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Practical stability analysis for DNN observation

I. Chairez, A. Poznyak and T. Poznyak

Abstract— The most important fact for differential neural
networks dynamics is related to its weights time evolution. This
is a consequence for the higher nonlinear structure describing
the matrix differential equations, which are associated with the
adaptive capability for this kind of neural networks. However,
as we know, there is no any analytical demonstration of the
weights stability. In fact, this is the main inconvenient to design
real applications of differential neural network observers,
especially for control uncertain nonlinear systems. This paper
deals with the stability proof for the weights dynamics using an
adaptive procedure to adjust the weights ODE. A new dynamic
neuro-observer, using the classical Luenberger structure based
on practical stability theory, is suggested. This methodology
aviods the averaged convergence for the state estimation and
provides an upper bound for the weights trajectories. A
numerical example dealing with the ozonization process state
estimation is presented to illustrate the effectiveness of the
suggested approach.

I. INTRODUCTION

The modelling theory (supported by different physical
principles, chemical laws and so on) represents the most
extended manner to formalize the knowledge on systems
dynamics. However, in many real situations, the modelling
rules not always may generate an acceptable reproduction of
the reality. In those cases, the nonparametric identification
(using adaptive methods) can be successfully applied to
cover the deficiencies of classical modelling approaches. In
this area, the function approximation technique plays an
important role since this method avoids the needs of any
mathematical description of the plant.

In this direction, neural networks (NN) have become an
attractive tool for modelling complex non-linear systems due
to its inherent ability to approximate arbitrary continuous
functions. Neural networks provide especially powerful tools
for handling large scale problems. It has been proven that
artificial neural networks can approximate a wide range
of nonlinear functions to any desired degree of accuracy
under certain conditions [1]. However, the implementation of
neural networks suffers from the lack of efficient constructive
approaches, both for choosing network structures and for
determining the neuron parameters. It is generally understood
that selection of the neural network training algorithm covers
an important role for most neural network applications. For
example, in the conventional gradient-descent-type weight
adaptation, the sensitivity of the unknown system is required
to have an on-line training process [2]. Nevertheless, it is
difficult to acquire sensitivity information for unknown or
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highly nonlinear dynamics. Besides, the local minimum of
the performance index remains to be the main inconvenient
in the implementation of NN [3].

Radial Basis Function (RBF) networks are often used
to improve the ANN learning efficiency. T. Poggio and F.
Girosi ([4] and [5]) analyze various networks architectures
for their approximation abilities and point out that RBF
networks possess the property of best approximation. These
advantages are further strengthened with the introduction
of different activation functions into neural network [6] or
dynamic models for the ANN description. Currently, many
researches have been done on applications of recurrent neural
networks (RNN) [6]. At this point, all the RNN application
have been developed for the, so-called, static schemes (like
multilayer structure). However, exploiting the fact of being
universal approximations, it makes possible straightforwardly
substitute uncertain continuous system uncertainties by ANN
containing large number of unknown parameters (weights)
to be adjusted. In general, this class of ANN is known as
differential neural networks or DNN for short. They have two
important characteristics: their adjustable parameters may
appear as linear elements in the ANN description and they
may be modified using differential equations [3], [7]. This
approach transforms the original problem into a nonlinear
robust adaptive feedback one. The DNN approach permits
to avoid many problems related to global extremum search
converting the learning process to a particular feedback
design [7]. If the mathematical model of a considered
process is incomplete or partially known, the DNN theory
provides an effective instrument to attack a wide spectrum
of problems such as non-parametric trajectory identification,
state estimation, trajectories tracking and etc. [8]. Mostly
real systems are really difficult to be controlled because
of the lack of information on its internal structure or-and
their current states. Due to continuity of DNN models, more
detailed techniques should be applied to resolve important
questions on new ANN proposal (convergence for example).
The Lyapunov’s stability theory (specially the, so-called,
controlled Lyapunov theory) has been used within the neural
networks for control literature [9], [7]. This is the main tool
to justify the DNN improvements on the estimation problems
or in the control actions design. Even though there still exists
a general trend to enlarge the nonlinear systems for which the
aforementioned works can be applied, for instance: results on
stability, convergence to arbitrarily small sets and robustness
to modeling imperfections and external perturbations of the
closed-loop system.

