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Abstract— We consider the problem of decentralized Kalman
filtering in a sensor network. Each sensor node implements
a local Kalman filter based on its own measurements and
the information exchanged with its neighbors. It combines
the information received from other sensors through using
a consensus filter as proposed in [14]. For a time-invariant
process and measurement model, we show that this algorithm
guarantees that the local estimates of the error covariance
matrix converge to the centralized error covariance matrix and
that the local estimates of the state converge in mean to the
centralized Kalman filter estimates. However, due to the use
of the consensus filter, the local estimates of the state do not
converge to the least-squares estimate that would be obtained
from a centralized Kalman filter.

I. INTRODUCTION

A. Background and Problem Description

The problem of decentralized Kalman filtering refers to

Kalman filtering in a sensor network in which there is no

central data fusion and computation unit. For example, due

to communication constraints in large sensor networks, it

may be impossible for all sensors to send their observations

to a central unit. In addition, having one unit responsible for

data fusion and estimation will make the network fragile and

may be computationally infeasible. Without having access to

all sensors’ observations and measurement models, one can

only approximate a centralized Kalman filter. The problem is

how to perform this decentralization so that the approximate

Kalman filters result in estimates that are close to those

obtained from a centralized Kalman filter.

In this work we consider a network of sensors making

observations of a process and we require that each sensor

maintains an estimate of the state of the process and the error

covariance matrix. We assume that each sensor can exchange

messages with its nearest neighbors. Since the sensors have

computation and communication capabilities, we refer to

them as a node or a sensor node interchangeably. An example

of the need for the sensor nodes to maintain an estimate of

the error covariance matrix in addition to the estimate of

the state is target tracking. Here, the mobile sensors need

to make motion control decisions based on their estimates

of the target position and velocity [10], [17], [5], [9]. The

error covariance matrix represents the amount of uncertainty

in their estimated target state. They plan their motions in

directions of decreasing this uncertainty. Using measurement

information from all sensors would lead to maintaining a

better estimate of the error covariance matrix at each node

and a more cooperative motion.

The Kalman filter algorithm is widely used in estimation

because it provides an optimal, in the mean-square-error

sense, estimate of the state under assumptions of linearity

of the process and observation model and additive Gaussian

noise. A large class of systems may be approximated by a

Gaussian linear model. Hence, this algorithm provides the

basis for studying estimation in sensor networks and can

provide insight for decentralized estimation in the presence

of nonlinear or non-Gaussian models.

B. Previous Work and Contributions of the Paper

There have been many studies on different methods of

implementing an exact or approximate decentralized Kalman

filter. See, for example, [11], [1], [20], [21], [8], [12], [24],

[22]. There are also methods developed for decentralization

of the Kalman filter considering a specific sensor network

application as in [19], [2], [13], [6], to name a few. The

aforementioned studies differ based on the assumptions made

on the interaction topology and the messages exchanged

between the sensors, as well as the method for combining the

messages that arrive at each node. If all-to-all communication

exists between the sensors, it is possible to implement

an exact Kalman filter at each node through appropriately

defining messages that get broadcast from the nodes [18].

All-to-all communication is not a reasonable assumption for

many large scale sensor networks. Many authors consider

a communication topology in which each node exchanges

information with its nearest neighbors. In such cases, pre-

vious research has studied exchanging the estimate mean

and possibly the error covariance matrix found locally. Each

node then updates its estimate using a weighted sum of all

messages it has received from other nodes [2], [19], [22],

[24]. One characteristic of this approach is that estimates

from different nodes are not necessarily independent as they

may contain the same process noise and measurement infor-

mation. To optimally combine them, one needs to know the

mutual information between them. Computing this quantity

for a general communication topology is difficult [2]. Under

certain assumptions on the communication topology, authors

in [8] introduce a so-called Channel filter to find the mutual

information between the observations.

The algorithm we consider has been proposed in [20].

