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Abstract— This paper studies consensus seeking over noisy
networks with time-varying noise statistics. Stochastic approx-
imation type algorithms can ensure consensus in mean square
and with probability one. For performance evaluation, we
examine the long term behavior of the approximation error
which consists of two naturally defined components. We show
that the two components and their sum are each asymptotically
normal after being normalized by the square root of time. This,
in turn, characterizes the convergence rate of the algorithm.
We also give the asymptotic formula for the scaled error
covariances.

I. INTRODUCTION

Recent technological advances have made it possible to

build large distributed systems in which different constituent

components or agents may cooperatively perform complex

tasks. In these systems, consensus protocols provide a basic

mechanism for the agents to agree on key information con-

cerning system operation. Consensus problems and various

closely related formulations have been intensively investi-

gated for multi-agent systems [14], [17], [20]. A comprehen-

sive survey on recent research can be found in [18], [22].

While most existing consensus algorithms have assumed

exact state averaging, which in general necessitates perfect

state exchange, recently, there is an increasing attention on

models with noise or quantization effect [21], [27], [11],

[3], [1], [9], [4], [24]. The work [25] made early effort

introducing stochastic gradient based consensus algorithms.

For consensus or synchronization problems based on random

graphs, see [8], [26], [19].

In consensus models with noisy measurements, the tra-

ditional algorithms involving constant or lowered bounded

averaging weights in general cannot ensure convergence. In

[9], [10], [11], stochastic approximation type algorithms with

a decreasing step size were applied for consensus seeking

where the state information of other agents is corrupted

by white noise (see Fig. 1). In particular, probability one

convergence results were obtained in [9] via a double array

analysis in digraph models satisfying a circulant invariance

property. Mean square convergence was proved for connected

undirected graphs by using a stochastic Lyapunov function

[10]. The analysis in [9], [10] was generalized to digraphs

containing a spanning tree in [12], [13].

In this paper, we aim to develop performance analysis for

stochastic consensus algorithms on digraphs. We examine

the asymptotic behavior of the approximation error, i.e., the

difference between the state vector and its limit, the latter
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being a vector in span{1n} where 1n = [1, · · · ,1]T . We give

a linear decomposition of the error into two parts where

the first characterizes the oscillation within span{1n}. We

will show that after normalization, the distributions of these

two error components each converge weakly to a normal

distribution; this, in turn, characterizes the convergence rate

of the algorithm. Some preliminary asymptotic normality

analysis has been developed in [12] under i.i.d. noise as-

sumptions. In this paper, we consider much more general

noise sequences without assuming independence. We allow

time-varying noise statistics by only specifying certain long

term average behavior of the covariances and conditional

covariances; such assumptions are applicable to models occa-

sionally experiencing burst receiver noises while the previous

i.i.d. assumptions are not. Our proof adopts the classic central

limit theorem approach [23], [16], [5], [7], but some new

techniques need to be developed in order to deal with the

time-varying (non-convergent) noise covariances. For general

asymptotic error analysis in stochastic approximation, the

reader is referred to [2], [5], [15], [16].

The organization of the paper is as follows. In Section II,

we formulate the stochastic consensus problem and review

our previous convergence results. The main theorem on

asymptotic normality is stated in Section III. Section IV

contains simulations and Section V concludes the paper.

II. THE STOCHASTIC CONSENSUS PROBLEM

Consider n agents distributed according to a digraph G =
(N ,E ) consisting of a set of nodes N = {1, · · · ,n} and a

set of directed edges E ⊂ N ×N . For brevity, a directed

edge will be simply called an edge. An edge from node i to

node j is denoted as an ordered pair (i, j) where i 6= j (so

there is no edge between a node and itself). A directed path

(from i1 to il) consists of a sequence of nodes i1, i2, · · · , il ,
l ≥ 2, such that (ik, ik+1)∈ E for k = 1 · · · , l−1. We say node

i is connected to node j(6= i) if there exists a directed path

from i to j. The digraph G is said to be strongly connected

if each node i is connected to any other node j by a directed

path. A directed tree is a digraph where each node, except

the root node, has exactly one parent node. Hence, the root

node is connected to any other node by a directed path. The

digraph G contains a spanning tree Gs = (Ns,Es) if Gs is

a directed tree such that Ns = N and Es ⊂ E . A strongly

connected digraph always contains a spanning tree.

