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Abstract— This paper introduces a hybrid control scheme for
steering a non-holonomic agent with limited sensing capabili-
ties and input constraints through a stationary but unknown
workspace, occupied by arbitrarily shaped obstacles. The con-
sidered constraints (i.e. constant linear and bounded angular
velocities) apply to a wide category of vehicle systems. Limited
sensing is realized by a radially bounded sensing device. The
proposed hybrid controller respects the kinematic constraints
while guaranteeing obstacle avoidance and convergence to a
specified goal configuration. In addition to the analytical guar-
antees, we demonstrate the effectiveness of the proposed hybrid
control scheme through non-trivial computer simulations.

I. INTRODUCTION

Autonomous mobile agents have attracted the interest of
the control community during the last decades. Moreover,
a particular category of mobile agents, the ones dealing
with input-constrained non-holonomic systems, i.e. systems
with bounded (or even fixed) linear velocity and bounded
trajectory curvature, have been receiving increasing attention
due to their wide application domain. These constraints are
mostly imposed by operational considerations (i.e. improved
fuel consumption, passenger comfort, etc.) rather than phys-
ical system capabilities and are encountered in numerous
cases, including aircraft in cruising altitude, sea vessels
and heavy vehicles. These kinematic constraints impose
great restrictions on motion planning, that become especially
important in the case of navigation in partially or completely
unknown environments.

There are various efforts covering the issues of naviga-
tion in unknown spaces, as well as a multitude of works
dealing with controlling non-holonomic agents with curva-
ture constraints. Lumelsky and Stepanov [1] introduced a
class of algorithms known as Bug algorithms for navigat-
ing unknown environments. Kamon et. al [2], [3] further
extended these algorithms (DistBug, TangentBug, 3DBug)
using range-sensor provided data, both in 2-dimensional and
3-dimensional environments. However, neither the original,
nor the extended Bug algorithms take agents with aircraft-
like kinematics into consideration. Loizou et. al [4] intro-
duced a navigation function based approach to navigating
partially known environments with guaranteed convergence.
However this approach is applicable to holonomic agents
only.

On the other hand, there is a variety of works on path-
planning for agents with aircraft-like kinematics. In [5] the
authors propose a two-phase 3D motion planner for fixed-
wing UAVs that produces kinematically feasible paths in
a world occupied by stationary obstacles, requiring global

knowledge. In [6] obstacle avoidance is treated in a limited
scope, for circular obstacles only, within the proposed on-
line path-planning algorithm. The path deformation method
suggested in [7] is based on a partial a priori knowledge of
the world and does not guarantee safety and convergence to
the goal. Finally, the decentralized for conflict resolution in
multi-agent systems with aircraft-like agents proposed in [8]
does not handle stationary obstacles.

In this paper we propose a hybrid motion-control scheme
for agents with cruising-mode aircraft-like kinematics (planar
motion) moving in a static but unknown environment with
arbitrarily shaped obstacles. The agent has access to its pos-
ture1 by means of a global positioning system but can only
sense its surrounding environment by means of local sens-
ing. The resulting hybrid controller respects the kinematic
constraints while providing guaranteed properties of safety,
stability and under some mild assumptions, completeness.

The remainder of this paper is structured as follows:
section II presents preliminary notions and introduction to
the problem. Section III discusses the sensing model thor-
oughly. Section IV presents the hybrid control strategy, while
section V provides an analysis of the safety, convergence
and completeness properties of the hybrid controller. Section
VI presents simulation results and the paper concludes with
section VII.

