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Abstract— This paper develops a general framework for
Infinitesimal Perturbation Analysis (IPA) for fluid queues,
and applies it to a queue with flow control. Unlike previous
works, we consider signal delays in the feedback channel. The
performance measure of interest is the loss volume, and the
variable parameters are the buffer size and the feedback gain.
The IPA derivatives are characterized, and simulation results
are presented.

Index Terms— Infinitesimal perturbation analysis, stochastic
hybrid systems, stochastic flow models.

I. INTRODUCTION

Fluid queues have been considered as a natural setting

for Infinitesimal Perturbation Analysis (IPA) in the past few

years (see [4] for a recent survey). The reason is that, for a

large class of systems and functions, they yield statistically

unbiased derivatives (gradients), whose formulas are model-

free and simple to compute. Moreover, they have been shown

experimentally to have a certain measure of robustness with

respect to modeling variations, and hence the IPA formulas

that are derived from fluid-queue models can provide reliable

sensitivity estimates when applied to sample paths that are

observed from discrete systems. All of this suggests that the

analysis of IPA in the fluid-queue setting has the potential

for sample-based optimization of high-speed networks, be it

in the setting of simulation or real-time parameter control

[3].

The earliest results concerned IPA for loss-related per-

formance measures as functions of the buffer size and

other parameters [3], and the resulting IPA derivatives were

shown to be computable via simple formulas. Extensions

to queueing networks were carried out in [7], and further

extensions to flow-control systems were obtained in [10],

[11], [8], [1].

An abstract, hybrid-system framework was developed in

[9], and it seems to cover many of the previous results con-

cerning IPA in the setting of a single-stage SFM. However, it

assumes that the feedback signal is delivered instantly to the

source, and hence it excludes delayed control. The purpose of

this paper is to extend that framework to the case of delayed

feedback signals, and apply it to a queue with flow control. In

particular, we consider the IPA derivative of the loss volume

as a function of the buffer size and feedback gain. It must be

pointed out that the presence of delays in the feedback loop

results not only in more tedious analysis, but also in more

complicated IPA derivatives, whose computation requires an

iterative algorithm instead of a simple formula.
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The rest of the paper is organized as follows: Section II

presents the abstract framework for IPA, while Section III

concerns a fluid queue with additive flow control. Section

IV provides simulation examples, and Section V concludes

the paper.

II. ABSTRACT FRAMEWORK FOR IPA

Consider a hybrid system with bi-level dynamics, having

continuous-time dynamics at the lower level and discrete-

event dynamics at the higher level. The system is assumed to

operate over a given finite-length time-interval [0, T ], where

a finite number (N ) of events occur. We are not concerned

here with the details of the discrete-event dynamics, but only

with the times at which the events occur, which we denote

by τ1, . . . , τN , in increasing order. We further define τ0 := 0
and τN+1 := T , and denote the interval [τi−1, τi] by Ii,

i = 1, . . . , N + 1.

Let θ be a scalar parameter assumed to be confined to a

closed, finite-length interval Θ, and suppose that the event-

times τi(θ) are functions of θ; we will use the simpler

notation τi := τi(θ), and similarly for the derivatives, dτi

dθ
:=

dτi(θ)
dθ

, when no confusion arises.

The continuous-time dynamics evolve in the interval Ii in

the following way. Let x ∈ Rn denote the continuous state

variable. There exists a function fi : Rn ×Θ× [0, T ] → Rn

such that

ẋ = fi(x, θ, t), (1)

where“dot” denotes derivative with respect to t. The state

variable x depends on θ and t, namely x = x(θ, t), and

ẋ := d
dt

x(θ, t). Suppose that θ ∈ Θ is fixed throughout the

evolution of the system in the interval t ∈ [0, T ], and assume

that the functions fi (i = 1, . . . , N + 1) are continuously

differentiable. We also assume that the state variable x(θ, t)
is continuous in t at the event-times τi, and therefore it

is uniquely defined by (1) once the initial state x(θ, 0) is

specifiied. Finally, we mention that the event-times τi(θ)
and the functions fi(x, θ, t) are all random and defined over

a common probability space (Ω,F , P ). In the forthcoming

description we will consider a realization corresponding to a

sample path ω ∈ Ω, and hence regard the various functions

as implicitly dependent upon that sample path. We further

assume that all of the derivative terms, mentioned in the

sequel, exist, and later will state assumptions guaranteeing

their existence w.p.1.

