {y, the last expression in (3) is seen to represent the

time derivative of J({s> w) along the trajectories of the entire

system (2).

The force �I uvy ({s> {y> z
�
2 (�> w)> w> �), the last of the

forces in (2), characterizes an external impulsive action on

the system in the constrained-free domain during the so-

called inter-singular motion introduced in Section II and

formally defined further in Section IV, and satisfies the

condition

I uvy ({s> {y> z
�
2 > w> �) = 0> if J({s> w) ? 0= (4)

The introduction of this force lays the groundwork for

addressing optimal control problems with complex multi-

impact structure, such as that encountered in Section II. Once

this structure is in place, whether or not the multi-impact

will appear depends on the specific features of the problem

at hand.

Let in the singular phase, when J({s(w)> w) � 0, com-

ponents of the state vector ({s(w)> {y(w)) be unobservable

directly, and it be possible to observe only signal �(w) 5 Un=
Then, the control variables in the singular phase can be taken

to be continuous functionals of the sensor output signal �(w)
and measurable in time.

B. SENSOR EQUATIONS AND ADMISSIBLE CONTROL IN

THE SINGULAR PHASE

To admit control of the sensing environment, let the sensor

output signal �(w) satisfy the equation

�̇(w) = �K({s(w)> {y(w)> �
�(�> w)> w> �)> (5)

where ��(�> w) is a control signal and

K({s> {y> �
�> w> �) = 0 if J({s> w) A 0=

Let the motion in the singular phase begin at � , where � is

the first instant when

J({s(�)> �) = 0 and
g

gw

¯̄
¯̄
Iu
s

J({s(�)> �) ? 0= (6)

Denoting by � any of the control signals z1> z2> �, define

its dependence on w and � in the singular (interlaced singular)

phase as

��(�> w) =

(
�(�>

s
�(w� �))> w � �>

0> otherwise=
(7)

Let the following Lipschitz condition take place

|�(�0> w)� �(�00> w)| � Ok�0 � �00kw> O = const> (8)

where

k�kw = ess sup
��v�w

|�(v)| =

min{� : |�(v)| � �> d=v= v 5 [� > w]}>

or k�kw =

µZ w

�

|�(v)|2 gv

¶1@2
=

Definition 1. Admissible control z
�
1 (�> w) in a singular phase

is a restricted measurable by w functional, where dependence

on � > w> �> � is given by (7), (8) and a restriction has the form

z
�
1 (�> w) 5 Z1 � Uu1 . Here Z1 is a compact set including

zero element. Admissible controls z
�
2 (�> w) and ��(�> w) are

defined analogously.

It is assumed that the right hand sides of (2)-(5) are

sufficiently smooth to guarantee unique solution of (2)-(5)

for any admissible controls.

C. CONTROLLER SYNTHESIS SETTING AND LIMIT MOD-

ELING OBJECTIVES

As indicated in Sections 1 and 2, equations (2) and (5) are

not directly suitable for the controller synthesis and modeling

due to their unbounded right hand sides (rhs). This problem

is addressed by the following specific objectives:

Controller synthesis setting objective: provide an analyt-

ical setting that permits reduction of an ill-posed problem

of synthesis of the singular phase control signals z
�
1 (�> w),

z
�
2 (�> w), and ��(�> w) in (2)-(5) to a well-posed two-step

approximation procedure: a) synthesis of bounded singular

phase control signals z1(�> v), z2(�> v), and �(�> v) in the

auxiliary fictitious time v, and b) calculation of z
�
1 (�> w),

z
�
2 (�> w), and ��(�> w) implementable in the original system

(2)-(5) using signals synthesized in a). Tasks a) and b),

that can be viewed as the direct and the converse ones,

respectively, are addressed in the next section by Theorem

1 and Remark 2 for single impacts and by Theorem 4 for

single impact sequences, and in Section V by Theorem 5

and Remark 3 for single multi-impacts and Theorem 6 for

multi-impacts sequences.