For convenience of exposition, the two names, agent and

node, will be used alternatively. The agent Ak (resp., node k)

is a neighbor of Ai (resp., node i) if (k, i) ∈ E where k 6= i.

Denote the neighbor set Ni = {k|(k, i) ∈ E } ⊂ N .
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A. The Measurement Model

For agent Ai, denote its state at time t by xi
t ∈ R, where

t ∈ Z
+ = {0,1,2, · · ·}. Each Ai receives noisy measurements

of the states of its neighbors if Ni 6= /0, where /0 denotes the

empty set. Denote the measurement by Ai of Ak’s state by

yik
t = xk

t + wik
t , t ∈ Z

+, k ∈ Ni 6= /0, (1)

where wik
t ∈ R is the additive noise; see Fig. 1. The un-

derlying probability space is denoted by (Ω,F ,P). We call

yik
t the observation of the state of Ak obtained by Ai, and

assume each Ai knows its own state xi
t exactly. For similar

measurement modeling, see [9], [4], [24]. We introduce the

assumption:

(A1) The digraph G = (N ,E ) contains a spanning tree.

For each t ∈ Z
+, the set of noises {wik

t , i ∈ N and k ∈
Ni 6= /0} is listed into a vector wt in which the position of

wik
t depends only on (i,k) and does not change with t. Define

the state vector

xt = [x1
t , · · · ,xn

t ]
T , t ≥ 0. (2)

Denote the σ -algebras as follows: Ft = σ(x0,wk,k ≤ t)
(i.e., the set of all events induced by these random variables)

for t ≥ 0, F−1 = { /0,Ω}. Then wt is adapted to (i.e., measur-

able on) Ft and Ft ⊂ Ft+1. We introduce the assumption:

(A2) The sequence {wt ,t ∈ Z
+} constitutes a sequence

of martingale differences with a uniformly bounded second

order moment, i.e., wt is adapted to Ft , E[wt |Ft−1] = 0 for

t ≥ 0 and supt≥0 E|wt |2 < ∞. In addition, E|x0|2 < ∞.

The following assumption with independent noises holds

as a special case of (A2).

(A2o) The noises {wik
t ,t ∈ Z

+, i ∈ N and k ∈ Ni 6= /0}
are independent with respect to the indices i,k,t and also

independent of x0, and each wik
t has zero mean and variance

Qik
t . In addition, E|x0|2 < ∞ and supt,i,k Qik

t < ∞.

B. The Stochastic Approximation Algorithm

The state of each agent is updated by the rule

xi
t+1 = (1−atbii)x

i
t + at ∑

k∈Ni

bikyik
t , t ≥ 0, (3)

where i ∈ N , at > 0 and the parameters bi j will be spec-

ified subsequently. Throughout our analysis, we adopt the

convention: ∑k∈ /0 = 0 regardless of the summand.

Case 1. If Ni 6= /0, we take:






bik > 0, if k ∈ Ni,
bik = 0, if k /∈ Ni ∪{i},
bii = ∑k∈Ni

bik.

Case 2. If Ni = /0, we define bik ≡ 0 for all k ∈ N and

the state of agent i is fixed as its initial value: xi
t ≡ xi

0. Such

a situation arises in leader following where the leader’s state

is fixed as a constant at all times.

Define the matrix

B =











−b11 b12 · · · b1n

b21 −b22 · · · b2n

...
...

...
...

bn1 bn2 · · · −bnn











. (4)

+

i
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Fig. 1. Measurement with noise wik
t .