Here, the information filter form of the Kalman filter is

utilized to decompose the centralized Kalman filter equations

based on the individual sensor contributions. Then, consensus

algorithms are used to combine the messages from neighbor-

ing sensors in order to implement an approximate Kalman

filter locally. The method can be applied at each node

without it knowing the communication topology of the entire

network. Different consensus algorithms appropriate for the

decentralized Kalman filtering have been proposed and their

stability properties have been analyzed. For example, authors
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in [17] have taken this approach and have developed consen-

sus algorithms that are best suited for decentralized Kalman

filtering [7]. However, the performance of the consensus-

based decentralized Kalman filter has not been studied in

enough detail. Considering a specific example, the authors in

[14] show in simulations that both centralized and approx-

imate decentralized Kalman filters provide almost identical

estimates. Our contribution is to provide a theoretical result

on the convergence of the local Kalman filters. We show that

the local estimates of the error covariance matrix converge

to the central error covariance matrix. The local estimates of

state converge in mean to the central estimates. However, the

error covariance matrices associated with the local estimates

of the state do not correspond to the estimated error covari-

ance matrix. These results are independent of the specific

consensus algorithms used.

C. Organization of this Report

In section II we review the Kalman filter equations in

their equivalent information filter form and pose the problem

of decentralized Kalman filtering. In section III, following

the approach of [14], we describe how by using consensus

algorithms, each node can implement a decentralized Kalman

filter. Section IV consists of our contribution where we derive

conditions under which the local state estimates and error

covariance matrices converge to those obtained from the

centralized Kalman filter. We illustrate these results with

some simulations in section V.

II. REVIEW OF INFORMATION FILTER EQUATIONS

Consider a system whose dynamics can be described using

the equations

xk+1 = Akxk +wk (1)

zk = Hkxk +nk,

where xk ∈ IRn, Ak ∈ IRn×n, Hk ∈ IRM×n. Here, wk ∈ IRn,

nk ∈ IRM are the process and measurement noises. We assume

x0,wl ,nl , for l = 0,1, . . .k are independent random vectors

with zero mean and positive definite covariance matrices

P0 ∈ IRn×n, Ql ∈ IRn×n, Rl ∈ IRM×M respectively. Let xk|k−1 =
E{xk|z0, . . . ,zk−1} and Pk|k−1 = Cov(xk − xk|k−1) denote the

one-step prediction of the state and the prediction error

covariance at time k. Similarly, let xk|k = E{xk|z0, . . . ,zk}
denote the the state estimate after receiving measurement

at time k, and Pk|k = Cov(xk − xk|k) denote the updated

error covariance matrix at time k. Define Yk|k−1 = (Pk|k−1)
−1,

Yk|k = (Pk|k)
−1, yk|k−1 = Yk|k−1xk|k−1, and yk|k = Yk|kxk|k. The

positive definiteness assumptions on Qk and P0 are sufficient

to ensure that the above inverses exist. The Kalman filter

equations can be written as two sets of recursive equations,

the first set pertains to prediction:

Pk|k−1 = AkPk−1|k−1Ak
T +Qk (2)

xk|k−1 = Akxk−1|k−1.

The second set pertains to update and is most easily under-

stood using the transformations defined above:

Yk|k = Yk|k−1 +Hk
T (Rk)

−1Hk (3)

yk|k = yk|k−1 +Hk
T (Rk)

−1zk.

The matrix Yk|k and the vector yk|k are referred as the infor-

mation matrix and the information vector respectively. This

is because the contributions of the sensor observation at each

time step are apparent in these quantities. The information

filter equations (3) are utilized in scenarios where there are

multiple sensors making measurements. Suppose there are

M sensors with measurement model of sensor i given by1

zi
k = H i

kxk +ni
k, (4)

where ni
l has zero mean and variance Ri

l ∈ IR, l = 0,1, . . . ,k.