Let Li : Rn×Θ×Ii → R be a continuously-differentiable

function, and let Ji(θ) be defined by

Ji(θ) =

∫ τi

τi−1

Li(x(θ, t), θ, t)dt. (2)
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The cost function we are interested in is J(θ), defined by

J(θ) =
N+1
∑

i=1

Ji(θ). (3)

Our main interest is in the sample derivative dJ
dθ

:= dJ(θ)
dθ

(the explicit dependence on θ will be suppressed when no

confusion arises), and this is the IPA derivative. According

to (3),

dJ

dθ
=

N+1
∑

i=1

dJi

dθ
, (4)

so the main task before us is to compute the derivative terms
dJi

dθ
, i = 1, . . . , N + 1. Fix θ ∈ Θ, and define xi := x(θ, τi).

Taking derivatives with respect to θ in (2), we obtain,

dJi

dθ
=

∫ τi

τi−1

(∂Li

∂x
(x, θ, t)

∂x

∂θ
(θ, t) +

∂Li

∂θ
(x, θ, t)

)

dt

+Li(xi, θ, τi)
dτi

dθ
− Li(xi−1, θ, τi−1)

dτi−1

dθ
. (5)

The Right-Hand Side (RHS) of (5) depends on the derivative

terms ∂x
∂θ

and dτi

dθ
. The former one is basically the linearized

(continuous-time) state, and the latter term will be shown

to be obtained from linearizing the discrete-event dynamic

equations. Taking derivatives with respect to θ in (1) we

obtain the following linear equation in the interval Ii,

d

dt

∂x

∂θ
(θ, t) =

∂fi

∂x
(x, θ, t)

∂x

∂θ
(θ, t) +

∂fi

∂θ
(x, θ, t), (6)

with the boundary condition

∂x

∂θ
(θ, τ+

i−1) =
∂x

∂θ
(θ, τ−

i−1)

+
(

fi−1(xi−1, θ, τi−1) − fi(xi−1, θ, τi−1)
)dτi−1

dθ
(7)

(see [9]). The terms dτi

dθ
, i = 1, 2, . . ., which appear in

Equations (5) and (7), have special forms that are next

described.

We classify the events of the system into three categories:

exogenous events, endogenous events, and induced events.

These categories are defined as follows.

Definition 2.1: (i). An event is exogenous if its event-time,

τi, satisfies the equation dτi

dθ
= 0 (see [9]). (ii). An event

is endogenous if there exists a continuously-differentiable

function gi : Rn × Θ → Rn such that the event-time τi is

defined by the following equation,

τi := min{t > τi−1 : gi(x(θ, t), θ) = 0} (8)

(see [9]). (iii). An event occurring at time τj induces an event

at time τi ≥ τj if the former event triggers the latter one.

Moreover, there is a quantity Q(τj) that is transferred from

time τj to time τi; this quantity is computable at time τj , and

then made available for the required computations at time τi.

We denote the time-lag between τj and τi by s(τj) and

also by S(τi), and hence, s(τj) = S(τi) = τi − τj . Both

notations are used since we will refer to the time-lag at both

times τj and τi. We call the event at time τj the inducing

event, and the associated event at time τi, the induced event.

