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Abstract— A generalization of the L2-gain inequality based
on nonlinear gains is considered. Using optimization and
dynamic programming to characterize lower bounds for the
minimal gain function for which this nonlinear L2-gain in-
equality holds, a technique for computation of nonlinear L2-
gain bounds is proposed. Some simple illustrative examples are
explored.

Index Terms—L2-gain analysis, nonlinear systems, optimiza-
tion, dynamic programming.

I. INTRODUCTION

L2-gain is a generalized measurement of input / output

energy gain for dynamical systems, motivated by the funda-

mental nature of energy transport in physical systems. As a

system norm, L2-gain has been studied extensively in both

linear and nonlinear contexts, ranging from the fundamental

connections to stability and generalized notions of dissipation

[15], [9], frequency domain interpretations in linear systems

theory [17], through to its role as a design objective in

measurement feedback control design for linear [6], [18]

and nonlinear systems [13], [14], [8]. Application of such

analysis and design tools has thus dictated the relevance of

techniques for the computation of system L2-gain. These

techniques have largely been based on the bounded real

lemma (see for example, [6], [8], for linear and nonlinear

systems), which codifies a concordance between the L2-gain

inequality and existence of solutions of an algebraic Riccati

equation or Hamilton-Jacobi-Bellman equation respectively.

The development of bisection style algorithms for L2-gain

has thus become standard (e.g. [16]).

Recent developments of a variety of input-to-state style

stability (ISS) properties has led to a significant expansion

in the notion of system gain, away from the explicit energy

interpretations of the past. This has been driven by the need

to provide analysis and design tools that encompass larger

classes of systems and stability properties. The fact that

many nonlinear systems do not possess finite L2-gain, yet

retain asymptotic stability, is a case in point. However, such

developments do not detract from the relevance of energy

gain as a fundamental property of particular importance

in physical systems. Moreover, [7] recognizes that energy

gain remains fundamental in the context of ISS, albeit

through a state transformation. The type of energy gain

thus inferred is a natural generalization of the conventional
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definition, requiring that output energy be related to input

energy through a nonlinear gain function rather than a single

gain parameter. As a generalization, this nonlinear L2-gain

property naturally encompasses larger classes of systems,

whilst providing the possibility of tighter gain bounds for

those systems with finite “conventional” linear L2-gain.

From a design point of view, both of these advantages are

important, with the latter being particularly relevant in small

gain design [11].

In this paper, the concept of nonlinear L2-gain for non-

linear systems is examined from the point of view of com-

putation. Dynamic programming techniques [2], [1] are used

in a similar way to that developed for ISS gain / transient

bound computations for discrete time nonlinear systems [10].

In particular, an optimization problem that characterizes

the nonlinear L2-gain property is proposed and studied.

Application of dynamic programming, and approximate solu-

tion of the resulting dynamic programming equation, yields

approximations for the nonlinear L2-gain (function). This

approach is comparable to that in [5] in the linear gain case.

A number of simple examples are considered.

Throughout this paper, consideration is restricted to con-

tinuous time nonlinear dynamical systems of the form

ẋ(s) = f(x(s), w(s)) , z(s) = h(x(s)) , (1)

where x(s) ∈ R
n is the state, w(s) ∈ R

m is the input,

and z(s) ∈ R
p is the output, all at time s ≥ t ≥ 0. With

a given initial state x(t) = x ∈ R
n, it is assumed that a

solution of (1) exists and is unique. In other notation used,

a function γ : R≥0 → R≥0 is of class K̄ if it is continuous,

non-decreasing, radially unbounded, and satisfies γ(0) = 0.

There, R≥0 denotes the non-negative reals.