Define

wi
t = ∑

k∈Ni

bikwik
t , wt = [w1

t , · · · ,wn
t ]

T (5)

where wi
t = ∑k∈ /0 = 0 if Ni = /0. Write (3) in the vector form

xt+1 = xt + atBxt + atwt , t ≥ 0. (6)

(A3) The sequence {at ,t ≥ 0} satisfies i) at > 0 and ii)

∑∞
t=0 at = ∞, ∑∞

t=0 a2
t < ∞.

The right hand side of (3) is a convex combination of the

agent’s state and its |Ni| observations if atbii ≤ 1.

Definition 1: (mean square consensus) The agents are

said to reach mean square consensus if E|xt |2 < ∞, t ≥ 0,

and there exists a random variable x∗ such that limt→∞ E|xi
t −

x∗|2 = 0 for all i ∈ N .

Definition 2: (strong consensus) The agents are said to

reach strong consensus if there exists a random variable x∗

such that with probability one limt→∞ xi
t = x∗ for all i∈N .

Convergence with probability one (w.p. 1) is also called

almost sure (a.s.) convergence. We cite a convergence result.

Theorem 3: [13] Under (A1)-(A3), algorithm (6) achieves

both mean square and strong consensus.

C. Preliminary Decomposition Results

We introduce the following class of matrices in R
n×(n−1)

C (B) =
{

φ = (ζ1, · · · ,ζn−1)|span{φ} = span{B}
}

, (7)

where span{φ} denotes the subspace spanned by the columns

of φ . Under (A1), rank(B) = n− 1, and accordingly, each

φ ∈ C (B) has rank n−1 (see [12]).

Lemma 4: [12] Assuming (A1), for (6) we have:

(i) For 1n = [1, · · · ,1]T and any given φ̄ ∈C (B), the matrix

Φ = (1n, φ̄ ) is nonsingular and

Φ−1BΦ =

(

0

B̃

)

, (8)

where B̃ ∈ R
(n−1)×(n−1) is Hurwitz.

(ii) Letting zt = [z1
t , · · · ,zn

t ]
T = Φ−1xt and

vt = [v1
t , · · · ,vn

t ]
T = Φ−1wt , (9)

we have the relation

z1
t+1 = z1

t + atv
1
t , (10)

z̃t+1 = (I + at B̃)z̃t + at ṽt , t ≥ 0, (11)
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where z̃t = [z2
t , · · · ,zn

t ]
T and ṽt = [v2

t , · · · ,vn
t ]

T .

In fact, the first row of Φ−1 is given as a unique nonnega-

tive vector π = [π1, · · · ,πn] satisfying πB = 0 and ∑n
k=1 πk =

1. And under (A1)-(A3), zt converges to z∞ = [z1
∞,0, · · · ,0]T

in mean square and w.p.1 (see [12]).

III. MAIN RESULTS ON ASYMPTOTIC NORMALITY

For Theorem 3, denote the limit state vector by x∞ =
[x1

∞, · · · ,xn
∞]T = x1

∞1n. Since z1
t = πxt , we obtain z1

∞ =
π(x1

∞1n) = x1
∞. By the relation xt = x1

∞1n + Φzt − x1
∞1n, we

obtain the following decomposition:

xt = x1
∞1n +(z1

t − z1
∞)1n + φ̄ z̃t . (12)

Thus, under (A1)-(A3) the approximation error for xt is

decomposed into two components x
e,a
t = (z1

t − z1
∞)1n and

x
e,b
t = φ̄ z̃t to give

xt − x1
∞1n = x

e,a
t + x

e,b
t . (13)

Clearly, x
e,a
t ∈ span{1n} and x

e,b
t ∈ span{B}. Under (A1),

using the property πB = 0, we may show that

span{1n}∩ span{B} = {0}, R
n = span{1n}⊕ span{B}

where ⊕ denotes direct sum. Hence, xt − x1
∞1n has a unique

representation as the sum of two vectors (independent of φ̄ )

in span{1n} and span{B}, respectively. Alternatively, we may

use the fact that xt , x1
∞1n and z1

t = πxt , z1
∞ are all independent

of φ̄ to check that the decomposition in (13) does not depend

on the choice of φ̄ ∈ C (B). For the case of leader following,

we can show that v1
t ≡ 0 and x

e,a
t ≡ 0, and the asymptotic

error analysis reduces to checking x
e,b
t .

