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Abstract— For complex dynamic systems, a modular control
design process is often employed, wherein the overall design
is partitioned into smaller modules. The designers of each
module only possess a model for a particular subset of the
entire plant as well as closed loop performance specifications for
the other module(s). In this paper, we will examine a common
modular control strategy in which an outer loop controller
computes a desired virtual control input and the inner loop
computes real control inputs in order to achieve this desired
virtual control input as closely as possible. The outer loop
design is based on a specification for the inner loop, which
may not always be achieved. We propose a modular control
error compensator that is aimed at mitigating the performance
degradation caused when the inner loop specifications are not
achieved. We show that this compensator can be designed using
µ synthesis and propose an iterative procedure to optimize
performance based on two concrete worst-case metrics. The
effectiveness of the proposed compensator is shown through an
automotive example.

I. INTRODUCTION

A common control strategy for many automotive,

aerospace, and marine applications is shown in Fig. 1,

where the control design is divided between outer and inner

loop systems, with the ultimate objective of having the

performance variable, y ∈ R, track a given setpoint, r ∈ R.

The outer loop controller computes a desired overall force,

moment, or generalized effect, vdes ∈ R, whereas the inner

loop controller, whose function is commonly referred to as

control allocation, determines real control inputs, u ∈ R
p

(for a p input system), for the actuators, in order to achieve

this overall force or moment as closely as possible. v is

commonly referred to as the virtual control input (and will be

in this work), even though it does in fact represent a physical

signal (such as a force or moment) and is only “virtual” in the

sense that it is not at the immediate control of the actuators.

Fig. 1. Block Diagram of the Overall System Under a Modular Control
Strategy
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The control strategy of Fig. 1 is widely employed in

industry due to its practicality in addressing the plant dy-

namics and actuator dynamics through separate controllers,

particularly when different vendors are responsible for dif-

ferent components. Examples include [1]-[3] for automotive

systems, [4]-[7] for marine applications, and [8]-[12] for

flight control.

While the modular control strategy shown in Fig. 1 is

widely used in practice, the fact that two controllers are

being designed in parallel leads to several issues regarding

the overall system performance when the inner and outer

loops are combined. In order to facilitate the parallel design

of the inner and outer loops, the designer of the inner

loop is typically given a set of control specifications to

be satisfied, and the outer loop design is carried out under

the assumption that these specifications are met. In reality,

the inner loop, with its controller in place, may not meet

the specifications for various reasons, such as model un-

certainties, controller simplification, and overly aggressive

specifications. This mismatch between the actual and ideal

characteristics will lead to a performance deterioration of

the overall system. In this work, we propose a control

strategy aimed at recovering the performance of the system

when the inner loop controller fails to meet the specification

exactly. The goal is to compensate for the mismatch between

specifications and actual performance without altering the

performance of the system when the mismatch vanishes.

The proposed control structure is shown in Fig. 2, where

a modular control error compensator (MCEC) is used to

recover performance in the event that the inner loop spec-

ification is not attained. Here, F represents the inner loop

specification, which reflects the ideal closed loop behavior

of the inner loop. C, P , and Cv represent the outer loop

controller, plant, and MCEC, respectively. We assume that

the inner and outer loop controllers have been designed from

the outset and that the inner loop controller results in inner

closed loop dynamics given by T , where T may not be equal

to F . The proposed MCEC design structure exploits the

signal ṽ, which represents the difference between the virtual

control input, v, and its nominal value, v
f
des (the output of

F ), to minimize the performance degradation of the overall

system. While the controller structure proposed in Fig. 2 is

applicable to both linear and nonlinear systems, the scope of

this paper is limited to systems in which the blocks in Fig.

2 are linear.