Definition 2.1 sheds light on the derivative terms dτi

dθ
. For

an exogenous event at time τi,
dτi

dθ
= 0 by definition, and

for an endogenous event, (8) implies that gi(xi, θ) = 0, and

taking derivatives with respect to θ and using (1), we obtain

that

∂gi

∂x
(xi, θ)

(∂x

∂θ
(θ, τi) + fi(xi, θ, τi)

dτi

dθ

)

+
∂gi

∂θ
(xi, θ)

= 0. (9)

As for induced events, the term dτi

dθ
generally is computable

by the quantity Q(τj) that was evaluated at time τj ; the

details of these computations depend on the specific system

under investigation.

In order to be useful, the IPA derivative has to be sta-

tistically unbiased, namely satisfy the relation E(dJ
dθ

(θ)) =
d
dθ

E(J(θ)
)

(see [5]). Unbiasedness is usually associated with

continuity of the sample performance functions J(θ), and it

is often easily ascertained in the fluid-queue setting [4]. It

will become evident that the functions that are defined in the

next section are indeed continuous, and moreover, that the

simple proofs of unbiasedness that are presented in [9] can be

applied to them as well. However, due to space limitations,

we will not further discuss the issue of unbiasedness in this

paper.

III. IPA FOR FLUID QUEUES WITH DELAYED FLOW

CONTROL

To exemplify the IPA framework defined in the last

section, we consider a fluid queue with flow control, where

the inflow rate is adjusted by the loss rate. The feedback

law is linear and the feedback signal is subjected to some

delay, so that the inflow rate at time t is reduced by an

amount proportional to the loss rate at time t − S(t) for

some (random) S(t) > 0.

We will investigate the IPA derivative of the loss-volume

function with respect to two parameters: the buffer size,

and the feedback gain. Results for the former case were

developed in [2] via ad-hoc analysis that is specific to the

particular problem. Here we rederive them by using the

framework developed in Section II, in order to exhibit its

generality. It will become evident that the principles of

the analysis can be applied to the case of feedback-gain

parameter, where we state the results without proofs.

A. Fluid-Queue Formulation

Consider the fluid queue shown in Figure 1, where σ(t)
and β(t) are the external inflow rate (offered load) and

server’s rate, respectively, and b > 0 is the buffer size. Such

a queue has been called a Stochastic Flow Model (SFM) [4].

Suppose that the processes {σ(t)} and {β(t)} are random

and defined over a given time-interval (horizon) [0, T ] and

over a common probability space (Ω,F , P ), and assume that

w.p.1 the functions σ(t) and β(t) are piecewise continuous.

Let α(t), x(t), γ(t), and δ(t) denote, respectively, the inflow

rate to the buffer, amount of fluid in the queue (buffer

contents), the spillover rate due to buffer overflow, and the

outflow rate from the server, all at time t ∈ [0, T ]. The
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Fig. 1. Stochastic Fluid Model

process {δ(t)} will not interest us in this paper, and hence

will not be further discussed. As for the other processes,

{x(t)} and {γ(t)} are related to {α(t)} and {β(t)} by the

following equations:

α(t) = max{σ(t) − cγ(t − S(t)), 0} (10)

where c > 0 is a given constant;

ẋ =







0, if x(t) = 0 and α(t) ≤ β(t),
0, if x(t) = b and α(t) ≥ β(t),
α(t) − β(t), otherwise,

(11)

with a given initial condition x0 := x(0); and

γ(t) =

{

α(t) − β(t), if x(t) = b,

0, otherwise.
(12)

We further make the simplifying assumption that α(t) > 0
always in (10); this is a reasonable assumption that will

simplify the analysis without detracting from its salient

features, and it implies that (10) has the following form,

α(t) = σ(t) − cγ(t − S(t)). (13)

In the literature on IPA in the SFM setting it is common

to consider (primarily) two performance measures, the loss

volume defined by

JL =

∫ T

0

γ(t)dt, (14)

and the cumulative workload, defined by

JQ =

∫ T

0

x(t)dt; (15)

see [3] for their justification in applications. Due to space

limitation we consider only the former performance measure

in this paper, and we denote it by J := JL. Note that

T−1J is the average loss rate, and (
∫ T

0
σ(t)dt)−1J is the

loss probability.