II. SYSTEM DESCRIPTION & PROBLEM STATEMENT

Consider a non-holonomic agent occupying a disc R =
{q ∈ W : ‖q − x‖ ≤ ri} in the workspace W ⊂ R2 , where
x ∈ R2 is the center of the disc and ri its radius. We define
the configuration space of the agent as C ⊂ W × (−π, π].
The posture of the agent is defined as: p ,

[
xT θ

]T ∈ C
where x = [x y]T is the position of the agent and θ its
orientation. The agent kinematics can be described by the
following unicycle model:

ṗ = [cosθ sin θ 0]T u+ [0 0 1]T ω (1)

along with the constraints:

u = u0 = const > 0 (2a)
−u0fmax ≤ ω ≤ u0fmax (2b)

f = ω
u0

is the curvature of the agent’s trajectory. Constraint
(2b) yields the following minimum turning radius for the
agent: rmin = 1

fmax
. We will also need three additional

1The term posture means “position and orientation” throughout the whole
paper
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virtual non-negative states: τ ∈ T ⊆ R+
0 called timer, ζ ∈ R

called entry distance and η ∈ Ω = [−u0fmax, u0fmax]
called entry angular velocity. Let S ⊂ 2W denote the sensing
space. Then SL(p) : p ∈ C → s ∈ S is the local sensing
function. Note that the agent also has access to its posture by
means of global positioning with respect to the destination
reference frame and compass information. Finally, we define
a set of discrete states for the system and denote it with D.

In order to present and study the proposed control strategy,
we will use a hybrid system representation [9]. Hence our
agent will be represented by the following hybrid system:

R = {X ,X0,XF , F, E,Dom,G,R} (3)

where X = D × {C × T × R × Ω} is the state space,
X0 ⊆ X is the set of initial states, XF ⊆ X is the set of
final states, F : X → TC assigns to each discrete state
q ∈ D a vector field ω = F (q, ·), E ⊆ D × D is the
set of discrete transitions, Dom : D → 2C assigns to each
discrete state q ∈ D a set Dom(q) ⊆ C called the domain,
G : E → D × 2C assigns to e = (q1, q2) ∈ E a guard of
the form {q1} × U , U ⊆ Dom(q1), and R : E → D × 2C

assigns to e = (q1, q2) ∈ E a reset of the form q2 × V ,
V ⊆ Dom(q2). The trajectories ofR start in (q, x) ∈ X0 and
consist of discrete transitions in D, the absolutely continuous
evolutions in C governed by (1), and the (not necessarily
continuous) evolution of the virtual states τ, ζ and η governed
by τ̇ = 1, ζ̇ = 0, η̇ = 0 respectively. The continuous vector
field ω = F (qi, ·) provides the control action to steer our
system. In order to yield dynamically feasible trajectories,
the controller should yield continuous input trajectories. The
guard G specifies a subset of the state space where a certain
transition is enabled. Since the trajectories of our system are
absolutely continuous in W , the reset map R will be the
identity map in W , while in T every transition will result in
zeroing the timer τ . Finally we require that the hybrid system
is non-blocking, i.e. from every state either a continuous
evolution or a discrete transition is possible.

The problem that we are considering can thus be stated as
follows:

”Given are the system (1) along with the constraints (2)
and a static but unknown workspace W . The system has
knowledge of its current posture but can only sense its local
surrounding environment. Assuming that the workspace is
valid, design a (hybrid) control system that will steer the
system from any valid initial configuration to the destination
configuration, while avoiding collisions.”

The valid workspace assumption implies that i) the ob-
stacles are finite, ii) there exists a path between the start
and the goal position that is at least 4rmin + 2ri + 2δ wide
at any point, where δ is a safety margin, and iii) there is
an obstacle-free disc of radius 2rmin + ri + δ around the
destination.

The valid initial configuration assumption requires that
there is an obstacle-free disc of radius 2rmin+ri around the
initial position.

We denote the initial configuration with p0 = [x0 θ0]T =

rs R(σ)
σxL

yL

Fig. 1. The agent’s sensing in operation. The segments in bold are returned
as readings

rs = 2rmin + ri + δ

rmin + ri + δ
CLe

xCL

rmin

CLi

ri
yL

xL

(a) The primary partitions defined on D.