In this paper, the performance deterioration is defined by

the difference between the true closed loop transfer function

from r to y and the “ideal” transfer function that is attained
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Fig. 2. Block Diagram of the Overall System Under a Modular Control
Strategy

when T = F . Furthermore, we assume that there exists a

bound on the uncertainties that create the difference between

T and F . One approach to designing robust controllers

in the presence of bounded uncertainties is to choose a

compensator that minimizes the performance deterioration

of the system under a worst-case uncertainty scenario. One

can use the µ synthesis approach, which is detailed in [17]-

[18], and employed in numerous application examples, such

as [13]-[16], to design C in Fig. 2 to optimize a worst

case performance metric. This design strategy leads to robust

performance in a min-max sense but leads to an important

tradeoff between nominal performance and performance in

the presence of uncertainty.

Rather than redesigning C to compensate for uncertainty,

we propose to leave C fixed and use µ synthesis to design

an additional compensator, Cv , to address the performance

deterioration. The structure shown in Fig. 2 has two key

advantages:

1) It retains the modularity of the inner and outer loops

in the sense that it allows the two controllers to be

designed in parallel without knowledge of each other;

2) When inner loop specifications are met (T = F ), the

nominal performance will be recovered automatically,

since ṽ will go to 0.

In this paper, we show that by recasting the optimization

problem for the MCEC design, we can formulate a µ syn-

thesis problem to optimize specific worst-case performance

metrics. The paper is organized as follows. In Section II,

we quantify the metric to be used to define the worst-

case performance for the system of Fig. 2, then set up a

µ synthesis problem in Section III such that this worst case

performance can be optimized through the design of Cv .

In Section IV, we present design and analysis results on an

automotive thermal management system.

II. PROBLEM FORMULATION AND DESIGN

OBJECTIVES

The purpose of MCEC is to compensate for a mismatch

between the achieved and specified inner loop performance.

In order to formulate the design problem, we assume a

multiplicative uncertainty structure for the inner closed loop,

which will be used to describe and place a bound on this

performance mismatch:

T = (1 + ∆W )F, (1)

‖∆‖∞ ≤ ∆max (2)

where ∆ represents bounded inner closed loop uncertainty,

and W is a known stable transfer function that captures

information known about the uncertainty (typically W is a

high-pass filter for a multiplicative uncertainty structure).

Remark 2.1: Note that the uncertainty is given for the

inner closed loop, and consequently the characteristics of

the uncertainty set, such as the bound, will, in general, be

affected by the inner loop control law as well as uncertainties

in the system dynamics. The appropriate choice of inner loop

control law and specification (F ) is an important engineering

judgment that will have an effect on the closed inner loop

uncertainty.

Remark 2.2: The choice of uncertainty structure (additive,

multiplicative, feedback, etc.) should be chosen to be most

representative for the application at hand. In this paper, a

multiplicative uncertainty structure is employed. However,

the procedures employed in this paper are applicable to any

other uncertainty structures in which ∆ is interconnected

with the remainder of the system dynamics.

In order to quantify the performance degradation, we

define an error variable, e = y − yr, where yr is the output

of the system when T = F and will be referred to as the

nominal output of the system. The transfer function from r

to e is given by:

Ger =
PTC

1 + PTC + Cv(F − T )
−

PFC

1 + PFC
. (3)

The performance metric for the design and analysis of Cv

will be the worst case gain, γwc(Cv), from r to e, which is

given by:

γwc(Cv) = max
∆:‖∆‖∞≤∆max

‖Ger‖∞. (4)

The objective of Cv is to make y track yr as closely as

possible in spite of the inner loop uncertainty. In defining

this as our objective, we have assumed that the closed

loop behavior of the system with the inner loop specified

by F represents the ideal behavior. Depending on the a

priori knowledge about the uncertainties and other design

constraints, we can formulate two synthesis problems that

relate to this objective:

S1 Given that ‖∆‖∞ < 1, find a stabilizing Cv that

minimizes γwc.

S2 Given γth > 0 (γth is a performance threshold rep-

resenting tolerable performance degradation), find

Cv that maximizes ‖∆‖∞ such that the closed loop

system remains stable and γwc < γth.

