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Abstract— This paper tackles the problem of a two-player
differential game affected by matched uncertainties with only
the output measurement available for each player. We suggest
a state estimation based in the so called algebraic hierarchical
observer for each player in order to design the Nash equilibrium
strategies based on such estimation. At the same time, the
use of an output integral sliding mode term (also based on
the estimation processes) for the Nash strategies robustification
for both players ensures the compensation of the matched

uncertainties. A simulation example shows the feasibility of this
approach in a magnetic levitator problem.

I. INTRODUCTION

Preliminaries. Differential Game Theory deals with the

dynamic optimization behavior of multiple decision makers

when none of them can control the decisions made by others

and the outcome for each participant is affected by the

consequences of these decisions. During the last decades, the

interest in the application of some modern concepts in di-

fferential games has significantly increased. This is specially

seen in the kind of games affected by uncertainties (see [1],

[2], [3], [4]). A common focus in recent publications has

been the analysis of different uncertainty effects in players

behavior. In [2], [1], [4]o LQ games with uncertainty scena-

rios have been considered using the H∞ approach leading to

the min-max formulation. Two different papers, [2] as well

as [1], deal with a two-person uncertain LQ differential game

with uncertainties which may ”play against” the players. In

[3], the authors propose a type of Robust Nash equilibrium

concept where the game uncertainty is represented by a

malevolent input, which is subjected to a cost penalty or a

direct bound. Then, H∞ theory is used once again to design

robust strategies for all players. A second key point presented

in most applications deals with inaccurate systems, where

only a part, or a combination of, the state space coordinates

is known. Games in which the players have access only
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to output measurements have been of interest since the

late 60’s in the works of [5], [6] and [7]. In [6], several

problems of inaccurate state information, with white noise

corrupting the output, in differential games are presented

using quadratic cost functionals. However, it is still not clear

how the estimation errors affect the functionals for each

player. In [7], a partially observed system is considered, but

the disturbances are assumed to be quadratically integrable

on an infinite horizon, which implies that they tend to zero.

Methodology. In recent years, robust observers based on

Sliding Modes have been successfully developed [8], [9],

[10], [11], [12] and [13]. This kind of observers is widely

used because of their attractive features: (a) their insensiti-

vity, which is a characteristic stronger than robustness, with

respect to unknown inputs, (b) the possibility to use the

values of the equivalent output injection for the unknown

inputs compensation. Another special sliding mode techni-

que, namely integral sliding mode (ISM) [14], has also been

widely used in processes that require compensation of arising

uncertainty effects. The main properties of ISM are: one,

the ISM does not have a reaching phase; and two, resulting

from the first one, it ensures insensitivity of the desired

trajectory with respect to matched uncertainties starting from

the initial moment. Such useful tools have been scarcely used

in differential games [15].

Contribution. We design robust output Nash strategies for

a two person nonzero-sum differential game affected by

the presence of unknown inputs (or external matched non

vanishing perturbations). These uncertainties influence player

dynamics and are not available (measurable), neither a priory

nor on-line. The only way to obtain information regarding

the state is through an estimation process.

An output integral sliding mode control is designed for

each player such that it compensates the unknown inputs

allowing the design of a nominal game observer. The esti-

mated state is used in the standard Nash control strategy.

The observation error is made arbitrarily small adjusting the

observer’s filter parameters.

Paper Structure. In Section II, the model is presented and

the control challenge is formulated. Section III is devoted

to Nash strategies design for the nominal game. In Section

IV, an output integral sliding mode controller rejecting the

matched uncertainty is proposed. The hierarchical observer

is described in Section V. The Robust Nash controller and

an estimation of the closed loop error during implementation

are presented in section VI. Performance issues of the robust

output Nash controller are illustrated in a magnetic bearing

simulation study in Section VII.
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II. GAME MODEL DESCRIPTION AND BASIC

ASSUMPTIONS

Let us consider an uncertain LQ differential game (LQDG)

where the players’ dynamic is represented by linear ordinary

differential equations

ẋ(t) = Ax(t)+
2

∑
i=1

Biui(t)+
2

∑
i=1

ζ i(t) (1)

y1(t) = C1x(t), y2(t) = C2x(t),

x(0) = x0, t ∈ [0,T ] ,

Here, i denotes the number of players
(
i = 1,2

)
, A ∈

ℜn×n and Bi ∈ ℜn×mi are known constant system matrices

and ζ i(t) ∈ ℜ is an unknown input. In addition, x(t) ∈ ℜn

is the game state vector, with ui(t) ∈ ℜmi being the control

strategies of each i-player and yi(t)∈ ℜp is the output of the

game for each player which can be measured at each time.