δ
2

δ
2

CLx

CLi

CLe

ωmax
kη

(b) Detail from figure
2(a)

Fig. 2. Partitions of the agent’s sensing disc during a clockwise motion
around an obstacle. The partitions for a counter-clockwise motion, denoted
CR are mirrored wrt. yL.

[x0 y0 θ0]T and the destination configuration with pd =
[xd θd]T = [xd yd θd]T . For simplicity, we will assume
xd = [0 0]T .

Also let L be the local co-ordinate system of the agent,
originating at the agent’s center, with its x-axis along the
agent’s longitudinal axis pointing forward according to the
agent’s motion and its y-axis extending to the left hand
side. Figure 1 depicts the notation discussed. For the rest
of this paper the notation (x, y)L ∈ SL(p) shall denote
a vector expressed in the agent’s local co-ordinate system.
The unit vector is denoted as x̂ , x

‖x‖ , a positive sign for
angles and angular velocities shall indicate counter-clockwise
revolution. The functions atan2, sign and sat used, are
defined in the Appendix .

III. LOCAL SENSING MODEL

A. Sensing

The constraints affecting the maximum allowed trajectory
curvature, fmax, and the fixed linear velocity, u0, lead to
the possibility of infeasible initial configurations; a collision
might be inevitable, since the agent cannot be steered arbi-
trarily fast to avoid the obstacle. This in turn implies that
the minimal sensing capabilities that are required to ensure
collision avoidance, are directly linked to the kinematic
constraints.

We assume that the agent is equipped with a sonar-like
sensing device (figure 1), capable of detecting the presence
of objects within a radius rs ≥ 2rmin + ri + δ. The sensing
device scans radially and returns only the foremost outline
of the objects detected, ignoring edges and any other objects
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in range that are masked by the foremost ones. We will now
proceed to formulate this sensing device formally:

Let Qj be the set of points of W that are occupied by
obstacle j = 1, 2, ..., n. We define the set of all obstacles,
Q ,

⋃n
j=1Qj . The obstacle-sensing device is modeled as

a set of rays, originating at (0, 0)L. Each ray is modeled
as a set, SR(σ) , {reσ : r ∈ (ri, rs]}, where eσ is the
unit vector in the direction σ ∈ (−π, π] in the agent’s local
co-ordinate system. The reading for this ray is:

R(σ) , min
qL∈S′R(σ)

||qL||, S′R(σ) , (Q∩ SR(σ)) ∪ {rseσ}

where qL is in the agent’s local co-ordinate system. Thus,
every ray’s reading is its closest wrt (0, 0)L intersection
point with any obstacle, or rs if it does not intersect with
any obstacle. Finally, we model the sensor as the set of the
readings of all rays covering a disc (figure 1) by means of
the following local sensing function:

SL(p) , {(σ,R(σ)) : σ ∈ [−π, π]}

B. Partitioning

In order to exploit the data acquired through local sensing,
we will now introduce a partitioning of the sensing area that
is necessary for the development of our methodology.

Let D be the half-disc defined by the sensing device’s
range in the agent’s local coordinate system:

D = {qL ∈ R2
L : ||qL|| ≤ rs ∧ q

T
L

»
1
0

–
≥ 0}

Within the half-disc scanned by the sensing device, the
following collision-critical zones are defined (figure 2):

CX = {yL ∈ D : ||yL − xCX || < rmin + ri + δ}

CXi = {yL ∈ D : ||yL − xCX || < rmin + ri +
δ

2
}

CXe = CX \ CXi

CLx = {yL ∈ D : arg(yL) ∈ [−
π

2
,−

π

2
+
ωmax

kη
]}

CRx = {yL ∈ D : arg(yL) ∈ [
π

2
−
ωmax

kη
,
π

2
]}

where X ∈ {L,R}, xCL = [0 rmin]TL and xCR =
[0 − rmin]TL , and ωmax

kη
is a non-zero angle used to

define a dead zone for obstacle avoidance (figure 2(b)).
The parameter kη will be discussed later in this paper. Let
OS = {[R(σ) cosσ R(σ) sinσ]T : (σ,R(σ)) ∈ SL(p)} be
the set of all points that correspond to the sensor’s readings.
We define OXx = OS ∩ CXx, OY = OY i ∪ OY e, where
Xx ∈ {Ri,Re,Rx,Li, Le, Lx} and Y ∈ {R,L}.