II. NOTIONS OF L2-GAIN

A. Conventional (linear) L2-gain

Conventional L2-gain analysis and control design [14], [8]

is concerned with systems of the form of (1) that satisfy

a well-known input / output gain inequality. In particular,

system (1) has linear L2-gain ≤ γℓ ∈ R≥0 if there exists a

β ∈ K̄ such that

‖z‖2
L2[0,T ] ≤ γ2

ℓ ‖w‖2
L2[0,T ] + β(|x◦|) (2)

for all w ∈ L2[0, T ], T ≥ 0, x◦ ∈ R
n. Here, γℓ is referred

to as a linear L2-gain bound for system (1), whilst (2) is

referred to as a linear L2-gain inequality. ‖·‖L2[0,T ] denotes

the norm defined via

‖z‖L2[0,T ] :=

√

∫ T

0

|z(s)|2 ds .

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuA01.1

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1



Should inequality (2) hold for system (1), γℓ ∈ R≥0 is then

an upper bound for the conventional induced L2-norm γ∗
ℓ of

system (1) [13]. This induced norm is referred to here as the

linear L2-gain of system (1), and is given by

γ∗
ℓ := inf

{

γℓ

∣

∣

∣

∣

∃ β ∈ K̄ such that (2) holds

}

. (3)

By definition, the linear L2-gain γ∗
ℓ captures the energy

gain of system (1), from input w to output z. The fact

that this quantity, as defined in (3), is one dimensional

and independent of input amplitude, is an artifact of the

historical development of nonlinear analysis tools based on

linear ideas. Indeed, the linear L2-gain γ∗
ℓ of system (1) has

historically often been referred to as the H∞-norm of (1),

although this terminology should strictly be reserved for the

study of linear dynamical systems (see for example [6] for

a frequency domain definition of the H∞-norm).

Semantics aside, it is clear that γ∗
ℓ ≤ γℓ < ∞ if and only

if system (1) has linear L2-gain ≤ γℓ. That is, if and only if

(2) holds. Meanwhile, satisfaction of (2) for linear L2-gain

bound γℓ is equivalent to existence of a locally bounded, non-

negative storage function [15] with supply rate γ2
ℓ |w|2−|z|2

[14]. One such storage function, called the available storage

(the minimal such function), can be characterized in terms of

the unique stabilizing viscosity solution of the corresponding

Hamilton-Jacobi-Bellman (HJB) PDE, given γℓ [4], [1]. That

is, satisfaction of (2) is equivalent to existence of a non-

negative, locally bounded solution of a HJB PDE, both of

which are parameterized by the same candidate linear L2-

gain bound γℓ ∈ R≥0. As ≤ defines a linear (simple)

ordering on any closed interval of such gain bounds, it

follows that the linear L2-gain (3) of system (1) can be

computed via a bisection method based on existence of a

solution to the HJB PDE in question [16].

B. Nonlinear L2-gain

System (1) has nonlinear L2-gain with gain bound γ ∈ K̄
and transient bound β ∈ K̄ if

‖z‖2
L2[0,T ] ≤ γ

(

‖w‖2
L2[0,T ]

)

+ β(|x◦|) (4)

for all w ∈ L2[0, T ], x(0) = x◦ ∈ R
n, and T ≥ 0. Here,

(4) is referred to as the nonlinear L2-gain inequality. Linear

gain inequality (2) may be recovered from (4) by selecting

a linear gain function γ(s) =
(

γ2
ℓ

)

s ∈ K̄, γℓ ∈ R≥0. The

following proposition is immediate.

Proposition 2.1: Suppose that system (1) has linear L2-

gain ≤ γℓ with transient bound β ∈ K̄. Then, system (1)

has nonlinear L2-gain with gain bound γ ∈ K̄ and the same

transient bound β, where γ(s) ≤
(

γ2
ℓ

)

s for all s ≥ 0.

Whilst obvious, the above observation confirms that any

linear gain bound may be replaced with, and possibly tight-

ened, using a nonlinear gain bound. This observation coupled

with the utility of small gain results provides significant

motivation for nonlinear L2-gain analysis based on inequality

(4).