We introduce some assumption related to wt , and it will

be convenient to give the condition based on νt , which is

defined via (5) and (9).

(A4) The sequence {ṽt ,t ∈ Z
+} constitutes vector random

variables with zero mean and covariance Qṽ
t such that

lim
T→∞

(1/T )
k+T−1

∑
i=k

Qṽ
i = Q

ṽ
(14)

uniformly w.r.t. k ≥ 0, and in addition

lim
T→∞

(1/T )
T

∑
i=1

E
∣

∣E[ṽiṽ
T
i |ṽ0, · · · , ṽi−1]−Qṽ

i

∣

∣ = 0, (15)

lim
K→∞

sup
t≥0

E|ṽt |21(|ṽt |≥K) = 0. (16)

Letting σ2
i = E|v1

i |2, then

lim
T→∞

(1/T )
k+T−1

∑
i=k

σ2
i = σ̄2, (17)

lim
T→∞

(1/T )
k+T−1

∑
i=k

E
∣

∣E[|v1
i |2|v1

0, · · · ,v1
i−1]−σ2

i

∣

∣ = 0, (18)

both uniformly with respect to k. Finally

lim
K→∞

sup
t≥0

E|v1
t |21(|v1

t |≥K) = 0. (19)

For the special case {wt ,t ≥ 0} being an i.i.d. sequence

with zero mean and finite covariance, (14)-(19) are satisfied.

It must be noted that the validity of (A4) does not depend

on the choice of φ̄ . More specifically, when a different φ̂ is

used, (A4) is still true as long as all the associated variances

and conditional variances correspond to the new φ̂ .

(A3’) The sequence {at ,t ≥ 0} satisfies i) at > 0, ii)

limt→∞(a−1
t+1−a−1

t ) = α > 0, iii) B̂ , B̃+αI/2 is Hurwitz.

It is evident that (A3’) implies (A3). If a sequence of

random variables {ξt ,t ≥ 0} converges in distribution to a

normal random variable ξ∞ with mean µ and covariance Σ,

we denote ξ
d→ N(µ ,Σ) and ξ

d→ ξ∞.

Denote D =
∫ ∞

0 eB̂tQ
ṽ
eB̂T tdt, and

Da = α−2σ̄21n1T
n , Db = α−1φ̄Dφ̄ . (20)

Theorem 5: Assuming (A1), (A2), (A3’) and (A4) hold,

we have i)
√

tx
e,a
t

d→ N(0,Da) and
√

tx
e,b
t

d→ N(0,Db) and ii)√
t(xe,a

t + x
e,b
t )

d→ N(0,Da + Db).

To prove Theorem 5-i), it suffices to establish the two

lemmas below. Their proofs are quite technical and are

given in Appendix B. Theorem 5-ii) may be proved by first

approximating
√

t(xe,a
t + x

e,b
t ) by the sum of finite terms of

martingale differences (similar to the treatment in proving

Lemma 7), and next carry out the asymptotic characteristic

function estimation with t → ∞.

Lemma 6: Under the assumptions of Theorem 5,
√

t z̃t
d→

N(0,α−1D).

Lemma 7: Under the assumptions of Theorem 5,
√

t(z1
t −

z1
∞)

d→ N(0,α−2σ̄2).