Nevertheless, the advantages, reported for DNN applica-
tion, have not so nice properties related to the convergence
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results. Many papers dealing with DNN application report
the estimation error convergence in an average sense. This
fact introduces a lot of inconveniences related with DNN-
parameter dynamics. Moreover, under the previous tech-
niques, it is not possible to demonstrate the stability of
weights trajectories. This paper addresses the application
of the practical stability theory over the DNN structures
(state estimation algorithm for uncertain systems affected by
external perturbations). The new approach is fully explained,
including the observer structures, the corresponding con-
vergence schemes and the continuous learning algorithms.
The effectiveness of the novel DNN topology is illustrated
by the numerical simulation of ozone reaction to eliminate
contaminants from water that itself represents the important
challenge for the environmental engineers.

II. DNN OBSERVATION WITH STABLE LEARNING

A. Class of nonlinear systems

The class of uncertain nonlinear SISO systems considered
throughout this paper is governed by a set of m nonlinear
ordinary differential equations (ODE) and algebraic state-
output mapping given by

By = f(ve,w) + &1 v =Cae + 8oy (1)

where z; € R" is the system state at time ¢ > 0, y; € R is
the system output, u; € R is the control action, C' € R *"
is an a priory known output matrix. The vectors &; ; € R"
and &, € ¥ represent the state and output deterministic
bounded (unmeasurable) disturbances, i.c.,

2 nxXn
1€5alls,, < v Ae, € R @)
with Agl = A¢, > 0,A¢, > 0. Suppose that

1S (@, u)-f (w, 0)|| < Ly [|a-w][ +L2 [u-v]

w,x € " u,v €N, 0 < Ly, Ly<c0 3)
which automatically implies the following property
If (@, w)|* < C1+ Cs [l]|* + Cs ||u]* 4)

(Cr € RT,k =1,3) valid for any = and u. This class of
nonlinear system is not very restrictive because an enormous
class of non doscontinuous systems are included. Notice that
(1) always could be represented as

@ = fo (T, us ‘6)+ft+§1,t (5)

where fo (@, us | ©) is the nominal dynamics while f, :=
f(xe,ur) — fo(z,u| ©) is a vector treated as the mod-
elling error. Here the parameters © are suggested to be
adjusted to minimize the approximation of the nominal
part. In particular, according to the DNN approach [7], the
nominal dynamics may be defined by the following nonlinear
structure

fo(z,u | ©)=Az+W0 (2) +W3p (21) u
Ac %nxn, Wlo c §Rn><l, W20 c §Rn><s, oc %lxl (6)
p € R = [WO, WP] € R X (n+1+9)
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The validation of such approximation is based on the approx-
imative Kolmogorov theorem [10], the Stone-Weierstrass
theorem [11] on sigmoid approximation and the Lipschitz
property (in fact, quasi-linearity) (3). Here the matrix A is
selected as a stable one and such that the pair (4, C) is ob-
servable that supposed to be hold. The vector-functions o (+)
= [01()s s 0t O] and @ () = [ (), o 0 O]
are usually constructed with sigmoid function components
(following the standard neural networks design algorithms):
T =[T1, oy Tp]"

-1

a|l+bexp —chxj @)
j=1

with a,b,c; € R*. Nonlinear functions o (z) and ¢ (x)
satisfy

o @) =0 (@)l <l o ool o
i @) (@) < Lo larwall, ol < o+

The admissible control set is supposed to be described by a
state estimated feedback controllers defined (in general) by:

O

(0 < A3 = [A3]T, A5 € R™") where & € R" is a
state estimation defined by any suitable (adaptive and stable)
nonlinear observer. By (9) and in view of (4), the following

yedm .— {u = u () w? < v+ vy || 2]

upper bound for the modelling error dynamics f; € R”
usually takes place:
A1 A 2 F a2
|7, <ho+Alali, +£0e0E, a0
Ag 7 i

Here fo, f1, f2 € R, Af,Af e R0 < AJ; = A}
0<Af= A}. Assumed that:

Al. A is a stable matrix.

A2. Any of unknown controlled SISO ODE has solution
and it is unique.

A3. The unmeasured disturbances for the uncertain dynam-
ics §; , and the output signal {, , satisfy (2) and they
do not violate the existence of the ODE solution (1).

A4. Admissible controls satisfy the sector condition (9),
and again, do not violate the existence of the solution
to ODE (1).