III. DYNAMIC PROGRAMMING

A. Finite horizon nonlinear L2-gain bound

By inspection of the nonlinear L2-gain inequality (4), it

is clear that

V̂T (t, x, ξ) ≤ γ(ξ) + β(|x|) , (5)

for all T ≥ t ≥ 0, ξ ∈ R≥0, x = x(t) ∈ R
n, where

V̂T (t, x, ξ) = sup
‖w‖2

L2[t,T ]
≤ξ

{

‖z‖2
L2[t,T ]

∣

∣

∣

∣

(1) holds,

x(t) = x

}

. (6)

As β ∈ K̄ by definition (so that β(0) = 0), evaluation

at x = 0 yields a lower bound for all admissible gain

bounds γ ∈ K̄ for which the nonlinear L2-gain inequality

(4) holds. However, as the optimization in (6) involves an

L2 constraint, the associated value is difficult to compute

as is. Consequently, it is useful to introduce an auxiliary

state equation whose state keeps track of the energy used by

the input, so that the L2 constraint in (6) can be replaced

by a state constraint in the augmented system. To this end,

consider the augmented system
[

ẋ(t)

ξ̇(t)

]

=

[

f(x(t), w(t))
−|w(t)|2

]

, z(t) = h(x(t)) , (7)

where ξ(t) ∈ R. Then, the maximum output energy obtain-

able from an input with bounded L2-norm ξ is captured by

the finite horizon value function VT : [0, T ]×R
n×R → R,

T ∈ [0,∞),

VT (t, x, ξ) = sup
w∈L2[t,T ]







‖z‖2
L2[t,T ] + Ψ(ξ(T ))

∣

∣

∣

∣

∣

∣

(7) holds,

x(t) = x,

ξ(t) = ξ







(8)

with terminal cost Ψ : R → R ∪ {−∞} given by

Ψ(ξ) :=

{

0 ξ ≥ 0 ,

−∞ ξ < 0 .

Lemma 3.1: Value functions (6) and (8) are equivalent.

Proof: Fix t ∈ [0,∞), x ∈ R
n and ξ ∈ R≥0. By

integration of the augmented dynamics of (7) for any T ≥ t,

ξ(T ) = ξ − ‖w‖L2[t,T ] , ξ(t) = ξ ∈ R≥0 , (9)

so that the following equivalence in constraints is obtained:

‖w‖2
L2[t,T ] ≤ ξ ⇐⇒ ξ(T ) ≥ 0 ⇐⇒ Ψ(ξ(T )) = 0 .

Hence, by inspection of (6),

V̂T (t, x, ξ) = sup
‖w‖2

L2[t,T ]≤ξ

(w∈L2[t,T ])

{

‖z‖2
L2[t,T ]

∣

∣

∣

∣

(1) holds,

x(t) = x

}

= sup
w∈L2[t,T ]















‖z‖2
L2[t,T ]

∣

∣

∣

∣

∣

∣

∣

∣

(7) holds,

x(t) = x,

ξ(t) = ξ,

ξ(T ) ≥ 0















= sup
w∈L2[t,T ]







‖z‖2
L2[t,T ] + Ψ(ξ(T ))

∣

∣

∣

∣

∣

∣

(7) holds,

x(t) = x,

ξ(t) = ξ







=: VT (t, x, ξ)
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With ξ ∈ R<0, VT (t, x, ξ) = −∞ by definition of Ψ and

the non-increasing nature of the augmented dynamics (9).

For the same ξ ∈ R<0, defining the supremum over the

empty set to be −∞ yields V̂ (t, x, ξ) = −∞, completing

the proof.

With the value function VT thus defined, it is possible to

define the following candidate gain bound γ∗
T : R≥0 →

R≥0,

γ∗
T (s) := VT (0, 0, s) . (10)

In order to show that the function γ∗
T is a lower bound for the

nonlinear L2-gain of system (1) on the finite time horizon

[0, T ] as per (5), some minor technicalities are first presented.