Limit Modeling Objective: obtain a model that generates

a discontinuous motion controlled by z1(�> ·), z2(�> ·), and

�(�> ·) representing a consistent approximation of motion of

(1)-(2) controlled by z
�
1 (�> w), z

�
2 (�> w), and ��(�> w). This

objective is addressed in the next section by Corollary 2 and

Theorem 3 for single impacts and Eq. (22) for single impact

sequences, and in Section V by Remark 3 and system (22),

(31) for single multi-impacts and multi-impacts sequences,

respectively.
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III. SINGULAR MOTION PHASE UNDER SINGLE IMPACT

As indicated in Subsection II-A, in this case

I uvy ({s> {y> z
�
2 (�> w)> w> �) � 0.

A. INFINITESIMAL DYNAMICS EQUATION UNDER SINGLE

IMPACT

According to (6), the singular motion phase begins at the

first time � that the system engages the constraint. Therefore,

for a finite value of � there exists a non-zero time interval

of the constraint violation. Then, applying the space-time

transformation

v =
s
� (w� �)> w � � >

|�s (v) = {s(�) +
s
�
£
{s(� + �

�1@2v)� {s(�)
¤
>

|�y (v) = {y(� + �
�1@2v)>

��(v) = �(� + ��1@2v)

(9)

where v represents the auxiliary time variable (this trans-

formation extends the one given in [2] to accommodate

sensor dynamics) to system (2), (5), the new variables

{|�s (v)> |
�
y (v)> �

�(v)} are straightforwardly shown to satisfy

the multiscale equation

|̇�s (v) = I us

³|�s (v)� {s(�)
�1@2

+ {s(�)> |
�
y (v)>

� + ��1@2v
´
>

|̇�y (v) =
s
�I vy

³|�s (v)� {s(�)
�1@2

+ {s(�)>

|�y (v)> z1(�
�> v)> � + ��1@2v> �

´
+

+
s
�I uvy

³|�s (v)� {s(�)
�1@2

+ {s(�)>

|�y (v)> z2(�
�> v)> � + ��1@2v> �

´
+

+ ��1@2 I uy

³|�s (v)� {s(�)
�1@2

+ {s(�)>

|�y (v)> x(� + �
�1@2v)> � + ��1@2v

´
>

�̇�(v) =
s
�K

³|�s (v)� {s(�)
�1@2

+ {s(�)> |
�
y (v)>

�(��> v)> � + ��1@2v> �
´
>

(10)

with the initial conditions given by

|�s (0) = {s(�), |
�
y (0) = {y(��), ��(0) = �(�).

The next theorem describes the limit behavior of the new

variables introduced through (9) as �$4.

Assumption 1. Suppose that I vy (analogously I uvy and K)

satisfies the Lipschitz condition in the following form: there

exist O A 0, �0 A 0 such that for any ({s> {
0

s> {y> {
0

y)>
w 5 [0> W ]> z1 5Z1> and � � �0

kI vy ({s> {y> z1> w> �)� I vy ({
0

s> {
0

y> z1> w> �)k �
� O{k{s � {

0

sk+ �
�1@2k{y � {

0

yk}=
(11)

Theorem 1: Along with Assumption 1 assume that:

1) for any admissible controls z1> � and for any ({s> �)

such that J({s> �) = 0 and
g

gw

¯̄
¯̄
Iu
s

J({s(�)> �) ? 0 there

exists

lim
�%4

�1@2I vy

³|s � {s
�1@2

+ {s> |y> z1(�
�> v)>

� + ��1@2v> �
´
= Ī vy (|s> |y> z1(�> v)> {s> �)>

lim
�%4

�1@2K
³|s � {s
�1@2

+ {s> |y> �(�
�> v)>

� + ��1@2v> �
´
= K̄(|y> �(�> v)> {s> �)>

(12)

where convergence is uniform in any bounded vicinity of

(|s> |y> �> v);

2) the system of differential equations

|̇s(v) = I
u
s ({s(�)> |y(v)> �)>

|̇y(v) = Ī vy (|s(v)> |y(v)> z1(�> v)> {s(�)> �)>

�̇(v) = K̄(|y> �(�> v)> {s(�)> �)

(13)

with |s(0) = {s(�)> |y(0) = {y(��)> �(0) = �(�) has the

unique solution on some interval [0> v�(�)+%]> where % A 0
and

v�(�) = inf
vA0

;
AAAAAAAA?