Finally, Ci ∈ ℜpi×n is the output matrix for player i.

The following assumptions will be considered through this

paper.

A.1 The pairs
(
A,Bi

)
are controllable and

(
A,Ci

)
are obser-

vable.

A.2 The uncertainties ζ i (t) (i = 1,2) are two smooth un-

known disturbances which satisfy the next matching

condition:

Γi :=
{

ζ i (t) | ζ i (t) = Biγ i (t) ,
∥
∥γ i (t)

∥
∥≤ qi ‖y‖

}

(2)

A.3 rank
(
CiBi

)
= mi.

A.4 The initial condition x0 is bounded, i.e., there exists an

η0, such that ‖x0‖
2 ≤ η0.

The first equality in (2) means that ζ i ∈ span Bi, i.e. the

i−player is able to exert a force on the perturbation. Assume

also that spanB1 6= spanB2.

Control challenge. For the Robust Nash control design we

propose the following two part strategy:

ui (t) = ui
0 (t)+ui

1 (t) ; i = 1,2 (3)

where the control ui
0 (t) is the Nash feedback strategy desig-

ned for the nominal game (i.e. ζ i = 0) and control ui
1 (t) is an

integral sliding mode compensator for the unknown inputs

ζ i
.

III. NASH CONTROL STRATEGY FOR THE

NOMINAL SYSTEM

Consider the nominal game

ẋ0(t) = Ax0(t)+B1u1
0(t)+B2u2

0(t); x0(0) = x0 (4)

with a quadratic cost functional as an individual aim perfor-

mance

Ji
T (ui

0,u
ı̂
0) =

∫ ∞

0
(xT Qi(t)x+uiT

0 R ji(t)ui
0 +uiT

0 Ri j(t)ui
0)dt j 6= i (5)

The performance index Ji
T (ui

0,u
ı̂
0) (5) of each i-player for

infinite time horizon nominal game is given in the standard

form, where ui
0 is the strategy for i-player and uı̂

0 are

the strategies for the rest of the players (ı̂ is the player

counteracting to the player with index i). We will assume

also that

Qi(t) = Qi⊺(t) ≥ 0, R ji(t) = R ji⊺(t) > 0,
Ri j(t) = Ri j⊺(t) ≥ 0 ( j 6= i)

(6)

The game solutions are understood in the Filippov sense,

[16], in order to provide the possibility of discontinuous

signals in the observer design. Note that Filippov solutions

coincide with the usual solutions, when the right hand side

is continuous.

In the case when there are no unknown inputs in the game

and the complete state information is available, from the

limiting solution of the finite time problem [17], the next

coupled algebraic equations appear [18]:

−
(
A−S2P2

)⊺
P1 − P1

(
A−S2P2

)

+ P1S1P1 −Q1 −P2S21P2 = 0 (7)

−
(
A−S1P1

)⊺
P2 − P2

(
A−S1P1

)

+ P2S2P2 −Q2 −P1S12P1 = 0 (8)

with

Si = Bi
(
R ji
)−1

Bi⊺

Si j = Bi
(
R ji
)−1

R ji
(
R ji
)−1

Bi⊺ for j 6= i

The following result is well established (see [19]): for a

2-player LQDG described by (1) with (5): let Pi (i = 1,2)
be a symmetric stabilizing solution of (7)-(8). Taking F i∗ :=
(
R ji
)−1

Bi⊺Pi for i = 1,2, then
(
F1∗,F2∗

)
is a feedback Nash

equilibrium. The limiting stationary (Nash) strategies are:

ui∗
0 (t) = −R ji−1

Bi⊺Pix (9)

Before presenting the robust Nash strategies, let us in-

troduce the integral sliding modes compensator and the

hierarchical observer.