If the measurement noise of different sensors are indepen-

dent, the update equations (3) can be written such that

individual sensor contributions can be seen:

Yk|k = Yk|k−1 +
M

∑
i=1

(H i
k)

T (Ri
k)

−1H i
k (5)

yk|k = yk|k−1 +
M

∑
i=1

(H i
k)

T (Ri
k)

−1zi
k.

Clearly, if all-to-all communication between sensor nodes

exists at all times, node i can broadcast (H i
k)

T (Ri
k)

−1H i
k

and (H i
k)

T (Ri
k)

−1zi
k to all nodes. It can implement an exact

Kalman filter locally by receiving other nodes’ values of the

above quantities. This was shown in [18]. In case all-to-

all communication does not exist or is not a reasonable as-

sumption, an approach in implementation of a decentralized

Kalman filter is that each node would estimate the quantities

Fk = ∑M
i=1(H

i
k)

T (Ri
k)

−1H i
k and fk = ∑M

i=1(H
i
k)

T (Ri
k)

−1zi
k,

where we defined Fk and fk for ease of notation. In order to

perform such estimation, one needs to appropriately define

the messages that the communicating nodes exchange. The

resulting local Kalman filters would be approximations of the

centralized one and the approximations improve as the local

estimates of Fk, fk approach the exact summation. Using this

method to implement a decentralized Kalman filter, we have

not done any prior local processing in terms of estimation

of state. Consequently, we are not faced with the problem

of accounting for mutual information in local estimates. In

addition, the problem of estimation and data fusion have

become decoupled; once an appropriate method for locally

estimating the required summations is devised, the local

estimation of state and the error covariance matrix can be

updated exactly using equations (5).

Additive dependence of the update equations to the in-

dividual sensors’ contributions in (5) motivates use of con-

sensus algorithms to approximate the quantities Fk and fk

locally [20]. In the next section, we describe how a consensus

algorithm can be used for estimating these quantities and

describe the resulting decentralized Kalman filter algorithm.

1We use superscript i to denote sensor i’s parameters.
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III. DECENTRALIZED KALMAN FILTER WITH

CONSENSUS

The interaction topology of the sensor nodes represents

the set of nodes that can exchange information at any given

time. It can be represented as a directed graph (digraph)

G = (V,E), where V is the set of vertices denoting the

sensor nodes, and E ⊆ V ×V is the set of edges: E =
{(i, j)| i communicates with j}. Ni = { j ∈ V |( j, i) ∈ E} is

called the set of neighbors of node i. In the case that (i, j) ∈
E implies ( j, i) ∈ E the graph is undirected. The graph is

called connected if there is a path connecting any two nodes.

Similarly, the digraph is called strongly connected if there

is a directed path connecting any two arbitrary nodes of the

graph.

By a consensus algorithm we mean a local update law

that is implemented on each node. The algorithm is local in

the sense that its inputs can only depend on the information

available to a given node or its neighboring nodes. Asymp-

totically, it ensures that all nodes agree on a certain quantity

of interest [15].2 Let ν i denote node i’s estimate of a given

quantity of interest and µ i an external input to node i that

can affect ν i. An update law, g, that results in consensus on

sum of (possibly changing) inputs is stated as

Dynamic Consensus

ν i
k+1 = g(ν i

k, µ i
k, ν j

k, µ j
k, ∀ j ∈ Ni)

such that ν i
k → ∑M

i=1 µ i
k, ∀i ∈ {1,2, . . . ,M}

(6)