AAAAAAAA=

J
0

w

¯̄
¯
({s(�)>�)

v + J0{s

¯̄
¯
({s(�)>�)

×

× (|s(v)� {s(�)) = 0>

J
0

w

¯̄
¯
({s(�)>�)

+ J0{s

¯̄
¯
({s(�)>�)

×

× I us ({s(�)> |y(v)> �) A 0

<
AAAAAAAA@

AAAAAAAA>

=

(14)

Then, if �$4,

(|�s (v)> |
�
y (v)> �

�(v))$ (|s(v)> |y(v)> �(v)) (15)

uniformly on [0> v�(�) + %]> and for all sufficiently large �

there exists

v��(�) = inf
vA0

;
AAAAAAAAAAAA?

AAAAAAAAAAAA=

J({s(� + �
�1@2v)> � + ��1@2v) = 0>

J
0

w

¯̄
¯
({s(�+��1@2v)>�+��1@2v)

+

+ J0{s

¯̄
¯
({s(�+��1@2v)>�+��1@2v)

×

×I us ({s(� + �
�1@2v)> {y(� + �

�1@2v)>

� + ��1@2v) A 0>

<
AAAAAAAAAAAA@

AAAAAAAAAAAA>
(16)

such that

v��(�)$ v�(�)= (17)

Remark 1. Conditions (14) and (16) mean that the "forces"

Ī vy and I vy have the property to repulse the system from the

inhibited domain under any admissible control signals.

Remark 2. Eq. (13), referred to as the controlled infinitesi-

mal dynamics equation, represents dynamics of the singular

phase in the limit as � % 4 in the extended time v. Unlike

(2), where z
�
1 (�> w) appears in the unbounded rhs term, (13)

has bounded rhs and is, therefore, amenable to synthesis

of the singular phase control signal z1(�> v) using standard

optimal control methods.
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B. LIMIT SYSTEM REPRESENTATION UNDER SINGLE IM-

PACT

The single jump limit representation of the original system

is given by Corollary 2.

Corollary 2: For sufficiently small % A 0 on the interval

[0> � + %)> solution of the original system (2) converges to

some discontinuous functions ({̄s(w)> {̄y(w)), such that

{̄s(w) = {s(w)> {̄y(w) = {y(w)> w ? �> and

{̄s(�) = lim
�%4

{s(� + �
�1@2v��(�)) = {s(�)>

{̄y(�) = lim
�%4

{y(� + �
�1@2v��(�)) = |y(v

�(�))=

The functions ({̄s(w)> {̄y(w)) can be interpreted as the

generalized solution of the original system (2). Let us now

use Corollary 2 to formulate a theorem describing evolution

of the variables ({̄s(w)> {̄y(w)).
Theorem 3: Let ({�s (w)> {

�
y (w)) denote the ordinary solu-

tion of the original system (2) where a superscript � is used

to indicate dependence of this solution on parameter �. Then,

the generalized solution ({̄s(w)> {̄y(w)) of the original system

(2) is a pointwise limit of its ordinary solution as � $ 4,

and satisfies on an interval [0> �+%] the system of generalized

differential equations

˙̄{s(w) = I
u
s ({̄s(w)> {̄y(w)> w)>

˙̄{y(w) = I uy ({̄s(w)> {̄y(w)> x(w)> w)+

+�y
¡
{̄s(�)> {̄y(��)> z1� (·)> �

¢
�(w� �)>

(18)

with {̄s(0) = {s(0), {̄y(0) = {y(0), {̄s(�) = {s(�),
{̄y(��) = {y(��).

Here �y(·) is a y-component of the shift operator along

the paths of (13) so that

|y(v
�(�)) = |y(0) +�y

¡
|s(0)> |y(0)> z1� (·)> �

¢
>

where z1� (·) = {z1(�> v) : 0 � v � v�(�)} (analogous

notation will be used for control signal �). Since (18)

encompasses limit motions corresponding to both regular and

singular original system motion phases, it will be further

referred to as the full limit system.

IV. SYSTEM MOTION UNDER SINGLE IMPACT

SEQUENCES

LIMIT SYSTEM REPRESENTATION UNDER SINGLE IM-

PACT SEQUENCE

The following derivation is a natural extension of Theorem

3 for the case of sequences of single collisions with the

constraint. Let us fix an arbitrary admissible control x(w),
w 5 [0> W ] and define recursively a finite sequence of times

0 ? �1 ? · · · ? � l ? · · · � W> l � Q ?4

as follows.