IV. OUTPUT INTEGRAL SLIDING MODES

COMPENSATOR

Define for each player the next output based sliding

function si
(
yi
)

= Giyi + σ i.The gain matrix is defined as

Gi =
(
Bı̂⊥
)⊺

Ci†. Calculating the time derivative:

ṡi
(
yi
)

=
(

Bı̂⊥
)

⊺ [
Ax+Biui

0(t)+Biui
1(t)+Biγ i(t)

]
+ σ̇ i

(10)

Note here that with the assignation of the matrix Gi (x, t)
to Bı̂⊥Ci†, where Bı̂⊥ is an orthogonal complement of the

control matrix of the opposite player such that Bı̂⊥Bı̂ = 0,
makes all terms related with this player disappear. Now, σ̇ i

is defined as:

σ̇ i =
(

Bı̂⊥
)

⊺

Ax̂−
(

Bı̂⊥
)

⊺

Biui
0(t), σ i (0) = −Giyi (0)

x̂ is the observer state vector which will be described later.

The substitution of σ̇ i in (10), yields:

ṡi
(
yi
)

=
(

Bı̂⊥
)

⊺

A(x− x̂)+
(

Bı̂⊥
)

⊺

Biui
1(t)+

(

Bı̂⊥
)

⊺

Biγ i(t).

(11)
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We propose the control:

ui
1(t) = − f (t)

(
Li
)−1 si(t)

‖si(t)‖
,

Li :=
(
Bı̂⊥
)⊺

Bi,

(12)

the function f (t) will be defined below. For the Lyapunov

function V i (s) = 1/2
∥
∥si
∥
∥2

:

V̇ i (s) =
(
si, ṡi

)
(13)

=

(

si,
(

Bı̂⊥
)

⊺

A(x− x̂)− f (t)
si(t)

‖si(t)‖
+Liγ i(t)

)

≤−
∥
∥si
∥
∥

(

f (t)−
∥
∥
∥

(

Bı̂⊥
)

⊺

A

∥
∥
∥‖x− x̂‖−

∥
∥Li
∥
∥
∥
∥qi
∥
∥

)

< 0

where f (t) >
∥
∥
(
Bı̂⊥
)⊺

A
∥
∥‖x− x̂‖−

∥
∥Li
∥
∥
∥
∥qi
∥
∥ .

Thus, with adequate selection for the constants in (12), the

manifold si (x, t) is attractive since the initial time. So, from

(10), we have

1

2

∥
∥si
∥
∥

2
= V i

(
si (x(t), t)

)
≤ V i

(
si (x(0),0)

)

≤
1

2

∥
∥si (x(0),0)

∥
∥

2
= 0

which implies that for all t ≥ 0, ṡi(t) = 0, which leads to

si(t) = 0. This means that from the beginning of the game,

the ISM strategy for each player completely compensates the

matched uncertainty. The equivalent control which maintains

the trajectories on the sliding surface is

ui
1eq(t) =

((

Bı̂⊥
)

⊺

Bi
)−1(

Bı̂⊥
)

⊺

A(x− x̂)+ γ i(t)

Substitution of the equivalent control in (1), yields the

sliding mode equivalent dynamic

ẋ(t) = Āx(t)+
2

∑
i=1

(
Li
)−1
(

Bı̂⊥
)

⊺

Ax̂+
2

∑
=1

Biui
0(t)(14)

y1(t) = C1x(t), y2(t) = C2x(t),

where Ā := A−∑
2
i=1

(
Li
)−1
(

Bî⊥
)

⊺

A.

Remark. In [11], it has been proven that when the number

of outputs is less than or equal to the number of inputs,

the matrix Ā in (14) always belongs to the null space of

the matrix Ci and, consequently, the pair
(
Ā,Ci

)
is not

observable. This means that in the case when pi ≤ mi, the

ISM control using only output information should not be

realized.

V. OBSERVER DESIGN

The principal idea in the design of the hierarchical ob-

server is the recovery of the elements Cx(t), CAx(t) and so

on, until we get CiĀkx, with k = 1, ℓ−1. Constructing the

Hx(t) vector with

H =
[

C CĀ . . . CĀℓ−1
]T

, H ∈ ℜpℓ×n

where ℓ is the observability index, i.e., the least positive

integer such that such that rank H = n.