Remark 2.3: Each synthesis objective appeals to a slightly

different control problem. Objective S1 aims for maximum

performance recovery when given a bound on the closed

inner loop uncertainty. On the other hand, objective S2
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maximizes allowable uncertainty for a given performance

threshold. It will be shown that the same design tool can

be used to achieve both synthesis objectives.

Remark 2.4: Worst case performance may be more gener-

ically defined by:

γwc(Cv) = max
∆:‖∆‖∞≤∆max

‖W gGer‖∞. (5)

where W g is a weighting function that penalizes performance

degradation at particular frequencies, thereby allowing more

design flexibility.

III. MCEC DESIGN USING µ SYNTHESIS

For the purposes of designing Cv to achieve our synthesis

objectives, S1 and S2, the block diagram of Fig. 2 can be cast

in the form of the block diagram given by Fig. 3, where P̄ is

a 3 x 3 transfer function matrix containing all of the system

components besides Cv and ∆ (θ is a fictitious signal that

represents the output of the uncertainty block, ∆). One can

show through block diagram manipulations that P̄ is given

by:

P̄ =









Vdes(s)
θ(s)

Vdes(s)
R(s)

Vdes(s)
V ∗(s)

E(s)
θ(s)

E(s)
R(s)

E(s)
V ∗(s)

Ṽ (s)
θ(s)

Ṽ (s)
R(s)

Ṽ (s)
V ∗(s)









=





CPFW
1+PFC

C
1+PFC

1
1+PFC

PFW
1+PFC

−1
1+PFC

PF
1+PFC

FW 0 0



 . (6)

Fig. 3. Generic Control Problem Formulation

Given this system representation, we seek either to mini-

mize the worst case gain, γwc (S1), or to maximize the size

of uncertainty under which γwc < γth (S2). Both of these

objectives lend themselves to the µ synthesis design tool,

given the following proposition [17]:

Proposition 3.1: (Interpretation of µ) The structured sin-

gular value is the smallest scalar value µ such that the system

of Fig. 3 is stable for all ∆ : ‖∆‖∞ < 1
µ

. Furthermore, there

exists a transfer function ∆ : ‖∆‖∞ = 1
µ

, which results in

an unstable closed loop system.

�

Given Proposition 3.1, µ characterizes the allowable levels

of uncertainty for closed loop stability. µ synthesis is the

process of designing a controller to minimize µ for a

particular closed loop system. The process of µ synthesis

has been facilitated and streamlined through the development

of numerical tools such as the MATLAB Robust Control

Toolbox that is used for the design example in this work.

Without further modification to the block diagram of Fig.

3, µ does not have a clear connection with the performance

goals encompassed by our synthesis objectives (S1 and

S2). To consider performance, we augment the uncertainty

structure of Fig. 3 such that the reference-error loop is

wrapped around a fictitious uncertainty block, ∆P , and a

scalar gain block, k, as in Fig. 4. Under this configuration,

µ synthesis considers an uncertainty structure given by:

∆aug ,

(

∆ 0
0 ∆P

)

(7)

This leads to the following result [17], which follows from

(7) and the small gain condition:

Proposition 3.2: (Robust performance interpretation of µ)

Let µ be the structured singular value for the system shown

in Fig. 4. The following two properties hold for µ:

1) The closed loop system is stable and k‖Ger‖∞ < µ

for all uncertainties satisfying ‖∆‖∞ < 1
µ

.

2) There exists a perturbation ∆ : ‖∆‖∞ = 1
µ

for which

the closed loop system is unstable or k‖Ger‖∞ = µ.

�

Fig. 4. µ-synthesis Performance Formulation

The adjustable parameter k weights the relative importance

of robust performance vs. stability and is used here to provide

a mechanism such that the synthesis objectives S1 and S2 can

be achieved. The following propositions allow us to develop

a design algorithm to achieve the synthesis objectives by

iteratively adjusting k and carrying out µ synthesis to design

Cv .