IV. HYBRID CONTROL STRATEGY

The definitions of the parameters of the hybrid system (3)
follow, assuming valid workspace and initial configuration.

A. Discrete States
The hybrid system has 14 discrete states:

D = {qS,qN,qCR,qR,qDR,qRR,qFR,

qCL,qL,qDL,qLL,qFL,qG,qF}

These states have the following intuitive meaning:
qS ∈ X0: Reorientation to face the destination. qN ∈
X0: Normal Motion in Free Space. qCR/qCL: CCW/CW2

2(C)CW = (counter-)clockwise, {L,R}HS = {left-,right-} hand side

TABLE I
THE HYBRID SYSTEM’S GUARDS AND RESETS

Transition Guard Reset
S x̂ · eθ ≤ 0 ∧ τ ≥ 1

kη
τ := 0, η := 0

F x̂ · eθ > 0 ∧ τ ≥ 1
kη

τ := 0, η := 0

T τ ≥ 1
kη

τ := 0

Fs x̂ · eθ > 0 ∧ τ ≥ 1
kη

τ := 0, η := ω

Fl x̂ · eθ > 0 ∧ ||x|| < ζ τ := 0, η := ω

Fr x̂ · eθ > 0 ∧ ||x|| < ζ τ := 0, η := ω

Dl ˆ̇x·x̂ = 0∧OR = ∅∧||x|| <
ζ

τ := 0, η := ω

Dr ˆ̇x·x̂ = 0∧OL = ∅∧||x|| <
ζ

τ := 0, η := ω

L OL 6= ∅ ∧ ∂ORe 6= ∅ τ := 0, ζ := ||x||, η := ω

R (OR 6= ∅ ∧ ∂OLe 6= ∅) ∨
(ORi∪OLi = ∅∧∂OLe 6=
∅ ∧ ∂ORe 6= ∅)

τ := 0, ζ := ||x||, η := ω

G ||x|| < ε1∧ x̂ ·eθ < 1− ε2 τ := 0, η := ω

E ||x|| < ε1∧ x̂ ·eθ ≥ 1− ε2
Cr OLe \ OLx 6= ∅ ∧ τ ≥ 1

kη
τ := 0, η := ω

Wr OLe \ OLx = ∅ ∧ τ ≥ 1
kη

τ := 0, η := ω

Mr OR = ∅ ∧ τ ≥ 1
kη

τ := 0, η := ω

Cl ORe \ ORx 6= ∅ ∧ τ ≥ 1
kη

τ := 0, η := ω

Wl ORe \ ORx = ∅ ∧ τ ≥ 1
kη

τ := 0, η := ω

Ml OL = ∅ ∧ τ ≥ 1
kη

τ := 0, η := ω

M τ ≥ rmin+ri
u0

τ := 0, η := ω

N τ ≥ 3π/2
ωmax

τ := 0, η := ω

All transitions refer to figure 3

Collision avoidance maneuver, qR/qL: Boundary tracking
with the obstacle’s boundary on the RHS/LHS. qDR/qDL:
Idle state. qRR/qLL: CCW/CW maneuver due to failure
of RHS/LHS boundary tracking. qG: Re-orientation at the
destination. qF ∈ XF : Final state. qFR/qFL: Forced exit to
the Free Space. States qDX and qXX are activated in case
visual contact with an obstacle is lost while tracking it, to
regain contact after a “ 3

4” turn if such a turn is feasible.
The set E of possible transitions between the discrete

states are depicted in the transition diagram in figure 3.