Before designing the observer, it is necessary to find an

error bound. Design the following dynamic system

·
x̃(t) = Āx̃(t)+

2

∑
i=1

(
Li
)−1
(

Bı̂⊥
)

⊺

Ax̂

+
2

∑
i=1

(
Biui

0(t)+Ki
(
yi −Cix̃

))
,

defining the error r(t) = x− x̃, we have

˙̄r(t) =
(
Ā−KiCi

)
r(t) = Âr(t),

with Â Hurwitz, r(t) is bounded. Now, let us recover the

CiĀkx vectors with k = 1, ℓ−1. To recover CiĀx vector, let

us design the next auxiliary system

ẋ
(1)
a (t) = Āx̃+

2

∑
i=1

(
Li
)−1
(

Bı̂⊥
)

⊺

Ax̂

+
2

∑
i=1

Biui
0(t)+T (CT )−1

v(1)(t), (15)

where x
(1)
a (0) satisfies Cix

(1)
a (0) = yi (0). For the variable

s(1)
(

yi (t) ,x
(1)
a (t)

)

= Cix(t)−Cix
(1)
a (t), (16)

the time derivative is

ṡ(1)(t) = CiĀ(x(t)− x̃(t))− v(1)(t), (17)

where

v(1)(t) = Mi
1

s(1)(t)
∥
∥s(1)(t)

∥
∥

.

Here, the scalar gain Mi
1 should satisfy the condition

∥
∥CĀ

∥
∥‖x− x̂‖ < Mi

1 to reach the sliding mode regime. Then,

we get ṡ1(t) = s1(t) = 0 for all t ≥ 0. Thus, Cix(t) =Cix
(1)
a (t)

and the equivalent output injection is

v
(1)
eq (t) = CiĀx(t)−CiĀx̃(t) ∀t ≥ 0,

finally the recovery of CiĀx(t) is made by

CiĀx(t) = CiĀx̃(t)+ v
(1)
eq (t) ∀t ≥ 0, (18)

Now, to recover CiĀ2x(t) the next auxiliary system is desig-

ned:

ẋ
(2)
a (t) = Ā2x̃+ Ā

(
2

∑
i=1

(
Li
)−1
(

Bı̂⊥
)

⊺

Ax̂+
2

∑
i=1

Biui
0(t)

)

+ T
(
CiT

)−1
v(2)(t),

for the variable

s(2)
(

v
(1)
eq (t) ,x

(2)
a (t)

)

= CiĀx(t)−Cix
(2)
a (t), (19)

the time derivative is

ṡ(2)(t) = CiĀ2 (x(t)− x̃(t))− v(2)(t).

The output injection for the second level is

v(2)(t) = Mi
2

s(2)(t)
∥
∥s(2)(t)

∥
∥

,
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with
∥
∥CĀ2

∥
∥‖x− x̂‖< Mi

2, to obtain the sliding mode regime

ṡ2(t) = s2(t) = 0 for all t ≥ 0. The equivalent control is

v
(2)
eq (t) = CiĀ2x(t)−CiĀ2x̃(t) ∀t ≥ 0,

and

CiĀ2x(t) = CiĀ2x̃(t)+ v
(2)
eq (t) ∀t ≥ 0. (20)

We can repeat this procedure to recover the CiĀkx(t)
vectors for k = 1, ℓ−1. The general formula for the auxiliary

dynamics is

ẋ
(k)
a (t) = Ākx̃+ Āk−1

(
2

∑
i=1

(
Li
)−1
(

Bı̂⊥
)

⊺

Ax̂+
2

∑
i=1

Biui
0(t)

)

+ T
(
CiT

)−1
v(k)(t),

and

v(k)(t) = Mi
k

s(k)(t)
∥
∥s(k)(t)

∥
∥

,

with
∥
∥CĀk

∥
∥‖x− x̂‖ < Mi

k. The general sliding surface

s(k)
(

v
(k−1)
eq (t) ,x

(k)
a (t)

)

=
{

yi (t)−Cix
(1)
a (t) for k = 1

v
(k−1)
eq (t)+CiĀk−1x̃(t)−Cix

(k)
a (t) for k > 1

and s(k) (0) should satisfy

s(k) (0)=

{

Ciyi (0)−Cix
(1)
a (0) for k = 1

v
(k−1)
eq (0)+CiĀk−1x̃(0)−Cix

(k)
a (0) for k > 1

Equations (18) and (20) can be rewritten in matrix form








C

CA
...

CA
k








︸ ︷︷ ︸

H

x(t) =








C

CA
...