Next, suppose that some of the traffic processes depend

on a control parameter θ, and hence are denoted by α(θ, t),
γ(θ, t), etc. We will consider θ to be the buffer size and

the feedback gain c, and in both cases it is assumed to be

constrained by a compact interval Θ with a positive left point.

In either case σ(t) and β(t) are independent of θ while the

other processes are functions of θ. Equations (11) – (14) now

are valid with the dependence of their relevant terms on θ,

and in particular, (14) provides the definition of the sample

performance function J(θ). The sample-path derivative term
dJ
dθ

is the IPA derivative (gradient) that we seek.

Fix θ ∈ Θ, and consider the state trajectory developed

according to (11). An empty period is a maximal period

during which x(θ, t) = 0, and a full period is a maximal

period during which x(θ, t) = b. Empty periods and full

periods are labeled as boundary periods. A nonboundary

period is a supremal period during which 0 < x(θ, t) < b,

and a nonempty period is a supremal period during which

x(θ, t) > 0. Now events constitute the following occurrences:

(i). The start of boundary periods constitute endogenous

events. (ii). The end of boundary periods are events and

they can be exogenous or induced. (iii). The beginning of

full periods, as well as induced events during full periods,

constitute inducing events. These inducing events are marked

by discontinuities (jumps) in γ(θ, t), and these cause (induce)

jumps in α(θ, t) at the time of the corresponding induced

event. More specifically, for an inducing event at time ρ, the

quantity Q(θ, ρ) :=
(

γ(θ, ρ−) − γ(θ, ρ+)
)

dρ
dθ

will be shown

to be computable at time ρ, and by virtue of (13), it will be

transferred to time τ := ρ + s(ρ) via the relation

(

α(θ, τ−) − α(θ, τ+)
)dτ

dθ

= −c
(

γ(θ, ρ−) − γ(θ, ρ+)
)dρ

dθ
; (16)

this defines the essence of induced events. We remark that the

delay term s(ρ) is a random variable that may be a function

of θ, but practically its dependence on θ can be so weak that

we can assume that ds
dθ

= 0.

The following assumption, or variants thereof, are made

routinely in the literature on IPA in the SFM setting; see,

e.g., [3], [9] for discussion and justifications.

Assumption 3.1: For every θ ∈ Θ, w.p.1:

(i). The functions σ(t) and β(t) are piecewise continuously

differentiable, the numbers of points where they are discon-

tinuous have finite first moments, and the number of points

where their first derivatives change signs have finite first

moments.

(ii). For every open interval I ⊂ (0, T ), it does not happen

that σ(t) = β(t) for every t ∈ I .

(iii). The functions σ(t) and β(t) are continuous at time-

points when boundary periods begin.

(iv). It does not happen that σ(t) = β(t) at any point when

a boundary period begins.

(v). No boundary period consists of a single point.

(vi). No induced event co-occurs with either another induced

event, an endogenous event, or a jump in σ(t) or β(t).
Part (i) of the assumption generally guarantees statistical

unbiasedness of the IPA derivative; see [3] for a detailed

explanation. Parts (ii) – (vi) guarantee that all the derivatives

mentioned throughout the discussion indeed exist. If one or

more of these parts of the assumption is not satisfied, then

the one-sided derivatives still exist, and the results derived

below pertain to them instead of the derivatives.

The next two subsections will discuss the two parameters

separately, namely θ = b and θ = c, under Assumption 3.1.

We also make the implicit assumption that initially the queue

is empty, i.e., x(θ, 0) = 0.
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B. Buffer size as the parameter

Consider the case where θ = b, and recall that J(θ) is

the loss volume as a function of the buffer size. Fix θ ∈ Θ,

and suppose that Assumption 3.1 is satisfied and hence all of

the derivative terms mentioned below exist. We next apply

Equations (5) – (9) to derive recursive relations among the

various quantities that can be used in the computation of dJ
dθ

.