E

T

Mr

Cr

E

L

Wl

Fl

Ml N

M

Fr

G

Dl

R T

S

Fs

Cl

F

Cl

Wr

N

Cr

M

Dr

qCR

qS

qR

qDL qLL

qFR qFL

qDR

qG qF

qCL

qRR

qL

qN

Fig. 3. The system’s transition diagram. Transitions not shown on this
diagram are ignored by the system.
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(a) Wall tracking (qR) or normal
motion (qN).

(b) Collision avoidance (qCR).

Fig. 4. The use of the partitioned sensing data for state transitions

B. Guards and resets

The guards and the resets assigned to each transition are
defined in Table I. An intuitive description of each guard
condition follows:
F: The agent starts while the goal lies in front of it. S: The
agent starts while it points away from the goal. R(L): An
obstacle has been sensed on the agent’s right (left) side’s
collision-critical zone. Fs: The goal lies in front of the agent
and the agent has spent at least a finite amount of time, T1

turning towards it. Fr (Fl): The agent is avoiding the obstacle
by tracing its border CW (CCW), has reduced its distance
from the goal, the goal lies somewhere in front of it and no
obstacles can be sensed between them. Dr (Dl): The agent
is avoiding the obstacle by tracing its border CW (CCW),
has reduced its distance from the goal and has reached a
local minimum of the distance-to-goal, ||x||. G: The agent
has come closer than ε1 to the goal, but its orientation its not
the desired one. E: The agent has come closer than ε1 to the
goal and its orientation is close to the desired orientation.
Wr (Wl): The agent moves along an obstacle that lies on its
right (left) side and the agent’s side opposite to the obstacle
appears free of obstacles. Cr (Cl): The agent is engaged in
avoiding an obstacle that lies on its right (left) side and there
appear to be obstacle parts in the opposite side. Mr (Ml): The
agent has missed the obstacle boundary it was tracing from
its sonar. M: The agent has spent time T2 moving forward. N:
The agent has spent time T3 performing a circular maneuver.

C. Vector fields

Each discrete state is assigned a vector field ω = F (q, ·).
qS: ω = ωmax sat(kητ)

qN: ω = g(η, τ) + ωmaxsat(kητ)sat(kγ)

qCR: ω = g(η, τ) + ωmax sat(kητ)

qCL: ω = g(η, τ)− ωmax sat(kητ)

qR: ω = g(η, τ)− sat(kητ)ωmax sat(kR(d− dnom))

qL: ω = g(η, τ) + sat(kητ)ωmax sat(kL(d− dnom))

qLL, qFL: ω = g(η, τ)− ωmax sat(kητ)

qRR, qFR: ω = g(η, τ) + ωmax sat(kητ)

qDL, qDR: ω = g(η, τ)

where g(η, τ) = η(1 − sat(kητ)). kη is a tuning parameter
controlling the “fade-in” of the vector field, ensuring that
ω will be continuous in t. Its value is coupled with the
agent’s dynamic capabilities and should be adjusted as high
as possible. The angle γ is explained in figure 6. In the
sequel, a relation connecting kη and δ, the safety margin of
the sensing device, will be given.

In almost every case, the vector field “smooths out” the
initial (in the current state) angular velocity until the full
saturated input is applied. The vector fields of states qR and
qL modulate the input based on the difference of the actual
and the desired distance from the obstacle’s wall.

D. Domains
Each state has its own Domain of permissible continuous

evolution
Dom(qS) = {p ∈ C : OL = OR = ∅}
Dom(qN) = {p ∈ C : ˆ̇xT x̂ > 0 ∧ (OL 6= ∅ ⊕ OR 6= ∅)}

Dom(qCR) = Dom(qCL) = {p ∈ C : OR 6= ∅ ∧ OL 6= ∅}
Dom(qR) = {p ∈ C : OR 6= ∅ ∧ OL \ OLx = ∅}
Dom(qL) = {p ∈ C : OL 6= ∅ ∧ OR \ ORx = ∅}