Lemma 3.2: Suppose system (1) has nonlinear L2-gain

with gain bound γ ∈ K̄ and transient bound β ∈ K̄. Then,

finite horizon value VT (t, x, ξ) defined by (8) satisfies the

following properties for all T ∈ [t,∞), t, ξ ∈ R≥0, x ∈ R
n:

(i) VT (t, x, ξ) satisfies the bounds

0 ≤ VT (t, x, ξ) ≤ γ(ξ) + β(|x|) ; (11)

(ii) VT (t, x, ξ) is non-decreasing in ξ;

(iii) VT (t, x, ξ) is non-decreasing in T ;

(iv) limT→∞ VT (t, x, ξ) exists.

Proof: (i) As ξ ∈ R≥0, selecting w ≡ 0 suboptimal in

(8) implies the left-hand inequality of (11), whilst the right-

hand inequality is immediate from (5), (8), and Lemma 3.1.

(ii) Fix 0 ≤ ξ◦ < ξ1 < ∞. Applying Lemma 3.1,

VT (t, x, ξ◦) = sup
‖w‖2

L2[t,T ]
≤ξ◦

{

‖z‖2
L2[t,T ]

∣

∣

∣

∣

(1) holds,

x(t) = x

}

≤ sup
‖w‖2

L2[t,T ]
≤ξ1

{

‖z‖2
L2[t,T ]

∣

∣

∣

∣

(1) holds,

x(t) = x

}

= VT (t, x, ξ1) .

(iii) Fix any T◦ ∈ [t, T ]. As ξ ∈ R≥0, the value is bounded

by (11) (i.e. it exists). Fix any δ > 0. Let wδ
◦ ∈ L2[t, T ]

denote a δ-optimal input, such that

VT◦
(t, x, ξ) − δ < ‖z‖L2[t,T◦] + Ψ(ξ(T◦))

∣

∣

∣

∣

∣

∣

∣

∣

(7) holds,

x(t) = x,

ξ(t) = ξ,

w = wδ
◦

≤ VT◦
(t, x, ξ) . (12)

Define the concatenated input wδ
1 ∈ L2[t, T ] according to

wδ
1(s) :=

{

wδ
◦(s) s ∈ [t, T◦)
0 s ∈ [T◦, T ]

Employing the flow notation

ξ(T, t, ξ;w) := ξ(T ), ξ(·) defined by (9) ,

it is clear that ξ(T, t, ξ;wδ
1) ≡ ξ(T◦, t, ξ;w

δ
◦), so that

Ψ(ξ(T, t, ξ;wδ
1)) ≡ Ψ(ξ(T◦, t, ξ;w

δ
◦). Furthermore, adopting

a similar notation for the output z(·),

‖z(T, t, x;wδ
1)‖

2
L2[t,T ] ≥ ‖z(T◦, t, x;wδ

◦)‖
2
L2[t,T◦]

So, selecting wδ
1 ∈ L2[t, T ] as a suboptimal input in the

definition (8) of VT (t, x, ξ),

VT (t, x, ξ) ≥ ‖z(T, t, x;wδ
1)‖

2
L2[t,T ] + Ψ(ξ(T, t, ξ;wδ

1))

≥ ‖z(T◦, t, x;wδ
◦)‖

2
L2[t,T◦] + Ψ(ξ(T◦, t, ξ;w

δ
◦))

> VT◦
(t, x, ξ) − δ

where the last inequality follows from (12). As δ > 0 is

arbitrary, sending δ ↓ 0 yields the non-decreasing property.

(iv) Follows immediately from assertions (i) and (iii).

Consider again the candidate gain bound γ∗
T defined by (10).

Theorem 3.3: Suppose system (1) has nonlinear L2-gain

with gain bound γ ∈ K̄ and transient bound β ∈ K̄. Then,

for any T ∈ [0,∞),

γ(s) ≥ γ∗
T (s) (13)

for all s ∈ R≥0. Furthermore, γ∗
T is non-decreasing and

satisfies γ∗
T (0) = 0.