First step. Set �1 = � from (6), i.e.

�1 =

;
?

=
inf

0?w�W

n
w : J({̄s(w)> w) = 0>

g

gw

¯̄
¯̄
Iu
s

J({̄s(w)> w) ? 0
o
>

W> if the set is empty=
(19)

Here we substitute {̄s(w) instead of {s(w) due to their

coincidence for w 5 [0> �1].
Second step. For some admissible controls z1�1(·), ��1(·)
we find a solution of the limit system (13). This gives

|y(v
�(�1)) and hence a shift operator

�y

¡
|s(0)> |y(0)> z1�1(·)> �1

¢
= |y(v

�(�1))� |y(0)=

Third step. Taking the values {̄s(�1) and

{̄y(�1)=|y(v
�(�1)) =

{̄y(�1�) + �y

¡
{̄s(�1)> {̄y(�1�)> z1�1(·)> �1

¢
as initial

ones, define time �2 analogously to �1 (as in the first step)

�2 =

;
?

=
inf

�1?w�W

n
w : J({̄s(w)> w) = 0>

g

gw

¯̄
¯̄
I u
s

J({̄s(w)> w) ? 0
o
>

W> if the set is empty>
(20)

and so on. This yields

{̄y(� l) = {̄y(� l�) +�y
¡
{̄s(� l)> {̄y(� l�)> z1�l(·)> � l

¢
=

(21)

The variables ({̄s(w)> {̄y(w)) generated by this procedure sat-

isfy on [0> W ] the system of generalized differential equations

˙̄{s(w) = I
u
s ({̄s(w)> {̄y(w)> w)>

˙̄{y(w) = I uy ({̄s(w)> {̄y(w)> x(w)> w)+

+
P

�l�W

�y

¡
{̄s(� l)> {̄y(� l�)> z1�l(·)> � l

¢
�(w� � l)

(22)

with {̄s(0) = {s(0), {̄y(0) = {y(0).

In this description, the state of the limit system (22) changes

continuously on half-intervals [0> �1)> = = = ,[� l�1> � l)> = = = and

undergoes a discontinuous change at every instant � l. Due

to equation (21), the values of these changes depend on

the state immediately preceding the jump and the impulsive

control signal z� l(·) applied during the singularity phase

corresponding to the instant � l.

The shift operator representation of jumps implies the Lip-

schitzian character of function �y(·), thereby guaranteeing

the existence and uniqueness of the solution of (22).

A. CONTROL LAW IMPLEMENTATION UNDER SINGLE IM-

PACT SEQUENCE

Consider the system (2) with some fixed � A �0 under

the control signals equal to those used in (22), where

z1�l(·)> �� l(·), l = 1> = = = >Q , can be extended, if necessary,

beyond the point v�(� l) in an arbitrary admissible manner.

Denoting a solution of this system by ({�s (w)> {
�
y (w)), define

recursively a finite sequence of instants of system trajectory

intersections with the constraint boundary

0 ? ��1 ? �
��
1 ? · · · ? ��l ? �

��
l ? · · · � W> l � Q ?4

as follows.

First step. Set �
�
1 = �1 = � , i.e.

�
�
1 =

;
?

=
inf

0?w�W

n
w : J({�s(w)> w) = 0>

g

gw

¯̄
¯̄
Iu
s

J({�s (w)> w) ? 0
o
>

W> if the set is empty=
(23)
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G(x ,t)>0p

G(x ,t)<0p

x (t)p

x (t)p
�

��

��

�
���

��
�

��

� �
�

��
� �

�

Fig. 1. Multiple sequential collisions: prelimit and limit trajectories

Second step. Denote, as in (7), by � any of the controls z1> �

mentioned above and define under controls

�(�>
s
�(w� ��1 ))> w � �

�
1 , an exit instant

�
��
1 =

;
?

=
inf

��
1
?w�W

n
w : J({�s(w)> w) = 0>

g

gw

¯̄
¯̄
Iu
s

J({�s (w)> w) A 0
o
>

W> if the set is empty=
(24)

Third step. Define an entering instant �
�
2 analogously to (20)

�
�
2 =

;
?