The word dynamic consensus is used to distinguish from

the more traditional consensus algorithms in which nodes

agree on a constant value, such as average of their initial

states. For the Kalman filter application, we consider a

dynamic consensus algorithm that will guarantee the local

estimates, ν i
k, asymptotically converge to the summation of

the steady-state input values. If the inputs are time-varying,

the consensus algorithm guarantees that the local estimates

of the sum of the inputs will have a bounded error: |ν i
k −

∑M
i=1 µ i

k| < ε,ε > 0. The bound would depend on how fast

the inputs are changing and on the specific algorithm used

[7]. Consensus can be achieved given that certain connectiv-

ity conditions on the communication graph are satisfied. For

example, a sufficient condition for consensus is that the graph

is connected so that the messages from each node eventually

get propagated through the entire network. There has been

much previous work on how to design consensus algorithms

such that consensus is reached quickly and the algorithm

is robust with respect to time-delays [23], [16]. Low-pass,

band-pass and high-pass consensus algorithms have also been

developed [14], [7] and can be used in cases in which inputs

contain noise.

Assume that we have chosen a desired g, the consensus

algorithm, such that dynamic consensus on the sum of

inputs as described above is achieved. The algorithm can

2This reference contains a survey of consensus theory and applications.

be employed in decentralized Kalman filtering as follows:

Consider node i using a consensus filter to estimate Fk =

∑M
i=1(H

i
k)

T (Ri
k)

−1H i
k. Each element of Fk is summation

of the corresponding elements of the symmetric matrices

(H i
k)

T (Ri
k)

−1H i
k. Let ν i

k be sensor i’s estimate of the

lth element of this matrix. Define the input µ i
k to the

consensus algorithm as the lth element of (H i
k)

T (Ri
k)

−1H i
k.

The consensus filter will guarantee that the local estimates

of this element converge asymptotically to the lth element

of Fk. To estimate Fk a total of
n(n+1)

2
consensus filters is

implemented on each node. Similarly, n consensus filters are

implemented to estimate fk = ∑M
i=1(H

i
k)

T (Ri
k)

−1zi
k. Since

the term (H i
k)

T (Ri
k)

−1zi
k contains noise it is desirable to use

a low-pass consensus filter for estimation of this quantity.

We denote node i’s estimate of FK and fk by F i
k and f i

k

respectively. The decentralized Kalman filter algorithm is run

on each node and is given by:

Algorithm 1 Decentralized Kalman Filter Algorithm

1: Initialize: Pi
0|0 = P0, xi

0|0 = x0|0.

Y i
0|0 = P0

−1, yi
0|0 = Y i

0|0xi
0|0, k = 1.

2: repeat

3: Prediction: Pi
k|k−1 = AkPi

k−1|k−1Ak
T +Qk,

xi
k|k−1 = Akxi

k−1|k−1.

Y i
k|k−1 = (Pi

k|k−1)
−1, yi

k|k−1 = Y i
k|k−1xi

k|k−1.

4: Observation: zi
k = H i

kxk +ni
k.

5: Consensus: estimate ∑M
i=1(H

i
k)

T (Ri
k)

−1H i
k,

and ∑M
i=1(H

i
k)

T (Ri
k)

−1zi
k.

Store results in F i
k, f i

k respectively.

6: Update: Y i
k|k = Y i

k|k−1 +F i
k, yi

k|k = yi
k|k−1 + f i

k

Pi
k|k = (Y i

k|k)
−1, xi

k|k = Pi
k|kyi

k|k.

7: k = k +1.

8: until local estimates are needed.

In applications where communication is done at a faster

rate than making observations, many consensus filter steps

can be run between each observation. This will ensure local

estimates of Fk and fk converge to the true values more

quickly. We note that for Y i
k|k in the above algorithm to

be invertible it is sufficient to assume that the estimate,

F i
k, obtained from the consensus algorithm is positive semi-

definite for all k. In practice, if this is not the case, one can

approximate F i
k by a positive definite matrix F̃ i

k by zeroing

out its negative eigenvalues. In this case, if F i
k → F where F

is positive definite, then the positive definite approximations,

F̃ i
k , also converges to F . Hence, this substitution does not

change the steady-state convergence of the consensus filter.

A question that arises is whether the local error covariance

matrices and the state estimates that are computed using the

above algorithm converge to those of the centralized Kalman

filter. In the next section, we address this question.