Dom(qXX) = Dom(qFX) = {p ∈ C}
Dom(qDL) = {p ∈ C : OR \ ORx = ∅}
Dom(qDR) = {p ∈ C : OL \ OLx = ∅}

~ui

∆θ

∆θ
rmin

2rmin

rmin
~uf

Fig. 5. Re-orientation maneu-
ver of qG. This maneuver can
be performed inside a disc with
radius 2rmin + ri + δ

ẋ, ||ẋ|| = u0

xd

d

θδ

θ
γ

Fig. 6. The agent in the free
space

V. ANALYSIS OF THE HYBRID SYSTEM

We will now study the properties of the hybrid system
related to safety convergence, completeness, constraint sat-
isfaction and dynamic feasibility. We have the following
regarding convergence and completeness:

Proposition 1: The trajectories of Hybrid System (3) for
every valid workspace and valid initial configuration, con-
verge in finite time to the destination configuration pd.

Proof: Without loss of generality we will consider
the destination configuration to be the origin, i.e. pd =
[0, 0, θd]T . Consider the following Lyapunov function VN ≡
d =
√

xTx that is assigned to the discrete state qN . We can
state the following:

Lemma 1: The trajectories of (3) while in qN , satisfy
V̇N < 0.

Proof: While in qN , the trajectories flow under the
control law assigned to this state. No obstacles are being
sensed between the agent and the goal. The objective of the
control law of this state is to eliminate angle γ (see figure
6). In Dom(qN ), |γ| < π

2 is satisfied. Note that this angle
is measured from the agent in a CCW fashion.(i.e. in figure
6 it has a negative sign). The rates of change of θδ , d and γ
are:

θ̇δ =
u0

d
sin γ (4)

ḋ = −u0cos(γ) (5)

γ̇ = θ̇δ − θ̇ =
u0

d
sin γ − ω (6)
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Corollary 5.1: It holds that ḋ(τ) < 0, for τ ∈ [0, 1
kη

]
Proof: See appendix.

We will now study what happens for τ > 1
kη

. Assuming
that kγ > 1 and substituting the control law for qN in
equation (6), we get:

γ̇ = θ̇δ − θ̇ =
u0

d
sin γ − ωmax (7)

Equation (7) expresses the rate of angular discrepancy that
depends on both γ and d. If this rate becomes non-negative,
then the agent will not be able to converge to the goal.
So, a lower bound d ≥ dmin is sought, such that the agent
will be able to converge in a neighborhood around the goal
when starting from a distance ||x|| > dmin with an arbitrary
γ ∈ (−pi2 ,

pi
2 ) while kγ > 1. Without loss of generality we

assume that γ > 0, i.e. γ ∈ (pi2 , 0]. Assume that we had a
slower controller capable only of performing:

ω = c+
u0

d
sinγ ≤ ωmax (8)

Then it would be true that γ̇ = −c. Assuming that the agent
enters qN at a distance d0 from xG with an angle γ = γ0.
Then, from (4), (5) and (8) follows that d0 ≥ u0

c , c ≤
ωmax

2 . Thus the minimum distance d0 from which the agent
may converge to the goal from any admissible γ is d0min =

2
fmax

= 2rmin for c = ω
2 . Thus we require that there is

a disk: DG = {q ∈ W : ||q− xG|| ≤ 2rmin + ri + δ} such
that DG ∩Q = ∅.

To summarize, it is possible to apply a control input
that will bring γ to zero in finite time. Since γ remains in
(−pi2 ,

pi
2 ), ḋ < 0 while in qN . Thus the agent continuously

decreases its distance from the origin while in qN .
Lemma 2: For a valid workspace, transitions R and L

from qN result in a transition back to qN in finite time.
Moreover the transition qN

R/L→ . . .
F→ qN results in a non-

zero reduction of the level of the Lyapunov function VN .
Proof: Let C be the set of all closed paths created

during all possible transitions qN
R/L→ . . .