Proposition 3.3: (Synthesis Objective (S1)) Assume that

S1 is feasible. Let µ∗(k) be the structured singular value

of the system shown in Fig. 4 where Cv has been designed
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using µ synthesis, for a given constant k. Furthermore, let k∗
1

be the maximum value of k such that µ∗(k) = 1. Then k∗
1 is

guaranteed to exist, and if Cv is designed using µ synthesis,

with k = k∗
1 , then γwc is minimized and the closed loop is

stable, subject to ‖∆‖∞ < 1.

�

Proof: Existence: From the feasibility assumption on

S1, there exists a stabilizing Cv when ‖∆‖∞ < 1, which

results in a finite γwc. Taking k = 1
γwc , it follows from

Proposition 3.2 that µ(Cv, k) = 1, thereby proving existence.

When Cv is designed with k = k∗
1 , the closed loop is

stable and γwc is minimized, subject to ‖∆‖∞ < 1: Closed

loop stability when µ∗ = 1 follows directly from property (1)

of Proposition 3.2. To show that γwc is minimized, we first

show by contradiction that γwc = µ∗

k∗

1

. Suppose that γwc <
µ∗

k∗

1

(γwc > µ∗

k∗

1

violates Proposition 3.2, property (1), and

need not be considered). Then there exists k > k∗ that also

yields µ∗(k) = 1, which contradicts the fact that k∗
1 is the

maximum value of k yielding µ∗(k) = 1. Therefore, γwc =
µ∗

k∗

1

= 1
k∗

1

. Because we are maximizing k, γwc is minimized

for all Cv, k that yield µ(Cv, k) = µ∗(k) = 1, and because µ

synthesis minimizes µ, γwc is indeed minimized for all Cv, k

that yield µ(Cv, k) = 1. Finally, we must show that γwc is

minimized for all Cv, k that lead to closed loop stability for

‖∆‖∞ < 1. To do this, note from the existence proof that

for all Cv that yield a stable closed loop when ‖∆‖∞ <

1, there exists a k that yields µ(Cv, k) = 1. Therefore, by

minimizing γwc over all Cv, k that yield µ(Cv, k) = 1, we

also minimize γwc over all Cv that yield a stable closed loop

when ‖∆‖∞ < 1.

Proposition 3.4: (Synthesis Objective (S2)) Assume that

S2 is feasible. Let µ∗(k) be the structured singular value of

the system shown in Fig. 4 where Cv has been designed using

µ synthesis, for a given constant k. Let k∗
2 be the minimum

value of k such that µ∗(k) = kγth. k∗
2 is guaranteed to

exist, and if Cv is designed with k = k∗
2 , then µ synthesis

maximizes the value of ‖∆‖∞ such that γwc < γth and the

closed loop system remains stable.

�

Proof: Existence: From the feasibility assumption on

S2, there exists a Cv that results in γwc < γth for ‖∆‖∞ <

∆∗, where ∆∗ is the maximum tolerable uncertainty. Take

k = 1
∆∗γth , which will result in µ(Cv, k) = 1

∆∗
. Therefore,

we have µ(Cv, k) = kγth, thereby proving existence.

When Cv is designed with k2 = k∗
2 , tolerable uncertainty

is maximized: To show that tolerable uncertainty is max-

imized, we first show, by contradiction, that there exists

∆ : ‖∆‖∞ = 1
µ∗

that leads to closed loop instability.

Suppose that there does not exist ∆ : ‖∆‖∞ = 1
µ∗

that

leads to closed loop instability. Then there exists k < k∗
2 that

yields µ∗(k) = kγth, which contradicts the fact that k∗
2 is

the minimum value of k yielding µ∗(k) = kγth. Therefore,

there does exist ∆ : ‖∆‖∞ = 1
µ∗

that leads to closed loop

instability. Since k∗
2 is minimized, tolerable uncertainty is

maximized for all Cv, k yielding µ(Cv, k) = µ∗(k) = kγth,

and because µ synthesis minimizes µ, tolerable uncertainty

is indeed maximized for all Cv, k yielding µ(Cv, k) = kγth.