IV. CONVERGENCE STUDIES OF THE DECENTRALIZED

KALMAN FILTER

To study convergence properties of the decentralized

Kalman filter we assume a time invariant process dynamics
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and measurement model given by

xk+1 = Axk +wk (7)

zi
k = H ixk +ni

k,

where the covariance matrix of the process noise is denoted

by Q and the covariance matrix of sensor i’s noise is denoted

by Ri. Let HT = (H1T
, . . . ,HMT

), R = diag(R1, . . . ,RM). For

the convergence analysis to be followed, we assume that M ≥
n and (A,H) is observable. These conditions are not difficult

in general to satisfy given that decentralized Kalman filter

is usually applied in large sensor networks, where there are

more sensors than the dimension of the state. For notational

compactness let Pk = Pk|k−1 and P̄k = Pk|k. The prediction

error covariance matrix given by the centralized Kalman filter

satisfies the following recursive equation

Pk+1 = A(Pk −PkHT (HPkHT +R)−1HPk)A
T +Q. (8)

It is known that if (A,H) is observable and (A,D) is control-

lable, where Q = DDT , the above recursion converges to the

unique positive definite fixed-point of the Riccati equation

P = A(P−PHT (HPHT +R)−1HP)AT +Q. (9)

Also, P̄k → P̄ where P̄ = P−PHT (HPHT +R)−1HP (see for

example, [4], [3]).

In the decentralized Kalman filter algorithm defined in the

previous section, at each time step, each node maintains an

estimate of the information matrix F = HT R−1H through

using appropriate consensus filters. Node i’s estimate at

time k is denoted by F i
k. As discussed in the previous

section, without loss of generality we can assume that F i
k is

positive semi-definite. The local information matrix, Y i
k =

(Pi
k|k−1)

−1, satisfies the following recursive equation

Y i
k+1 = (A(Y i

k +F i
k)

−1AT +Q)−1
. (10)

For the rest of the discussion, we drop the superscript i for

simplicity in notation and study the convergence of local

estimates of the covariance matrix for an arbitrary node. Let

Sk ∈ IRM×n be such that Fk = Sk
T Sk. Define Ck = R

1
2 Sk ∈

IRM×n. From one of the matrix inversion lemmas, namely,

(V +UT R−1U)−1 = V−1 −V−1UT (UV−1UT + R)−1UV−1,

we see that the recursive equation of (10) is equivalent to

the following Riccati equation

Pk+1 = A(Pk −PkCk
T (CkPkCk

T +R)−1CkPk)A
T +Q. (11)

One can think of equation (11) as the Riccati equation for

the least-squares estimate covariance matrix associated with

the following measurement model

zk = Ckxk +nk, (12)

where nk is zero mean with covariance R = diag(R1, . . . ,RM)
and xk is governed by the same process model of (7).

Studying convergence of the local estimates of the error

covariance matrix to that of the centralized one simplifies

to studying whether the Riccati equation in (11) converges.

Lemma 1. Let (Ck) be a sequence converging to C, where

(A,C) is observable. For any positive definite initial condi-

tion P0 the discrete-time Riccati equation (11) converges to

the unique positive definite fixed point of (9).

Proof: We consider the equivalent Riccati equation

in optimal control. Let Bk = Ck
T and consider the optimal

control problem of a linear system with dynamics

xk+1 = Axk +Bkuk, (13)

and the quadratic cost

J = min
N−1

∑
i=0

{xi
T Qxi +ui

T Rui}+ xN
T QNxN , (14)

where QN ∈ IRn×n is symmetric and positive definite. It is

known (see for example, [4]) that the optimal cost is given

by x0
T PNx0 where P is governed by the following Riccati

equation

Pk+1 = AT (Pk −PkBk(Bk
T PBk +R)−1Bk

T Pk)A+Q, (15)

and P0 = QN . The optimal cost-to-go is xT
0 Pkx0. Following

the approach in [4], where the convergence of the Riccati

equation for constant system matrices A and B is shown, we

show that as N → ∞ the above recursion converges.