First, a number of preliminary results are established.

Lemma 3.1: For every t ∈ [0, T ] such that α(θ, t) is

continuous at t, we have that ∂α
∂θ

(θ, t) = 0.

Proof: If t−S(t) was not contained in a full period then

α(θ, t) = σ(t) − β(t), and hence ∂α
∂θ

(θ, t) = 0. If t − S(t)
was contained in a full period then α(θ, t) = σ(t)−

(

α(θ, t−
S(t))− β(t− S(t))

)

; now a recursive argument implies the

desired result.

Lemma 3.2: The function α(θ, ·) − β(·) is discontinuous

only at points t when either (i) σ(·) or β(·) is discontinuous,

or (ii) an induced event occurs.

Proof: Immediate by Assumption 3.1(iii) and (vi).

Lemma 3.3: Let τ be the end-time of a boundary period.

(i). If τ is the time of an exogenous event, then dτ
dθ

= 0. (ii).

If no exogenous or induced event occurs at time τ , then the

function α(θ, t)−β(t) is continuous at t = τ , and α(θ, t)−
β(t) = 0.

Proof: (i) is true by definition. (ii). The function

α(θ, t) − β(t) is continuous at t = τ (see Lemma 3.2), and

since it changes signs at t = τ , we have that α(θ, τ)−β(τ) =
0.

If the end of a boundary period is neither an exogenous

nor an induced event, we label it an endogenous event

even though we will not make use of Equation (9). This

is a semantic point that will simplify the notation while

remaining consistent with in the coming discussion.

Let τi−1 and τi be the times of an event and the next event,

respectively, let Ii := [τi−1, τi], and let Io
i := (τi−1, τi).

Lemma 3.4: (i). If Io
i is a subset of an empty period then

for every t ∈ Io
i , ∂x

∂θ
(θ, t) = 0. (ii). If Io

i is a subset of a full

period then for every t ∈ Io
i , ∂x

∂θ
(θ, t) = 1.

Proof: Immediate from the fact that x(θ, t) = 0
whenever the buffer is empty, and x(θ, t) = θ whenever

the buffer is full.

We next derive the linearized system via Equations (5)

– (7). While keeping the notation Ii = [τi−1, τi], we will

denote by φ the starting time of boundary periods, and by ψ

and ζ the end times of boundary periods.

Lemma 3.5: (i). For every interval Ii,
∂x
∂θ

(θ, t) has a

constant value for all t ∈ Ii. (ii). If τi−1 is contained in

a nonboundary period, then

∂x

∂θ
(θ, τ+

i−1)

=
∂x

∂θ
(θ, τ−

i−1) +
(

α(θ, τ−

i−1) − α(θ, τ+
i−1)

)dτi−1

dθ
. (17)

(iii). Let τi−1 := ζ be the end of a boundary period. Then,

∂x

∂θ
(θ, ζ+)

=
∂x

∂θ
(θ, ζ−) −

(

α(θ, ζ+) − β(ζ+)
)dζ

dθ
, (18)

and unless ζ is the time of an induced event,
(

α(θ, ζ+) −

β(ζ+)
)

dζ
dθ

= 0 and hence ∂x
∂θ

(θ, ζ+) = ∂x
∂θ

(θ, ζ−). (iv). Let

τi := φ be the starting time of a full period. Then the function

α(θ, t) − β(t) is continuous at t = φ, and

(

α(θ, φ) − β(φ)
)dφ

dθ
= 1 −

∂x

∂θ
(θ, φ−). (19)

Proof: (i). Either fi(x, θ, t) = 0 or fi(x, θ, t) =
α(θ, t)−β(t), and hence, and by Lemma 3.1, ∂fi

∂x
(x, θ, t) =

∂fi

∂θ
(x, θ, t) = 0 for all t ∈ Io

i . Equation (6) now implies the

desired result.