Finally, it follows from the existence proof that there always

exists a k that yields µ(Cv, k) = kγth. Therefore, tolerable

uncertainty is maximized over all Cv such that γwc < γth

and the closed loop system remains stable.

Using Propositions 3.3 and 3.4 and treating k as an

adjustable parameter, we propose the following iterative

algorithm to design the MCEC controller Cv to achieve

objectives S1 and S2; for S1, take µo = 1, for S2, take

µo = kγth:

1) a) Initialize klow to any value that is known to

satisfy klow < k∗
i (i = 1 or i = 2 depending on

the objective). Take klow = 0 if no other lower

bound is known. Proceed to step (1b).

b) Initialize khigh to any value that is known to

satisfy khigh > k∗
i , and proceed to step (2). If no

upper bound on k is known, make an initial guess,

kinit, and carry out µ synthesis for k = kinit.

i) If µ∗(kinit)− µo > ǫ, take khigh = kinit and

continue with step (2).

ii) If µ∗(kinit)−µo < ǫ, increase kinit and repeat

step (1b).

2) Carry out µ synthesis for k = 1
2 (khigh + klow), which

will return Cv and µ∗. Proceed to (3).

3) a) If |µ∗ − µo| < ǫ, move to (4) for S1 and (5) for

S2.

b) If µ∗ − µo < −ǫ, set klow = k and repeat (2).

c) If µ∗ − µo > ǫ, set khigh = k and repeat (2).

4) a) If |khigh − k| < ǫk, where ǫk is a user-defined

threshold, terminate the algorithm.

b) If |khigh − k| ≥ ǫk, take klow = k and move to

(4c).

c) Take k = 1
2 (klow + khigh), and carry out µ

synthesis.

i) If |µ∗(k)− µo| ≥ ǫ, set khigh = k and repeat

(4c) until |khigh − k| < ǫk.

ii) Otherwise, take klow = k and repeat (4c) until

|khigh − k| < ǫk.

5) a) If |k − klow| < ǫk, where ǫk is a user-defined

threshold, terminate the algorithm.

b) If |k − klow| ≥ ǫk, take khigh = k and move to

(5c).

c) Take k = 1
2 (klow + khigh), and carry out µ

synthesis.

i) If |µ∗(k) − µo| ≥ ǫ, set klow = k and repeat

(5c) until |k − klow| < ǫk.

ii) Otherwise, take khigh = k and repeat (5c)

until |k − klow| < ǫk.

Remark 3.1: As an alternative to the iterative procedure

proposed here, a skew µ synthesis procedure may be em-

ployed, in which the size of one uncertainty block is held

fixed while the other(s) are allowed to vary [19]-[20]. This

framework requires additional mathematical tools to set

up, but may result in reduced computational effort once

implemented.
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IV. ENGINE THERMAL MANAGEMENT

APPLICATION

The proposed modular control design approach is now

applied to an engine thermal management system, depicted

in Fig. 5. The system is used to facilitate engine mapping and

calibration on a dynamometer by providing tight regulation

of coolant and oil temperatures at the outlet of an automotive

engine. The physical system consists of two parallel loops

(coolant and oil), each of which includes two actuators (a

mixing valve and a heater), which are used to control the

temperature of the fluid at the engine outlet. A detailed

dynamic model for the system is given in [21], where it

is also shown that the interaction between the coolant and

oil loops is small, which will enable us to simplify our

example here by considering only the coolant loop. The

mixing valve and heater, which provide control inputs umv

and uht, reside in a unit that is separated from the engine

block itself and naturally forms the actuator subsystem, Σ2.