=
inf

��
1
?w�W

n
w : J({�s (w)> w) = 0>

g

gw

¯̄
¯̄
Iu
s

J({�s (w)> w) ? 0
o
>

W> if the set is empty=
(25)

Forth step. Define the second exit instant �
��
2 analogously to

�
��
1 , as shown in Fig. 1, and so on.

Theorem 4: If � $ 4, the corresponding sequence of

ordinary solutions ({�s (w)> {
�
y (w)) of the system (2) with the

above-indicated admissible control signals x(w)> w 5 [0> W ],
and ��(�> w) = �(�>

s
�(w � ��l )), w 5 [�

�
l > �

��
l ], converges

everywhere on [0> W ], except, possibly, at the points {� l}, to

the general solution ({̄s(w)> {̄y(w)) of the system (22).

V. SYSTEM MOTION UNDER SINGLE MULTI-IMPACTS

AND THEIR SEQUENCES

A. INFINITESIMAL DYNAMICS EQUATION UNDER SINGLE

MULTI-IMPACT

In order to consider the case I uvy ({s> {y> z
�
2 (�> w)> w> �) 6�

0 introduce the following definitions.

Definition 2. Constrained-free system motion between two

sequentially occurring singular phases will be called inter-

singular motion if its duration goes to zero as �$4.

Definition 3. An arbitrary finite connected sequence of

alternating singular and inter-singular motions, which starts

and ends with singular phase will be referred to as the

interlaced singular phase of the system motion.

Definition 4. A pair of admissible controls z
�
1 (�> w) and

z
�
2 (�> w) in (2) such that z

�
1 (�> w) = 0> J({s(w)> w) A 0 and

z
�
2 (�> w) = 0> J({s(w)> w) ? 0 is said to be a temporal multi-

impulse control if they exist only on the disjoint finite subset

of the time subintervals within the time interval of an isolated

interlaced singular phase.

Definitions 2-4 characterize the temporal multi-impact

mode of system interaction with the constraint. As it is seen

from these definitions, this mode is comprised by the time

subintervals partitioning the time interval of the interlaced

singular phase such that in each subinterval, alternating,

either J({s(w)> w) A 0 and z
�
2 (�> w) � 0 or J({s(w)> w) ? 0

and z
�
1 (�> w) � 0. In the rest of the paper, the qualifier “tem-

poral” will be mostly omitted with no loss of clarity, since

the paper does not consider spatially distributed simultaneous

impacts.

Let us now extend the theorems formulated above to the

case of interlaced singular phase of the system motion. We

begin with the theorem that describes the limit behavior of

variables (9), satisfying (10), developing first the necessary

background.

Assumption 2. Assume that in condition 1) of Theorem 1

the expression (12) is supplemented by the relation

lim
�%4

�1@2I uvy

³|s � {s
�1@2

+ {s> |y> z2(�
�> v)>

� + ��1@2v> �
´
= Ī uvy (|s> |y> z2(�> v)> {s> �)>

(26)

for any admissible control z2.

Now, fix some admissible controls x>z1> z2> � on [0> W ]
and define recursively a finite sequence of instants

0 = v1(�) ? v
�
1(�) ? · · · ? vm(�) ? v

�
m (�) ? · · · >

m = 1> = = = >Q1, determining v�1(�) from (14), as given in

equation (33) of [3].

Along with the controlled infinitesimal dynamics equation

(13) consider its counterpart for I uvy 6� 0 given by

|̇s(v) = I
u
s ({s(�)> |y(v)> �)>

|̇y(v) = Ī
uv
y (|s(v)> |y(v)> z2(�> v)> {s(�)> �)>

�̇(v) = 0>

(27)

which is supposed to have the unique solution on an interval

[v�1(�)> v2(�)+ %1]> where %1 A 0 and |s(v
�
1(�)), |y(v

�
1(�)),

�(v�1(�)) coincide with the terminal values of solutions of

(13) at instant v�(�), i.e. a solution of the system (27) is

a continuous extension of the solution of the system (13).