B. DNN observer

The DNN observer, which can be used to reproduce the
unknown z; vector, usually is as follows:
d, . . . .
%]Jt:Al‘t‘*‘Wl’tO’ (l‘t) +W2,t§0 (Jﬁt) ut+K1 [yt—Cxt]
YVt >0, Ae R Ky € Xt
Wi € RV Wo, € RPXS | 3y is fixed
(11)
where the weight matrices (W;,, j = 1,2) are updated by
a nonlinear learning law

Wi =®; (Wit &, ye,us, t | ©) (12)
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to be designed. Notice this nonlinear adaptive observer repro-
duces (as it usually called in the state estimation theory) the
nominal plant structure (or its approximation) with additional
output based correction term proportional to the output error.
The correction matrix K should be selected as it is described
below.

C. Problem Statement

The main idea is to estimate the states of the uncertain
nonlinear system (1) on the presence of external perturba-
tions. This problem can be formulated as follows:

Under the assumptions AI-A4 for any admissible u,
control strategy (9) select the adequate matrices A, Kyand
the update law (12) (including the selection of Wjo, 1=12)
in such a way that the upper bound for the estimation error

B defined as o ,
§e= Tm (A2, (13)

where Q[=Qo > 0, Ay:=&,-z, would be as less as possible.

D. Adaptive weights learning law with bounded dynamics

To adjust the weights of the neural observer (11), let us
apply the following learning law :

Wis = —k;[e] CNsP )T IIT (&) —
ki [T PNGE NG Py T+
_ ol
2
where Iy = o (&), 1o = ¢ (&) u; and

E= (CTA;C-FAI-) , cv=min (g, ,0Q,)
aQ; = Amin (Pfl/QQo]‘Pfl/Q)

The matrix Ny € R"™™ is defined by Ns :=
(cem + 6In><n)_1 with § a small positive scalar value (typ-
ically 0.01) The matrices W1 ; € R"*! and Wy, € R2***
represent the distance between the current values of the
adjustable parameters Wy ;, Wo; to some fitted values VVl0
and WY, that is W; ; = W0 — W, ;.

The matrices A; € R™*", i = 1,2 are symmetric positive
definite matrices (0 < A; = A]). The time varying function
e; € R is the output error defined by e; := y; — 3, € R. The
time varying parameters k;, 7 = 1,2 are such that k;, P;
(j = 1,2) are the positive definite solutions for the following
algebraic Riccati equations [12]:

(14)
k; [21L,2] P,) " IIT

PiAj+ ATP; + PiR;P; + Q; = 0,
A =(A-KC), Ay:=A
Ry o= WPAZH (W) + WA (WR)T
FAT AL KA KT
Q1= AT+ A+ 2fi A+
Amax (Ag) le + A% + Qo1
Ry i= K1 (CAiCT +Ag)) K]
Q2 = 2f1 Amax (Af) +
FoAmax (Af) 20 o ASHWPAS (WP)T
FWEALT (WD) FAmas (Ao) by + Qoo

(15)
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E. Main Result

Theorem 1: If there exist positive definite matrices Aq,
As, Qo1, Qo2, A1 and positive constants J, v; such that the
matrix Riccati equations (15) have positive definite solutions,
then the DNN observer (11), supplied by the learning law
(14) with any matrix K; guarantying that the close-loop
matrix A; := (A 4+ K;C) is Hurwitz, provides the following
upper bound for the state estimation process:

T 2 -1 +
T A% <l

- (16)
pT =4 o+ 1+ fo+20 v
Proof: The proofs of this theorem is given in Appendix.
|
Remark 1: In the previous publications ([7], [12], [8] for
example), there was guaranteed the upper bound (p) only for
T

averaged estimation error, that is, lim + / HAtHi, dt < p.
t—o0 1

Remark 2: If there are no noises (thO: T, = 0) in
the system dynamics and the output measurements and if
the class of uncertain systems and the control functions are
“zero- cone” type, ie., (fo = vo = 0), then p™=0 and
the asymptotic error convergence A; — 0 (t — 00) is
guaranteed.

F. Training Algorithm

To realize the learning algorithms (14) one needs the
knowledge of the nominal matrices W, s = 1,2 incor-
porated in Ws,t, s = 1,2. The, so-called, training process
consists in a suitable approximation (or estimation) of these
values. It can be realized off-/ine (before the beginning of the
state estimation) by the selection of the nominal parameters
O = [A, W, W] using some available experimental data
(uty,, xy,) |k=1,~ (or fictitious data) and a numerical inter-
polator algorithm allowing to manage these data as a semi-
continuous signals. Obviously, the data must be sampled with
a fixed supplied frequency to contain enough information
to process a special kind of parametric identification [13]
including the “persistent excitation” condition and so on.
Here we suggests to apply the least-mean square algorithm
to attain this aim.