Proof: Applying (10) and Lemma 3.2(i),

γ∗
T (s) = VT (0, 0, s) ≤ γ(s) + β(0) = γ(s) (14)

as β(0) = 0. With γ ∈ K̄, gain bound (14) implies that

γ∗
T (0) ≤ γ(0) = 0. Fixing 0 ≤ s◦ < s1 < ∞ and applying

Lemma 3.2(ii),

γ∗
T (s◦) = VT (0, 0, s◦) ≤ VT (0, 0, s1) = γ∗

T (s1) .

With a view to computing the gain bound (13), a dynamic

programming equation for VT is useful.

Lemma 3.4: The finite horizon value function V given by

(8) satisfies the dynamic programming equation

VT (t, x, ξ) = sup
w∈L2[t,τ ]







‖z‖2
L2[t,τ ]+

VT (τ, x(τ), ξ(τ))

∣

∣

∣

∣

∣

∣

(7) holds,

x(t) = x,

ξ(t) = ξ







(15)

for all x ∈ R
n, ξ ∈ R, t, τ ∈ [0, T ], subject to the final

condition

VT (T, x, ξ) = Ψ(ξ) . (16)

Proof: Follows standard dynamic programming argu-

ments, see for example [1].

B. Infinite horizon gain bound

Define the infinite horizon value function

W (x, ξ) := lim sup
T→∞

VT (0, x, ξ) . (17)

and the candidate gain bound γ∗
∞ : R≥0 → R≥0,

γ∗
∞(s) := W (0, s) . (18)

Lemma 3.5: Suppose system (1) has nonlinear L2-gain

with gain bound γ ∈ K̄ and transient bound β ∈ K̄. Then,

the infinite horizon value W (x, ξ) defined by (17) satisfies

the following properties for all x ∈ R
n, ξ ∈ R≥0:

(i) W (x, ξ) satisfies the same bounds (11) as the finite

horizon value function VT (t, x, ξ);
(ii) W (x, ξ) is non-decreasing in ξ;
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(iii) W (x, ξ) satisfies the dynamic programming equation

W (x, ξ) = sup
w∈L2[0,τ ]







‖z‖2
L2[0,τ ]+

W (x(τ), ξ(τ))

∣

∣

∣

∣

∣

∣

(7) holds,

x(0) = x,

ξ(0) = ξ







(19)

for all τ ∈ [0,∞), subject to the condition that

W (x, ξ) = −∞ ∀ ξ ∈ R<0 . (20)

Proof: (i), (ii) Immediate from Lemma 3.2(i), (ii) and

definition (17), as bound (11) is uniform in T .

(iii) Lemma 3.2(iii), (iv) and definition (17) imply that the

limsup in (17) may be replaced with a supremum over T ≥ 0.

Hence, taking the supremum over T ≥ 0 of both sides of

(15) and noting that the ‖z‖2
L2[t,τ ] term is independent of T ,

(19) immediately follows by interchanging suprema.

Theorem 3.6: Suppose system (1) has nonlinear L2-gain

with gain bound γ ∈ K̄ and transient bound bound β ∈ K̄.

Then,

γ(s) ≥ γ∗
∞(s) ≥ γ∗

T (s) (21)

for all s ∈ R≥0, where γ∗
T , γ∗

∞ are given by (10), (18)

respectively. Furthermore, γ∗
∞ is non-decreasing and satisfies

γ∗
∞(0) = 0.

Proof: By inspection of (10), (17) and (18), the

argument used in proving Lemma 3.5(iii) implies that

γ∗
∞(s) ≡ sup

T≥0
γ∗

T (s) .

Hence, Theorem 3.3 immediately yields (21) and the non-

decrescent and zero at zero properties.