Define v2(�) as in equation (42) of [3]. Next, taking the

terminal values |s(v2(�)), |y(v2(�)), �(v2(�)) of solutions

of (27) as initial conditions for the system (13), assume that

it has a unique solution on an interval [v2(�)> v
�
2(�) + %2],

where %2 A 0 and v�2(�) is given by equation (43) of [3],

and so on. Set %0 = min
m
{%> %m} and denote by (|s(v)> |y(v)>

�(v)) defined above the solution of the systems (13) and

(27) for v 5 [0> v�Q1
(�) + %0]. Next, for sufficiently large

� A �0 consider the systems (2) and (10) under fixed control

signals defined above. Denoting solutions of those systems

by ({�s (w)> {
�
y (w)) and (|�s (v)> |

�
y (v)> �

�(v)), respectively,
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define recursively a finite sequence of instants of system

trajectory intersections with the constraint boundary

0 = v�1(�) ? v
�
�1(�) ? · · · ? v�m(�) ? v

�
�m(�) ? · · · >

m = 1> = = = >Q1, determining v��1(�), v�2(�), and v��2(�) as

given in Boxes I, II, and III of [3] and so on.

Here the intervals [v�m(�)> v
�
�m(�)], m = 1> = = = >Q1, corre-

spond to the singular phases of motion and the intervals

(v��m(�)> v�>m+1(�)), m = 1> = = = >Q1 � 1, correspond to the

inter-singular ones.

Theorem 5: Let under conditions of Theorem 1 and As-

sumption 2 �$4. Then

(|�s (v)> |
�
y (v)> �

�(v))$ (|s(v)> |y(v)> �(v)) (28)

uniformly on [0> v�Q1
(�) + %0]> and for m = 1> = = = >Q1

v�m(�) $ vm(�)> (29)

v��m(�) $ v�m (�)= (30)

Remark 3. It is obvious that Corollary 2 and Theorem 3,

with slight changes, are valid in the case of multi-impulse

control. Indeed, it is sufficient to assign v�(�) = v�Q1
(�)

and v��(�) = v��Q1
(�), and, by integrating the system (13),

(27) for v 5 [0> v�(�)], to calculate y-component of the shift

operator �y(·) used in (18) so that

|y(v
�(�)) = |y(0) +�y

¡
|s(0)> |y(0)> z1� (·)> z2� (·)> �

¢
=

(31)

B. CONTROL LAW IMPLEMENTATION UNDER MULTI-

IMPACT SEQUENCE

Theorem 4 admits natural generalization for the case

of multi-impulse control as well. The sequence {� l},
l = 1> = = = >Q , is defined similarly. But the double sequence

{��l > �
��
l }, l = 1> = = = >Q , splits into Q finite series

�
�
l = �

�
l1 ? �

��
l1 ? �

�
l2 ? �

��
l2 ? · · · ? �

�
lQl

? �
��
lQl

= ���l >

where

�
�
lm = �

�
l + �

�1@2v�m(�
�
l )> �

��
lm = �

�
l + �

�1@2v��m(�
�
l )>

m = 1> = = = >Ql=

Here each series corresponds to one multi-impulse, as shown

in Fig. 2.

Theorem 6: Let ({̄s(w)> {̄y(w)), w 5 [0> W ], be a solution

of the system (22), with shift operators replaced by those

defined by (31), further referred to as system (22), (31),

under some admissible controls x, z1, z2 and �. Then, if

� $ 4, the corresponding sequence of ordinary solutions

({�s(w)> {
�
y (w)) of the system (2) with the same control signals

x(w)> w 5 [0> W ], and ��(�> w) = �(�>
s
�(w � ��l )), w 5

[��l > �
��
l ], converges everywhere on [0> W ], except, possibly,

at the points {� l}, to the general solution ({̄s(w)> {̄y(w))
of the system (22), (31). Here � is any of the controls

z1, z2 and �, which, generally, admit an extension in the

neighborhood of the points �
��
l as in Theorem 3 of [4]).

G(x ,t)<0p

G(x ,t)>0p

x (t)p
�x (t)p

�F
s

F
r

�F
rs

�
�

�
�

�
��

�
��

����

��
����

��

Fig. 2. The first multi-impulse in the multi-impact sequence. Prelimit and
limit trajectories. Crosshatched region corresponds to intersingular motion

VI. CONCLUSIONS

The framework of [2] and [3] is extended to permit the

design of the observations-based optimal control laws requir-

ing the single-impulse and/or the multi-impulse finite control

sequences to attain the desired control objective. Future

research will focus on general techniques for computation

of the optimal control laws for this class of systems as well

as extending the results of the present work to the case of

the infinite sequences and the finite time accumulation points

under the incomplete observation.
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