Mean Least Square (MLS) application. Rearranging (5)
in its integral form is Y;:=®X,+(, where

t

= J h (Fover) ds
e:=[ Wy Wi |
som [ ]

s=t—h

The Matrix Least Square estimate ®i%°" of ® is given by
diden .— ¥, T'; where

t
;= [ X, X]dr
7=0
t
U= [ Y, X]dt
=0
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or in differential form

d

7@%(1671, — (th _ (I)idenXt) XtTFt
dt J (17)
%Ft = —PtXthFt,

where t > ty =: ilgf (Ft_ 1>()) . With this result, it is possible
to realize the numerical solution for the DNN observer.

III. NUMERICAL RESULTS

Ozone has been often used for the treatment of domestic
and industrial wastewaters [14]. However, those ozonation
applications have been limited by the high cost of ozone
production and the low ozone efficiency due to its poor mass
transfer rate [15].

First and foremost important problem for effective contin-
uous ozonation system is related to the on-line control meth-
ods application, since the classic controllers design methods
(such as PID) require total knowledge on the variables
involved in ozonation (the actual contaminants concentration
value and the ozone mass transfer characteristics). The on-
line concentration sensors for few contaminants can be
applied in water and wastewater treatments. However, in the
case of the complex mixtures in real wastewater treatment,
the on-line measurement of all contaminants is unrealistic
due two main facts: a high cost for that class of sensors
and the impossibility to design a particular sensor for each
organic contaminant. Here, the DNN observer seems to be
an effective instrument to deal with this particular system
(organics ozonation). Indeed, in the case of the residual water
treatment by ozone, any mathematical model can not be
directly applied because of the complex organics composition
and the effect related to the combination of two different
reaction mechanisms [12] (depending on the pH value while
the reaction occurs): by molecular ozone and by indirect
reactions using the free radicals. The ozonation process for
two contaminants can be described by:

. Koot
T = “ (up-w1,p) — 7‘/% (Qmaz — T2,t)
o tgas gas
+— (ke1xss + kea®at), Yor = T14 (18)
gas
i’Q,t = Ksat (Qmax'IQ,t) - (kcle,t+k02z4,t) T2t
. 1 . 1
T3 = —kaV),, 24234, Tay = —keaV, T2uTay

lig lig

where z1 ; (mol/l) is the ozone concentration in the output
of the reactor (this is ozone which doesn’t react with organic
compounds dissolved in water), x5+ (mol) is ozone dissolved
in a liquid phase, x5, (mol/l) is the first organic compound
concentration at time ¢ while x4, (mol/l) is the concentra-
tion of the second contaminant. The parameters involved in
the model description, have the following physical meaning:
Vyas = 0.41 is the volume of gas phase in the reactor,
Wyas = 0.02 /s is the oxygen gas flow in the inlet of the
reactor, K¢ = 0.02 s~ ! is the ozone saturation constant,
Qumaz = 4-107% mol is the maximum of ozone being in
the saturated state liquid phase under the given conditions,
ko1 = 756 1/ (mol - s) is the ozonation rate constant for
the first contaminant and k.o = 1534 I/ (mol - s) is the

WeB02.4

rate constant for the second compound, Vj;, = 0.6 is
the liquid phase volume in the reactor. The state estimate
for the first contaminant decomposition is depicted in Fig.
(1).Second contaminant decomposition dynamics is depicted

SR SR L

-,
L =T R Parew A Y

400 45 500

Fig. 1. State estimation for the first contaminant.

in the following figure:

Fig. 2. State estimation for the second contaminant.