C. Other nonlinear L2-gain bound candidates

A pair of obvious, generally more conservative gain bound

candidates is obtained if it is required that an exact input

energy be used in evaluating the output energy. These can-

didates are defined by

γ̄∗
T (s) := V̄T (0, 0, s) , (22)

γ̄∗
∞(s) := lim sup

T→∞
γ̄∗

T (s) , (23)

where V̄T is the value function

V̄T (t, x, ξ) := sup
‖w‖2

L2[t,T ]
=ξ

{

‖z‖2
L2[t,T ]

∣

∣

∣

∣

(1) holds,

x(t) = x

}

. (24)

Comparing (6) and (24), V̄T (t, x, ξ) ≤ V̂T (t, x, ξ), so that

γ̄∗
T (s) ≤ γ∗

T (s) and γ̄∗
∞(s) ≤ γ∗

∞(s) for all s ∈ R≥0. While

similar dynamic programming results hold for V̄T , it is not

immediately clear that these gains satisfy the non-decrescent

property of class K̄. If the nonlinear L2-gain inequality (4) is

known to hold for a particular fixed transient bound β ∈ K̄,

a further pair of finite and infinite horizon gain bounds can

be defined [10] via (8) and (17) as follows:

γ∗
T,β(s) := sup

x∈Rn

max (VT (0, x, s) − β(|x|), 0) , (25)

γ∗
∞,β(s) := sup

x∈Rn

max (W (x, s) − β(|x|), 0) . (26)

Whilst gains (25) and (26) can be computed (in-principle)

if VT , W , and β are known, the supremum over the entire

state-space can render such computations infeasible.

D. Numerical method

An implicit Markov chain approximation method similar

to that detailed in [3], [12] is used to compute approximate

solutions of the dynamic programming equation (15) and its

analogue defined by (24). These solutions depend on the

existence of a differential equation form of the dynamic

programming equation [1], and are used to compute the

finite horizon gain bounds γ∗
T and γ̄∗

T , given respectively

by (10) and (22). The infinite horizon value function W

(17) and associated infinite horizon gain bound γ∗
∞ (18) are

approximated by selecting T large in the aforementioned fi-

nite horizon computations. This approach to the computation

of the various gain bounds is applied in the examples to

follow. Our experience suggests that the computation of gain

bound γ̄∗
T (22) provides more conservative results, but tends

to be numerically more robust than the other gain bounds

presented.

IV. EXAMPLES

A. Scalar linear system

Consider system (1) in which

f(x,w) = −2x + w , h(x) = x , (27)

where x,w ∈ R. As this system is linear, the nonlinear L2-

gain is known apriori to be given by the linear gain function

γ∗(s) = ‖Σ‖2
∞ s =

(

1

4

)

s , (28)

where ‖Σ‖∞ is the H∞ norm of system (27).

1) Computation of γ∗
T and inference of γ∗

∞: (T = 1)

Figure 1 illustrates V1(0, x, ξ), x ∈ [−2, 2], ξ ∈ [0, 1].
Figure 2 illustrates that the nonlinear L2-gain bound obtained

matches very closely the linear gain expected from H∞

analysis. In view of the sandwich inequality (21), the infinite

horizon gain bound γ∗
∞ must also be similarly matched to

the linear L2-gain function (28).

0

0.5

1

−2−1.5−1−0.500.511.52
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ξ
x

V

Fig. 1. Value function V1(0, x, ξ), x ∈ [−2, 2], ξ ∈ [0, 1], system (27).
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Fig. 2. Gain bound γ∗

1
(dash-dot), and actual gain (dashed), system (27)
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Fig. 3. Value function V̄1(0, x, ξ), x ∈ [−2, 2], ξ ∈ [0, 1], system (27).