F→ qN . Now take
every close path from C and create it’s Jordan equivalent that
encloses the same obstacle(s) (i.e. throw away the portions
of paths created by the transitions qR/L

Mr/Ml→ . . .
N→ qR/L).

Call this set B. Let gj(s) : [a, b) ⊆ R→W be a parametric
representation of any path in B, with b − a = S the
length of the path. gj(s) is by construction continuous and
differentiable and required to be a bijection. Let I− = inf B
and I+ = supB. Let also ∇gj(s) =

[
∂gxj (s)

∂s

∂gyj (s)

∂s

]T
be

the vector tangent to the path at gj(s) and ∇⊥gj(s) be the
vector perpendicular to ∇gj(s), pointing towards I+.

With a reasoning similar to that of [4], we assert the
following:

Lemma 3: VN attains a minimum along gj(s) at a point
hbmin

.
Proof: Assume that ||x|| does not attain a minimum

along gj(s). Then, since ||x|| is smooth and gj(s), s ∈ [a, b)
is a bounded set the following has to be true: ||g−1(s)|| =
const ∀s ∈ [a, b). This means that the curve would have
to be a circle, containing the origin at its center. This

however would require the goal to be in I−, making the
goal configuration infeasible. Thus, ||x|| attains a minimum
along gj(s) at hbmin .

Lemma 4: The following relations hold:

ĥ
T
bmin

· ∇gj(g−1
j (hbmin )) = 0, ĥ

T
bmin

· ∇⊥gj(g−1
j (hbmin )) < 0

Proof: See [4]
According to Lemma 3 the agent will reach a point along

the obstacle’s surface where the Lyapunov function VN will
be minimized. According to Lemma 4, at that point the
obstacle will not lie between the agent and the origin. Thus
the agent will never engage in obstacle avoidance at this
point of minimum.

Lemma 5: Along gj(s) there is always a suitable exit
point where the conditions for the transition Fr (Fl) are
satisfied.

Proof: Let Le be the level-set of || · || at which the
entry-point to the obstacle, xe belongs. Let Lm be the level-
set of the minimum hbmin attained according to Lemma 3.
Then there exists a segment of gj(s), Sem that has exactly
one point in Le, xe and one in Lm, xm and joins both level
sets, the following is valid:

||x|| > ||xm||, ∀x ∈ Sem \ xm (9)

Since gj(s) is differentiable and has a continuous derivative
∇gj(s) and (9) holds, then there is s1 6= g−1

j (xm) such
that ∇gj(s)T · g−1

j (s) < 0 ∀s ∈ (s1, g−1
j (xm)). In other

words, there is an area of gj(s) just before xm, where
](∇gj(s),−∇φ(gj(s))) < π

2 while φ(g−1
j (s)) < φ(xe).

So, all conditions of Fr (Fl) hold and the agent may exit the
obstacle avoidance mode.

This implies that at the exit point we will have a lower
level of the Lyapunov function. The minimum dwell estab-
lishes a finite reduction of the Lyapunov level.

This implies that VN will be reduced to ε1 in finite time,
after which we will either have an accepting condition or
a reorientation maneuver (state qG) that will result in an
accepting condition.

The last part of the proof concerns the completeness of
the algorithm. We have the following:

Lemma 6: I+ has at most 2rmin + ri + δ minimum dis-
tance from the enclosed obstacle(s) and at least 2rmin+ri+δ
minimum distance from any non-enclosed obstacle(s).