Corollary 8: Under the assumptions of Theorem 5,

lim
t→∞

tE{x
e,a
t (xe,a

t )T} = Da = (α−2σ̄2)1n1T
n , (21)

lim
t→∞

tE{x
e,b
t (xe,b

t )T} = Db = α−1φ̄Dφ̄T , (22)

lim
t→∞

tE{(xe,a
t + x

e,b
t )(xe,a

t + x
e,b
t )T} = Da + Db. (23)

Proof: We obtain (21) from a direct calculation of

limt→∞ t ∑∞
k=t a2

kσ2
k . By (B.3) and (B.7), we obtain (22). To

show (23), we first take expectation to eliminate the two cross

terms in the expansion by using the martingale difference

property of the terms in the series representation of x
e,a
t and

x
e,b
t , and the right hand side follows from (21) and (22).

Again, we remark that both (α−2σ̄2)1n1T
n and α−1φ̄Dφ̄T

are independent of the particular choice of φ̄ ∈ C (B).

IV. SIMULATIONS

We consider a digraph shown in Fig. 2. The noises

{w12
t ,w21

t ,w23
t ,w31

t ,t ≥ 0} are independent and satisfy: for

k = 0,1, · · · , (i) if 20k ≤ t ≤ 20k + 17, each has a uni-

form distribution on [−0.2,0.2] (with σ2
w = 0.01333); (ii) if

20k + 18 ≤ t < 20(k + 1), each has a uniform distribution

on [−0.7,0.7] (with σ2
w = 0.1633). Thus, the noise variances

periodically reach a much higher level, which models burst

receiver noises. The initial state vector is xt |t=0 = [5,4,2]T .
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Fig. 2. The digraph with 3 nodes.
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Fig. 3. Convergence of the 3 trajectories using a decreasing step size.

For algorithm (6), we take

B =





−1 1 0

0.5 −1 0.5
1 0 −1



 , Φ =





1 −1 1

1 0.5 −1

1 1 0



 (24)

and a0 = 0.5, at = 0.5
t

for t ≥ 1. The 3 eigenvalues of B

are 0, −1.5± 0.5i. The first two columns in B are used to

construct Φ. We express x
e,b
t by z̃t and consequently by xt .

The asymptotic normality conclusion of Theorem 5 holds for

this example since (A4) is satisfied and B̃+αI/2 is Hurwitz

with eigenvalues −0.5±0.5i when the associated B is given

by (24) and α = 2. The convergence of xt is shown in Fig.

3 which displays the first 200 iterates, and {
√

tx
e,b
t ,t ≥ 0} is

displayed in Fig. 4.

V. CONCLUSIONS

We have presented asymptotic normality results for the

scaled error terms in stochastic consensus algorithms. Our

analysis is applicable to average consensus based algorithms

with additive noises, which amounts to imposing additional

conditions (i.e. B has zero row and column sums, correspond-

ing to averaging with balanced graphs [17]).

APPENDIX A: PRELIMINARY LEMMAS

We need some preliminary lemmas before proving Lem-

mas 6 and 7 in Appendix B.

Lemma 9: [23], [16], [5] Suppose {ξtk, t ≥ 1,1 ≤ k ≤ t}
forms an array of martingale differences, i.e.,

E[ξtk|ξt1, · · · ,ξt(k−1)] = 0.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0. 1

0.05

0

0.05

0.1

0.15

iterates

t0.
5 x te,

b

Fig. 4. The scaled error component
√

tx
e,b
t .

Denote Stk = Eξtkξ T
tk , Rtk = E(ξtkξ T

tk |ξt1, · · · ,ξt(k−1)), St =

∑t
k=1 Stk, and ζt = ∑t

k=1 ξtk . Assume

sup
t≥1

t

∑
k=1

E|ξtk|2 < ∞, (A.1)

lim
t→∞

t

∑
k=1

E|Stk −Rtk| = 0, (A.2)

lim
t→∞

St = S, (A.3)

lim
t→∞

t

∑
k=1

E|ξtk|21(|ξtk|>ε), ∀ε > 0. (A.4)

Then ζt
d→ N(0,S).

We give two lemmas without proof for reasons of space.