CA
k








︸ ︷︷ ︸

H

x̃(t)+









Cx
(1)
a −Cx

v
(1)
eq

...

v
(k)
eq









︸ ︷︷ ︸

veq

(21)

As mentioned earlier, rank H = n; therefore we can

premultiply (21) by H+ and recover the x̂(t) state

x̂(t) := x(t)+H+veq (22)

Observer Realization To carry out the observer in the

form 22, the surface s(k) must be realizable. To guarantee

this, the equivalent output injection v(k) must be available.

However, the non idealities in the implementation of v(k)

cause the so-called chattering effect. Therefore, v(k) can not

be directly measured. However, we can apply a first order

filter

τ v̇
(k)
av + v

(k)
av = v

(k)
eq , vav(0) = 0 (23)

For a very small τ > 0, the filter output approaches to

the equivalent control v
(k)
eq , i.e., lim

τ→0

δ/τ→0

v
(k)
av = v

(k)
eq (see [20]),

where δ is the sampling time. We can select τ = δ η
, where

0 < η < 1. Finally, to realize the observer, select a very small

sampling interval δ and substitute v
(k)
eq by v

(k)
av :

x̂(t) := x̃(t)+H+vav (24)

vav =
[

Cx
(1)
a −Cx̃ v

(1)
av . . . v

(k)
av

]T

. (25)

VI. ROBUST OUTPUT NASH STRATEGY

Before presenting the new Robust Nash strategies we have

the next proposition:

Proposition 1: Due to the inaccurate state information, it

seems natural to use a current state estimate x̂(t) (if it is

available) instead of x(t) in the feedback equilibrium control

laws (9), that is,

ûi∗
0 (x̂) = −R ji−1

Bi⊺Pix̂, (26)

where ûi∗ denotes the control action based on estimations x̂.

Thus, the proposed control law in (3) yields

ui (x̂, t) = −R ji−1

Bi⊺Pix̂− f (t)
(
Li
)−1 si(t)

‖si(t)‖
; i = 1,2

(27)

A. Error estimation during implementation of the closed

loop control

The filter causes some errors in the state vector recons-

truction. Evidently those errors directly affect the controller.

Hence, we will estimate the error which appears during the

realization of the closed loop control, that is, the error due to

the actuators plus the error due to the observation process.

The control error is O(µ), where µ is a control execution

constant which generally depends on the actuators time

constants. Now, let us estimate the error order due to the

observation process. As we saw, the observer design is based

on the recursive use of filters of the form (23). Firstly, let us

recall the following lemma regarding the error induced by

this type of filters.

Lemma 2: [20] If in the differential equation

τ ż+ z = h(t)+H(t)ṡ, (28)

where τ is a constant and z, h and s are m-dimensional

vectors functions

(1) the functions h(t) and H(t), and their first order deriva-

tives are bounded in magnitude by a certain number M

and

(2) ‖s(t)‖ ≤ ξ (ξ is a constant positive value)

then for any pair of positive numbers ∆t and υ there exists

a number d(υ ,∆t,z(0)) such that ‖z(t)−h(t)‖ ≤ υwith 0 <
τ ≤ d, ξ/τ ≤ d and t ≥ ∆t.

Indeed, ‖z(t)−h(t)‖ satisfies the following inequality

‖z(t)−h(t)‖ ≤ ‖z(0)−h(0)‖exp(−t/τ)+M (τ +ξ )

+3M

(
ξ

τ

)

In our case, expression (28) can be related with τ1v̇
(1)
av +

v
(1)
av = v1

eq − ṡ1, which is obtained from equations (23) and
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(17). Thus, in this case h(t) refers to the equivalent output

injection. Furthermore, the sliding mode control error di-

rectly affects the performance of the first sliding mode in the

observation process. It is also known that the sampling step

δ induces an error of order O(δ ) in the variable ṡ(1) during

the sliding motion. Hence, it is reasonable to accept that the

error in the sliding variable ṡ(1) is of order O(µ)+ O(δ ).
By defining ∆ := µ +δ , we have that the constant ξ in the

lemma (2) is ξ = O(∆) = O(µ)+O(δ ). Therefore, choosing

τ = O
(
∆1/2

)
, the error in the first step of the observation

scheme is of order O
(
∆1/2

)
, that is v

(1)
av − v

(1)
eq = O

(
∆1/2

)
.