Consequently, the virtual control input is the engine inlet

temperature, Tin,eng , and the engine block (including the

fluid that passes through it) comprises the plant subsystem,

Σ1. The use of modular control for this application is well

motivated by the fact that the actuator subsystem components

are manufactured and assembled by a different company than

the automotive company responsible for the engine mapping

and calibration.

Fig. 5. Thermal Management System Diagram

Recent findings indicate the importance of modeling mix-

ing valve temperature dynamics, which results in an inner

loop transfer function of the form:

V (s) = A0(s)
1

τts + 1
Umv(s), (8)

where A0(s) reflects the actuator dynamics in the absence of

these temperature dynamics, and τt reflects the time constant

associated with the mixing.

For this application, we will consider the problem of

setpoint tracking at an operating condition of 3000 rpm, 100

N-m. We desire to achieve tracking of the desired virtual

control input, Tin,eng , within a time constant of one second,

leading to an inner loop performance specification,

F (s) =
1

s + 1
. (9)

The outer loop uses a PI controller that has been designed

from the outset. With this outer loop controller in place,

the simple control law, umv = k1vdes − k2v, uht = u∗
ht

1

can be shown to result in an inner closed loop that tightly

matches F (s) in the absence of uncertainty. To account for

the uncertainty in the closed inner loop, we introduce a

multiplicative structured uncertainty, T = (1 + ∆W )F , and

for our example, the weighting function, W , is chosen as a

high pass filter,

W (s) =
Ks

s + 1
. (10)

Here, K is a scalar used to represent the size of the

uncertainty while maintaining ‖∆‖∞ < 1.

The design of Cv for the thermal management application

is based on the first synthesis objective (S1), in an effort to

minimize the worst-case gain of the closed loop system and

recover as much performance as possible, under the bound,

‖∆‖∞ < 1. For implementation of MCEC, the resulting

60th order compensator from µ synthesis is approximated

by a much lower second order compensator,

Cv(s) = −
s + 1

s2 + 8s + 15
. (11)

The benefits of applying Cv , as designed using µ synthe-

sis, are illustrated in Fig. 6, where the worst case gain is

given both with and without Cv in place. Clearly, the use of

MCEC leads to performance recovery, as is intended, over

the entire range of uncertainties analyzed.
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Fig. 6. Worst-case gain Comparison with and without MCEC

To see the benefit of MCEC through simulation results,

consider a scenario in which the flow rates are not immedi-

ately affected by the mixing valve command, but rather are

1Here, u
∗

ht
is a constant heater input that is, in general, dependent on the

operating condition of the system.
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affected through a time constant, yielding actuator dynamics

given by:

V (s) = A0(s)
1

(τts + 1)(τfs + 1)
Umv(s), (12)

where τf is the time constant associated with the flow

dynamics.

Simulation results with and without the use of Cv are

given in Fig. 7, where it is clear that the use of Cv drives

the actual system performance closer to the nominal system

performance. For the simulations in Fig. 7, we take τt = 5
seconds and τf = 2 seconds, which leads to uncertainty that

falls within the bounds of T = (1 + ∆W )F , with K =
1.7. We can see through simulation results that, even though

the performance recovery as measured through γwc appears

to be very good from Fig. 6 (γwc = 0.17 without Cv and

γwc = 0.08 with Cv), there is still significant deviation from

nominal performance in simulation, and the use of MCEC

beings the actual system performance much closer to the

specification.
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Fig. 7. Simulation on the Engine Thermal Management System

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a modular control error

compensator (MCEC) for recovering specified performance

in modular control systems. The use of this compensator is

beneficial for the integration of inner and outer loops when

a modular control design is carried out. We have shown

how µ synthesis may be used iteratively in order to achieve

the design goals and have demonstrated the effectiveness

of the proposed method on an engine thermal management

system. Future work will include the development of deeper

insights with regard to the tradeoffs between the inner loop

performance specification, F , and the ability to achieve

robust modular performance with the use of Cv .
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