2) Computation of γ̄∗
T : (T = 1) Figure 3 illustrates

V̄1(0, x, ξ), x ∈ [−2, 2], ξ ∈ [0, 1]. This value function

can be observed to be non-smooth on the manifold x =
0. This is confirmed by Figure 4, which illustrates the

state feedback characterization w̄∗
1(x, ξ) of the optimal input

defined by (24). This state feedback clearly exhibits a step

discontinuity at x = 0, indicating a corresponding change in

the gradient of the value function. The computed gain bound

γ̄∗
1 , illustrated by the (lowest) dash-dot line of Figure 5, is

clearly conservative.

(T = 10) In increasing the time horizon T over which the

input w may be used to perturb the state of system (1), it is

expected that the value function should appear smoother for

each fixed input energy ξ ∈ R≥0. This follows intuitively

due to the fact that energy ξ may be used more sparingly

over the longer time horizon, giving rise to smaller changes

in gradient of the value function. This is indeed observed

to be case, with the computed value V̄10(0, x, ξ) being very

similar to that of Figure 1. The gain bound γ̄∗
10 obtained from

the computation of V̄10(0, x, ξ) is illustrated by the solid line

in Figure 5, along with γ̄∗
1 (dash-dot, lowest curve) and the

expected (linear) gain (28) (dashed, highest curve). Clearly,

the ordering (21) is shown to be preserved.

0

0.2

0.4

0.6

0.8

1

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ξ
x

O
p
ti
m

a
l 
in

p
u
t 

w
*

Fig. 4. Optimal input w̄∗

1
(x, ξ), x ∈ [−2, 2], ξ ∈ [0, 1], system (27).
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(dash-dot), and actual

gain (dashed), system (27)

B. Scalar nonlinear system

Suppose a cubic nonlinearity is added to the linear system

(27), yielding a nonlinear system of the form of (1) with

f(x,w) = −2x − 8x3 + w , h(x) = x , (29)

where x,w ∈ R. In the absence of inputs, inclusion of

this nonlinearity increases the rate of convergence of the

state to the origin. Consequently, more energy is required

to excite the system dynamics, and hence the output. This

implies a reduction in the nonlinear L2-gain. In particular, it

is expected that

γ∗(s) <

(

1

4

)

s , s > 0 . (30)

Here, computations are restricted to the gain bound γ̄∗
T of

(22). (T = 10) Figure 6 illustrates the computed finite

horizon value function V̄10(0, x, ξ), x ∈ [−2, 2], ξ ∈ [0, 1],
which is clearly non-smooth at x = 0. The optimal trajectory

can be seen in Figure 7, which also illustrates contours

of V̄10(0, x, ξ) and the drift vector field of the augmented

dynamics defined by (7), (29). The computed gain bound

γ̄∗
10 is compared with the expected gain bound of (30) in

Figure 8.
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C. A system with infinite nonlinear L2-gain

Consider a scalar nonlinear system of the form of (1) with

f(x,w) = −x3 + w , h(x) = x , (31)

where x,w ∈ R. It is straightforward to show that with

initial condition x(t) ∈ R fixed and input w ≡ 0,

x(τ) =
x(t)

√

1 + 2(τ − t)x(t)2
, τ ∈ [t, T ] .

An explicit lower bound for all possible transient bounds

β : R≥0 → R≥0 in inequality (4) follows,

β(s) ≥ sup
T≥0

sup
|x|≤s

VT (0, x, 0) ≥ sup
T≥0

‖z‖2
L2[0,T ]

=
1

2
sup
T≥0

log
(

1 + 2Ts2
)

=

{

0 s = 0
∞ s > 0

That is, no β ∈ K̄ exists such that the (4) holds, so that

system (31) cannot satisfy the nonlinear L2-gain property.

V. CONCLUSIONS

Lower bounds on a nonlinear generalization of L2-gain

were characterized in terms of the value of a number of

optimization problems. Dynamic programming and a well-

known numerical method were used to compute some of
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Fig. 8. Nonlinear L2-gain bound γ̄∗ (solid line) and linear L2-gain
(dashed), system (29)

these values, thereby yielding a number of lower bounds for

the nonlinear L2-gain of some simple dynamical systems.
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