Let (Bk) → B where (A,B) is controllable. From the fact

that the function rank is lower semi-continuous, it follows

that for l large enough rank([Bl ,ABl+1, . . . ,A
n−1Bl+n−1]) = n.

This implies that there exists a control sequence that drives xl

to zero in n steps. Hence, for fixed x0 the sequence xT
0 Pkx0 is

bounded above by a cost corresponding to a control sequence

that is arbitrary for finitely many steps k < l, drives xl to zero

within n steps, and applies zero from that time on. Since x0 is

arbitrary, we conclude that (Pk) is bounded. The fact that (Pk)
is monotone can be shown exactly as done in [4] for the time-

invariant system matrices. Hence, Pk converges. To show that

it converges to the unique positive definite fixed point of (9),

let P denote the steady-state value of the recursion

Pk+1 = AT (Pk −PkB(BT PB+R)−1BT Pk)A+Q, (16)

and P2 denote the steady-state solution of recursion (15). We

see that in steady-state, P and P2 satisfy (16). This equation

has a unique positive definite fixed point for any arbitrary

positive definite initial condition and hence P2 = P.

Now, we assume that the consensus algorithm chosen

guarantees convergence of local estimates to the steady-state

value of inputs to the nodes. From the above lemma, we can

show the following result:

Theorem 1. For the process and measurement model of (7)

the local estimates of the error covariance matrix converge

to the centralized error covariance matrix.

Proof: For the time-invariant process and measurement

model of (7), the input to node i’s consensus filter for

estimating F is the constant matrix (H i)T (Ri)−1H i. The

consensus algorithm guarantees that F i
k converges to F =

∑M
i=1(H

i)T (Ri)−1H i. As F i
k → F = HT R−1H, Ck → C for

some constant matrix C. Here, C is not necessarily equal to H

but we have HT R−1H = CT R−1C. Observability assumption
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on (A,H) implies that (A,C) is also observable (Nullspace

of HT H is equal to Nullspace of H). Now, the local error

covariance matrix, Pk = Yk
−1, is governed by the Riccati

equation in (11) which converges by the previous lemma.

Hence, in steady-state, the local error covariance matrices

and the centralized error covariance matrix are equal to the

fixed point of the Riccati equation (9).

Practically, since the local estimates of the error covariance

matrix converge, one can use consensus filters required for

estimating this quantity for some finite time until the required

convergence is met and then use consensus filters to maintain

the state estimates only. From the above result, we can also

show the following:

Theorem 2. If A is stable, then the local state estimates

converge in mean to the centralized state estimate.

Proof: We first express the steady-state dynamics of the

centralized state estimate using the information vector form

yk|k = Ykxk|k,

yk+1|k+1 = P−1AP̄yk|k + fk, (17)

where, fk = HT R−1zk as defined in previous section. From

convergence of the local estimates of the error covariance

matrix, we have that in steady-state, node i’s local informa-

tion vector satisfies

yi
k+1|k+1 = P−1AP̄yi

k|k + f i
k, (18)

where f i
k is the local estimate of fk. From stability of

A, it follows that the terms (H i)T (Ri)−1xk, which are the

inputs to the consensus filters for estimating fk, converge in

mean. Hence, the estimates f i
k converge in mean to fk. From

the fact that the Kalman gain, A−APHT (HPHT + R)−1H,

is stable [4], we can check that P−1AP̄ is also a stable.

From these two results, the local estimate of information

vector given by yi
k|k converges in mean to the centralized

information vector yk|k. Now, the local estimate of the state

is xi
k|k = Pyi

k|k and consequently it also converges in mean to

xk|k = Pyk|k, the centralized estimate of the state as desired.