(ii). fi−1(x, θ, t) = α(θ, t) − β(t) and fi(x, θ, t) =
α(θ, t) − β(t). By Assumption 3.1(vi), β(t) is continuous

at t = τi. (7) now implies (17).

(iii). fi−1(x, θ, t) = 0 and fi(x, θ, t) = α(θ, t)−β(t), and

hence (7) implies (18). The second statement follows from

(18) and Lemma 3.3.

(iv). By Assumption 3.1(iii), and (vi), the function

α(θ, t) − β(t) is continuous at t = φ. Note that, in (8),

gi(x, θ) = x − θ, and hence, ∂gi

∂x
= −∂gi

∂θ
= 1. Moreover,

fi(x, θ, t) = α(θ, t) − β(t). Plug all of this in (9), to obtain

(19).

Let F := [φ, ψ] denote a generic full period, and define

Λ(θ) :=
∫

F
γ(θ, t)dt. Obviously dJ

dθ
is the sum of the terms

dΛ
dθ

corresponding to the various full periods, hence we will

focus on the IPA term dΛ
dθ

in the sequel. Let P := (ζ, φ)
denote the nonboundary period preceding F , and define π

by π = 0 if the boundary period ending at time t = ζ was

full, and π = 1 if the boundary period ending at time ζ was

empty. Furthermore, let ζ = τk1
, φ = τk2

, and ψ = τk3
,

for some k1 > 0, k2 > k1, and k3 > k2; let τi, i = k1 +
1, . . . , k2 − 1, be the times of induced events in P , and let

τi, i = k2 + 1, . . . , k3 − 1 be the times of induced events in

F o (the interior of F ).

Proposition 3.1: (i).

dΛ

dθ
=

(

α(θ, ψ−) − β(ψ−)
)dψ

dθ

+

k3−1
∑

i=k2+1

(

α(θ, τ−

i ) − α(θ, τ+
i )

)dτi

dθ

−
(

α(θ, φ) − β(φ)
)dφ

dθ
, (20)

where

(

α(θ, φ) − β(φ)
)dφ

dθ
= π

−

k2−1
∑

i=k1+1

(

α(θ, τ−

i ) − α(θ, τ+
i )

)dτi

dθ

+
(

α(θ, ζ+) − β(ζ+)
)dζ

dθ
. (21)

(ii). Unless ψ is the time of an induced event,
(

α(θ, ψ−) −

β(ψ−)
)

dψ
dθ

= 0; and unless ζ is the time of an induced event,
(

α(θ, ζ+) − β(ζ+)
)

dζ
dθ

= 0.

Proof: (i). Note that F = ∪k3

i=k2+1Ii, and for all i =
k2+1, . . . , k3, Li(x, θ, t) = α(θ, t)−β(t) (see (2) and (12)).

Therefore, and by Lemma 3.1, the integral term in (5) is zero,

and (5) yields (20).
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Next, by Lemma 3.5(i), ∂x
∂θ

(θ, τ−

i ) = ∂x
∂θ

(θ, τ+
i−1) for all

i. Applying (19), then repeatedly (17) with i = k2, . . . , k1 +
2, followed by (18), and noting (Lemma 3.4) that 1 −
∂x
∂θ

(θ, ζ−) = π, Equation (21) follows.

(ii). Follows immediately from Lemma 3.3.

Proposition 3.1 has a recursive structure that leads to a

computation of the IPA derivative, as can be seen from the

following result.

Proposition 3.2: For every ρ being the time of an inducing

event, the quantity
(

γ(θ, ρ−) − γ(θ, ρ+)
)

dρ
dθ

is computable

at time t = ρ without having to compute the term dρ
dθ

.

Proof: The proof is by induction. The first inducing

event is the starting time of the first full period, and denoting

this point by φ, (21) implies that
(

γ(θ, φ−)−γ(θ, φ+)
)

dφ
dθ

=
1.