IV. CONCLUSION

The suggested approach in this work solves one of the
most important problems related with the, so-called, differ-
ential neural networks: the boundedness property of the dy-
namic evolution for the weights parameters. The asymptotic
convergence for the observing error has been demonstrated
applying a Lyapunov analysis. Besides the same analysis
leads to the generation of the corresponding conditions for
the possible learning rate function. The numerical example
of the ozonation methodology to decompose contaminants
shows the simulation efficiency for this new kind of the DNN
learning procedure.
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V. APPENDIX

Define the state estimation error as A; = x; — Z; and the
output error as

€t = Yt — :Ijt = CZEt =+ 52,t - C:if = CAt + 52715
for which the following identities hold:

CTEt = N(S_lAt =+ CT§27t — 6At,At
= Ngj (C’Tet—C’Tf27t+§At)

The dynamics of A; is governed by the following ODE:
. di .
At = II.}'t — % = AAt -+ Wl,to- (Zi’t) +
W{)& (1'7 i't)~+ Wg’ﬂp (CIA?) Ut —
W3 (x, &) u+ fr + & ¢ — K1 (ye — )

(19)

where ¢ := o (x¢) — o (&) and @ (z, &) = ¢ (x) — @ (T4).
Define the following Lyapunov-like (energetic) function as
(G=1,2, Kk > 0):

V=V (8,8, W,8) = 1A, + ), +

—1 =11/ T 17, —1yvi/T 17 (20)
2 tr{kl W], Wi + k; W“Wg?t}
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which time derivative is

. . d
V= ATPA, + 20T Py 3
R @1
tr {k;lwlﬁtwu + k;lw,;twg,t}

1
Notice that AT PyAA; = iAI [PLA+ ATP]A; and es-
timating the rest of the terms in (19) using the matrix
inequality

XYT4+YXT< XAXT+VYAIYT

valid for any X,Y € R"™™ ¥ and any 0 < A = AT € R®**
one gets:

2ATP A, < Al (2 Fid A max (Ag) za) At
AT (SPATHPA WAL (WD)T) A+
AT P, (WgA;l (W) +A;1+A;1) PO+
2o+ fot Y1421 ||33t||?\fﬂL
fo ||§7||if. +e] CNs PLWy 40 (&) +
AT [PLA+ATP At | (@, 20) ully, +
o7 (&) W] PLNsELNs P W 0 (i) +
el CNs PuWa 10 (2) u-Af PLE (ye — ) +
ul o7 (Z) W2T7tP1N552N5P1W2,tLp (%) w

By the same reason, it follows

2A] PLK (ye-3e) < A] [PLELC+ CTK] P A,
AT [PlKlAg;K{ Pl} A+ T

. Additionally,

QJA,‘IPQ (Ai‘t + Wl,t(f (.f?t)) +
QL%IPQ (WQJ;()D (Zi‘t) Ut + K1 [yt — Ci‘f])
<] (PA+ ATPy) &
i‘IPQWLtO' (i‘t) - 2.’%1P2W27t§0 (i‘t) Ut
il PR (C’Ach’T + Ag;) K] Pyiiyt
ATARY A+ Yo + 1§ (2, ) ul} +
] (WPAST (WD) + WA (WE)T) vt
‘i‘-tr ()\max (AO') lG’) i.t

Using the upper bound u] Ayu; < vo + vy ||9%Hi (9), after
the substitution of all of these inequalities in (21) one gets
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the following:
V<Al [P (A+ K\C)+ (A+ K,C)T P] A,
Al (52A;1 8205+ 2f1Af) At
A-tr (Amax (Ao) la + A[_(ll + QOl) AH‘
ATP (WA (WD)T + WIALE (W) P+
ATP, (A;l A+ KlAg;KlT) Py A+
& (oA AT Py) vt {7 W W oy W W}
i’IPQ |:K1 (CAchT + Af;l) K.lr:| PQi’t-f-
Li'z (2f~1)\max (Af) +.f2)\max (Af) +2L)0+,U1A’/U,) j"t
+a] (WPAZE (W)T + WOAZ (WP)T) &+
& (Amax (Ao) loTQo2) &+ [4T2+J;0+T1+290+U0]

+ (eIC + 0T (34) Wf}tP1N5E1) NsPyWy 40 (i) +
(1€ +uleT (@) WJ PANZs) Ny Py Wap () i
22 PyWy 10 (&) — 28] PaWo 10 (24) ug+
a [mr {kl—lvv;,tvvl,ﬁk;lvv;twu} _v}
where 7 = A\pax [@7 (2, 2¢) Ap@ (2, 24)]. Since both Ric-
cati equations (15) admit positive definite solutions, P; and
P,, and under the adaptive weights adjustment laws (14),
one gets V' < —aV + p*. Here the main idea to add (into
WittWi,t
2k;
1,2 and substracting them that (after simple arrangement)
provides the appearance of the term —«V in the right-hand

side of the last differential inequality. Then, using the Lemma
1 described in [16] the proof is completed.

the learning laws (14)) the terms « | tr , 1=
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