One implication of this result is that even though each

sensor’s measurement model may not observe all states,

i.e. (A,Hi) not observable, as long as the set of all sensor

measurement models H and A form an observable pair,

each node can maintain the mean of all the states. Also,

notice that f i
k, the local estimate of the fk, is output of a

linear filter and it has a different covariance than fk. This

implies that the local sample error covariance matrix differs

from the estimated error covariance matrix. Hence, regardless

of the specific consensus filters chosen, the local estimates

would not converge to the least-squares estimate. This is

an undesirable limitation of the decentralized Kalman filter

using the consensus filters. In the next section, we show the

consistency of few simulations with the above results.

V. SIMULATION RESULTS

We consider a system with dynamics

xk+1 = xk +wk, (19)

where x ∈ IR3, w(k) ∼ N(0,





.3 .1 0

.1 .2 0

0 0 .1



). There are

three sensors making measurements

z1
k =

(

1 1 0
)

xk +n1
k, (20)

z2
k =

(

1 −1 0
)

xk +n2
k,

z3
k =

(

0 0 1
)

xk +n3
k,

where n1
k ∼ N(0, .5), n2

k ∼ N(0, .2), n3
k ∼ N(0, .3). The

initial parameters are set to x(0) = 0, Pi
0 = 10×I3×3, xi

0 = 0,

i = 1,2,3. The communication topology is such that the

pairs (1,2) and (2,3) exchange messages. The consensus

algorithm used was the discretized version of the low-pass

consensus filter proposed in [7]. We used one iteration of the

consensus algorithm between each observation.

Fig. 1 shows the local estimates of state 1. Nodes 1 and

2 maintain good estimates since they make measurements

of this state and also directly communicate with each other.

Even though node 3 is not observing state 1, it maintains

an estimate of this state with some time delay. The delay is

due to the fact that it takes some time for the observation

information of other nodes to reach node 3 through the

consensus algorithm. Similarly, local estimates of state 3 are

shown in Fig. 2.

We verifed that the local estimates of the covariance matrix

converge to the centralized one. Fig. 3 shows the logarithm

of the trace-norm of the estimates of the error covariance

matrix. We calculated the norm of sample covariance matri-

ces for the nodes by running the algorithm for a longer time

horizon. The norm of the sample error covariance matrices

for nodes 1, 2, 3, and the centralized least-squares covariance

matrix were found to be .2185, .1079, .2458, and .0420

respectively. This is consistent with our analysis in that

each node’s sample error covariance matrix differs from its

estimated error covariance matrix.
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Fig. 1. Local estimates of state 1.

VI. CONCLUSIONS AND FUTURE WORK

The decentralized Kalman filter based on consensus is

applicable in large sensor networks where having a central

computation unit may not be feasible. Using this algorithm,

each sensor node is able to maintain an estimate of the
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Fig. 3. Local estimates of the error covariance matrix converge to the
centralized value. Here, the logarithm of the trace-norm of the matrices is
plotted.

centralized error covariance matrix and the states. In addition,

one can use results established on consensus algorithms

such as design of algorithms that have fast convergence

rates and are robust to time-delay in order to maintain

better local estimates. We showed that in the time invariant

process and measurement model, the local estimates of the

error covariance matrix converge to the centralized error

covariance matrix. For a stable process, the local estimates of

the state converge in mean to the centralized state estimates.

However, the local state estimates have different error co-

variance matrices than their estimates of the centralized error

covariance matrix. Consequently, the local estimates do not

converge to the least-squares estimates.

In applications in which the nodes need to maintain

good estimates of the error covariance matrix, for example,

in target tracking where motion is based on reducing the

norm of this covariance matrix, consensus-based algorithms

described can be used. In order to maintain estimates of

state, one could use alternative algorithms such as weighted

averaging in which the weights for combining local estimates

are chosen such that the norm of each local error covariance

matrix is minimized [1]. Such approaches may require more

computation or off-line calculations, but could result in better

estimates.
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