Next, let ρ be the time of an inducing event, and suppose

that, for any past inducing event occurring at any time ρ1 <

ρ, the quantity
(

γ(θ, ρ−1 )− γ(θ, ρ+
1 )

)

dρ1

dθ
was computable at

time ρ1. Consequently, and by (13), for every induced event

occurring at any time τ ≤ ρ (including the time τ = ρ), the

quantity
(

α(θ, τ−) − α(θ, τ+)
)

dτ
dθ

was computable at time

τ .

There are three possibilities regarding the inducing event

at time ρ: (1). It is contained in the interior of a full

period. (2). It is the start of a full period. (3). It is an

induced event that ends a full period. In case (1), by (12),
(

γ(θ, ρ−)−γ(θ, ρ+)
)

dρ
dθ

=
(

α(θ, ρ−)−α(θ, ρ+)
)

dρ
dθ

, and by

the inductions hypothesis, the latter quantity is computable

at time t = ρ. In case (2), let us define φ = ρ to comply

with the notation of (21). Now γ(θ, ρ−) − γ(θ, ρ+) =
−

(

α(θ, φ) − β(φ)
)

, and Equation (21) is in force. In this

equation, π is certainly computable from the past; the sum-

terms are computable at the (past) times τi by the induction’s

hypothesis, and the last term is equal to

(

α(θ, ζ+) − β(ζ+)
)dζ

dθ

=
α(θ, ζ+) − β(ζ+)

α(θ, ζ−) − β(ζ−)
×

(

α(θ, ζ−) − β(ζ−)
)dζ

dθ
. (22)

There may be no escape from computing the fraction term,

which involves explicit rates (these can be approximated

via moving averages - see [9]), but the last term in (22) is

computable at time ζ by the inductions hypothesis. Finally,

in case (3), we use the notation ψ = ρ. Since ψ is the

end of a full period, we have that γ(θ, ψ−) − γ(θ, ψ+) =
α(θ, ψ−) − β(ψ−), and hence,

(

γ(θ, ψ−) − γ(θ, ψ+)
)dψ

dθ

=
α(θ, ψ−) − β(ψ−)

α(θ, ψ−) − α(θ, ψ+)
×

(

α(θ, ψ−) − α(θ, ψ+)
)dψ

dθ
. (23)

Again, there appears to be no way to get around the com-

putation of the fraction term in (23), which requires explicit

flow rates. However, the last term in (23) is computable at

time ψ = ρ by the induction’s hypothesis, and this completes

the proof.

Θ
λ 1λs R1S1 S2

γc

Fig. 2. Simulation Topology

C. Feedback gain as the parameter

Consider the case where θ = c, the feedback gain, and the

buffer size is a given constant b > 0. As a result, Equation

(13) assumes the form α(θ, t) = σ(t)− θγ(θ, t− S(t)), and

hence,

∂α

∂θ
(θ, t) = −γ(θ, t − S(t)) − θ

∂α

∂θ
(θ, t − S(t)) (24)

if t−S(t) was contained in the interior of a full period, and
∂α
∂θ

(θ, t) = 0 if t = S(t) was not contained in a full period.

The main result concerning the IPA derivative, Proposition

3.3, is similar to Proposition 3.1 in the last subsection, and

hence it will be stated without a proof.