As it was mentioned before, we must substitute v
(1)
eq by v

(1)
av

into the variable s(2) in (19). Thus, we can consider that

during the sliding motion, s(2) will be bounded by a constant

of order O
(
∆1/2

)
, and consequently, using a filter constant

τ2 = O
(
∆1/4

)
, the error induced for the second filter will be

v
(2)
av −v

(2)
eq = O

(
∆1/4

)
. Following a similar analysis, we obtain

an error of order O
(

∆1/2k
)

in the k-th step for the observer

reconstruction. Thus, it turns out to be that the observation

error is of order O
(

∆1/2ℓ
)

, recalling that ℓ is the smallest

integer such that the H matrix has rank n. Thus, we can say

that during the realization of the control process, the closed

loop control total error εc is

εc = O(µ)+O
(

∆1/2ℓ
)

.

VII. MAGNETIC LEVITATOR EXAMPLE

Consider the magnetic bearing system depicted in Fig.

1, which is composed of a planar rotor disk and two sets

of stator electromagnets: one acting in the y-direction and

the other acting in the x-direction. This system may be

decoupled into two subsystems, one for each direction, with

similar equations. (see [21] for details). Here, only the

linearized subsystem in the y-direction is considered.

Fig. 1. Top view of a planar rotor disk magnetic bearing system [21].

ẋ =








0 1 0 0
8LoI2

o

mk2 0 2LoIo
mk2 − 2LoIo

mk2

0 − 2Io
k

− kR1
Lo

0

0 2Io
k

0 − kR2
Lo








︸ ︷︷ ︸

A

x

+







0

0
k

Lo

0







︸ ︷︷ ︸

B1

(

u1 +ζ 1(t)
)

+







0

0

0
k

Lo







︸ ︷︷ ︸

B2

(

u2 +ζ 2(t)
)

where k = 2go +a, go is the air gap when the rotor is in the

position y = 0; a is a positive constant introduced to model

the fact that the permeability of electromagnets is finite; Lo >
0 is a constant which depends on the system construction; Io

is the premagnetization constant, m is the mass of the rotor

and R1, R2 are the resistances in the first set of stator electro-

magnets.The state variables x =
[
y ẏ i1 − Io i2 − Io

]T

and the control inputs u1 = e1 − IoR1 and u2 = e2 − IoR2.
Considering m = 2kg, L0 = 0.3mH, I0 = 60mA, R1...4 =

1Ω and k = 0.002m. With

C1 =





1 0 0 0

0 0 1 0

0 0 0 1



 C2 =

[
1 0 0 0

0 0 0 1

]

and the controller parameters R11 = diag
([

1 1
])

;

R22 = diag
([

1 1
])

;Q1 = Q2 = 50I, R12 = R21 =
1. It can be verified that for this system the triplet

(A,Bi,Ci) does not have invariant zeros. The initial condi-

tions are x(0) =
[

0.0005 0 0.06 0.06
]T

; so y(0) =
[

0.0005 0.06 0.06
]T

.The pair
(
A,C1

)
is observable

with

A =







0 1 0 0

530 0 0.2 −0.2
0 0 0 0

0 0 0 0







,K =







25 0 0

686 0.2 −0.2
0 10.2 −0.4
0 −0.4 10.8







The gain K guarantees that the Â = A − KC1 ma-

trix is Hurwitz. Applying the Lyapunov iterations algo-

rithm [22] we find F1 =
(

20949 901 10 3
)

and

F2 =
(
−20949 −901 −3 10

)
. The uncertainties are

ζ 1 (t) = 2sin(4t) + 2cos(2t) + 1 and ζ 2 (t) = 3cos(5t).
The output ISM gains are G1 =

[
−1 1 0

]
, G2 =

[
−1 0 1

]
, M1

1 = −10, M2
1 = −10. The simulation in-

tegration time was 10µs, i.e. δ = µ = 10µs; ∆ = 20µs, and

the filter constant was chosen as τ = ∆1/2.

VIII. CONCLUSIONS

A two player differential game affected by matched uncer-

tainties and with only the partial state measurable by all

players was presented. We proposed an algebraic hierarchical

observer to design the Nash equilibrium strategies based on

such estimation. At the same time, the use of an output

integral sliding mode term (also based on the estimation

process) for the robustification of the Nash strategies was
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Fig. 2. Position of rotor for the perturbed system without compensation
(dotted-line) and using Robust Nash strategy (solid-line).

proposed, ensuring the compensation of matched uncertain-

ties. A simulation example showed the feasibility of this

approach.
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