Proof: I+ is produced by states qX and qCX, X ∈
L,R. Let Qj be the set of the points of an obstacle. Let Q−
be the set of all obstacles enclosed by I+ and Q− be the
set of all non-enclosed obstacles. Since I+ is collision-free,
(Qj ∈ Q+)⊕ (Qj ∈ Q−) holds, where ⊕ denotes exclusive
disjunction. I+ lies completely in Dom(qX)∪Dom(qXR).
This means: OX′ 6= ∅ ∀p ∈ I+, where X ′ = R if X =
L and vice versa. From the definition of OX′ follows that
∀p ∈ I+ ∃q ∈ Q− : ||q − p|| ≤ 2rmin + ri + δ. Obstacles
belonging in Q+ do not trigger collision avoidance. That
means ∀p ∈ I+ @q ∈ Q+ : ||q − p|| ≤ 2rmin + ri + δ.
Thus, I+ has clearance at least 2rmin + ri + δ from every
non-enclosed obstacle and at most 2rmin + ri + δ from any
enclosed obstacle.
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Corollary 5.2: If there exists path at least 4rmin + 2ri +
2δ wide connecting the initial and destination configurations
(valid workspace assumption), then the hybrid system will
converge.

Proof: This is a direct consequence of Lemmas 5 and
6.
This completes the proof.

Proposition 2: The hybrid system 3 is safe
Proof: By the valid initial condition assumption we

will either start in qN or qS , sufficiently away from obstacles.
Existence of obstacles in CXe, will cause a transition to qCX
that guarantees that obstacles will ”slide” inside CXe . This
can be seen by considering that by the choice of kη only the
second term of controller qCX will be active for t > 1

kη
. This

implies that the obstacle(s) will have penetrated less than
δ/2 in CXe when they start moving on a circle centered at
xCX and eventually ”slide” to exit CXe without ever entering
CXi. State qR is safe since if for some reason the vector field
defined in this state cannot follow the obstacle’s boundary
and keeps approaching it, the obstacle at some point will
enter CXe and a transition to qCX will take place. State qDX
will activate a transition to qCX whenever an obstacle enters
CXe and state qXX is safe by construction since transition
M occurred without obstacles in the interior of CXe. Hence
while in qXX obstacles in the worst case will penetrate CXe
less than δ

2 and eventually ”slide” to exit CXe. State qG is
safe by the valid destination assumption.

Remark 1: By assumption, u0 is fixed. By construction,
the vector fields F (q, ·) respect the agent’s curvature con-
straints. Thus all constraints are fullfiled.

VI. SIMULATION RESULTS

To demonstrate the feasibility of the proposed methodol-
ogy, we have setup a computer simulation. Following are the
simulation results from three case studies.

1

2
3

Fig. 7. Navigating around a com-
plex non-convex obstacle

Fig. 8. Navigating
around a complex non-
convex obstacle

Case study 1:
This case study (figure 7) demonstrates the system’s capabil-
ity to track non-convex obstacles. Arrows indicate the motion
direction. Notice that obstacles 1 and 2 are treated as one,
since the gap between them is too narrow for the agent to
escape from. Due to the limited sensing capability, the agent

does not enter cavities it would possibly be unable to escape
from, thus guaranteeing safety. When close to the destination,
the agent performs a reorientation maneuver depicted in Fig.
5 to reach the goal orientation.
Case study 2:
The destination is positioned inside the convex hull of
an obstacle (figure 8). Notice the “3-quarter” maneuver at
the edge that makes it possible for the agent to enter the
space enclosed by the obstacle. The reorientation maneuver
at the goal, thus decoupling convergence to the goal and
convergence to the desired orientation. Finally, the agent
successfully converges to its destination

VII. CONCLUSIONS

In this paper, a hybrid control scheme was introduced, for
steering an agent with fixed velocity and bounded trajectory
curvature through a stationary workspace occupied by arbi-
trarily complex stationary obstacles. The proposed controller
guarantees collision avoidance and convergence to a set
around the goal configuration, while generating continuous
curvature trajectories with only local obstacle information.
The methodology is scalable to very complex environments
and analytical performance guarantees were provided. Cur-
rent research directions include the incorporation of agent
dynamics and extensions to scenarios with multiple agents.

APPENDIX

This section contains definitions of some functions used
throughout the paper:
atan2(y, x) , arg(x, y)

sign(x) ,

(
−1, x < 0

1, x ≥ 0
sat(x) ,

8><>:
−1, x < −1

x, −1 ≤ x ≤ 1

1, x > 1
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