Proposition 3.3: (i).

dΛ

dθ
=

∫ ψ

φ

∂α

∂θ
(θ, t)dt +

(

α(θ, ψ−) − β(ψ−)
)dψ

dθ

+

k3−1
∑

i=k2+1

(

α(θ, τ−

i ) − α(θ, τ+
i )

)dτi

dθ

−
(

α(θ, φ) − β(φ)
)dφ

dθ
, (25)

where

(

α(θ, φ) − β(φ)
)dφ

dθ
=

∫ φ

ζ

∂α

∂θ
(θ, t)dt

−

k2−1
∑

i=k1+1

(

α(θ, τ−

i ) − α(θ, τ+
i )

)dτi

dθ

+
(

α(θ, ζ+) − β(ζ+)
)dζ

dθ
. (26)

(ii). Unless ψ is the time of an induced event,
(

α(θ, ψ−) −

β(ψ−)
)

dψ
dθ

= 0; and unless ζ is the time of an induced event,
(

α(θ, ζ+) − β(ζ+)
)

dζ
dθ

= 0.

We remark that Proposition 3.2 provides the recursive

structure for computing the various terms in the RHS of (25)

AND (26).

IV. SIMULATION RESULTS

The IPA derivatives were analyzed in the fluid-queue

setting, but their eventual implementation may be on traffic

processes observed from packet-based networks. For these

reason we conducted simulation experiments on a packet

multiplexor, where we computed the IPA derivative of the

loss volume as function of the buffer size. The experiments

were performed using the Georgia Tech Network Simulator

(GTNetS) [6], a general-purpose packet-network simulator,

modified to include a loss feedback loop with delays.

The simulation setup is shown in Figure 2. Bits are gener-

ated at the source S1 according to an on-off process, where

both “on” and “off” periods are exponentially distributed
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Fig. 4. Loss Prediction Error

with mean 100 milliseconds each; the source generates the

bits at the rate of 8.281 Megabits per second during the

“on” periods. The bits are assembled at the source into

UDP packets, which are encapsulated into IP datagrams and

Ethernet packets, so that, counting the overhead associated

with the encapsulation, each packet consists of 556 bytes.

These packets are then transmitted to the router R1 at the rate

of λs := 10 Megabits per second. Unless they are dropped

by the router, the packets are transmitted from there to the

sink S2 at the rate of λ1 := 5 Megabits per second, so

that the traffic intensity at the queue is 0.9. The variable

parameter θ is the buffer size in units of packets, and the

feedback gain is c = 0.3. Each time a packet is dropped, a

feedback signal is sent back to the source, and the feedback

law is implemented by discarding the next-generated packet

at the source with a probability of 0.3. The latency of the

feedback signal was (somewhat arbitrarily) set to S(τ) = 10
milliseconds. The horizon interval over which we computed

the sample performance function J(θ) and its IPA derivative
dJ
dθ

is [0, T ], with T = 10 seconds.

We performed 41 individual simulations, with buffer sizes

at the router R1 ranging from 10 to 50 inclusive, all with

the same seed. For each run, the actual loss volume (in

packets) was calculated and reported, as well as the IPA

derivative dJ
dθ

. We then used it to compute a predicted loss

volume at the next value of θ via a first-order linearization

with ∆θ = 1, namely the predicted value of J(θ + 1) is

J(θ)+ dJ
dθ

(θ), where the latter IPA derivative was computed

via Equations (20) and (212). As a matter of fact, in these

computations we neglected the problematic terms, namely

the first term in the RHS of (20) and the last term in the

RHS of (21). These terms generally arise infrequently, and

neglecting them reduced the complexity of the simulation

program while yielding good results.

The simulation results are shown in Figure 3, where

we plotted the value of the computed loss volumes (the

continuous curve) as well as their predicted values (indi-

cated by stars); it is hard to discern any difference. Figure

4 shows a plot of the relative prediction error, which is

usually under 0.3, always under 0.5, and whose average is

-0.0856 . A provably-convergent gradient-descent algorithm

is guaranteed to converge under such error bounds.

V. CONCLUSIONS

This paper explores IPA for the loss volume in fluid queues

with flow control where, in contrast to earlier results, the

feedback signals incur delays. It first proposes a general

framework for modeling and analysis of IPA in a fluid-queue

setting, and then applies it to specific examples. It appears

that the framework can be generalized to networks of fluid

queues, and this provides an avenue for future research.
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