Lemma 10: Let δ ∈ (0,1) and suppose the sequence of

nonnegative numbers bi, i ≥ 1 satisfies st = ∑t
i=1 bi = o(t).

Then limt→∞ t−δ ∑t
i=1 i−(1−δ )bi = 0.

Lemma 11: Suppose the sequence of nonnegative num-

bers bi, i ≥ 1 satisfies limT→∞(1/T )∑k+T−1
i=k bi = 0 uniformly

w.r.t. k. Then limk→∞ k ∑∞
j=k j−2bi = 0.

APPENDIX B: PROOF OF ASYMPTOTIC NORMALITY

We shall use C > 0 to denote a generic constant which

may vary from place to place.

Proof of Lemma 6: We have the recursion

z̃t+1/
√

at+1 =(
√

at/
√

at+1)(I + at B̃)(z̃t/
√

at)

+ (at/
√

at+1)ṽt . (B.1)

It is straightforward to show [5]

(
√

at/
√

at+1)(I + atB̃) = I + at(B̃ + αI/2)+ o(at),

, I + at B̂t . (B.2)

Denote Πl,i = ∏l
k=i+1(I + akB̂k), l ≥ i, where (I +

ai+1B̂i+1) appears as the most right term in the suc-

cessive matrix product. Denote Πi,i , I. By elemen-

tary estimates (see, e.g. [5]), it can be shown that
∣

∣Πl,i − exp
{

(∑l
k=i+1 ak)(B̃ + αI/2)

}∣

∣ → 0, uniformly with

respect to l when i→∞, and |Πl,i| ≤CΠ exp(−η(∑l
k=i+1 ak)),

where CΠ and η are fixed constants.

By (B.1)-(B.2), we have z̃t+1/
√

at+1 = (I +
at B̂t)(z̃t/

√
at)+ (at/

√
at+1)ṽt . Denote ẑt = z̃t/

√
at . Then

ẑt+1 =
t

∏
i=0

(1 + aiB̂i)ẑ0 +
t

∑
i=0

Πt,i(ai/
√

ai+1)ṽi. (B.3)
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Since limt→∞ ∏t
i=0(1+aiB̂i) = 0, it suffices to show asymp-

totic normality of ∑t
i=0 Πt,i(ai/

√
ai+1)ṽi. Define ξtk =

Πt,k(ak/
√

ak+1)ṽk. We verify conditions (A.2)-(A.3) in

Lemma 9 with 0 ≤ k ≤ t; then (A.1) follows from (A.3).

Denote the σ -algebra F̃i = F (ṽ0, · · · , ṽi). In fact,

∆t ,
t

∑
k=0

E|Stk −Rtk| ≤C
t

∑
i=0

ai|Πt,i|2E
∣

∣E[ṽiṽ
T
i |F̃i−1]−Eṽiṽ

T
i

∣

∣ .

Since there exist 0 < κ ≤ β such that κ(i + 1)−1 ≤
ai ≤ β (i + 1)−1, i ≥ 0, we have ai|Πt,i|2 ≤ C(i +
1)−1 exp(−2ηκ ∑t

k=i+1 k−1) ≤C(i+1)−1+δ (t +1)−δ , where

δ = 2ηκ ; we take a small κ so that δ < 1. Then the relation

∆t ≤C(t + 1)−δ
t

∑
k=0

(k + 1)−1+δ E|E[ṽkṽT
k |F̃k−1]−EṽkṽT

k |

combined with Lemma 10 gives limt→∞ ∑t
k=0 E|Stk−Rtk|= 0.

Below we simply write Qi = Qṽ
i . Next, we verify (A.3) in

Lemma 9. We have

St =
t

∑
k=0

Stk =
t

∑
i=0

a2
i a−1

i+1Πt,iQiΠ
T
t,i

=
t

∑
i=0

aiΠt,iQiΠ
T
t,i +

t

∑
i=0

(αa2
i + o(a2

i ))Πt,iQiΠ
T
t,i

, S
(1)
t + S

(2)
t . (B.4)

Since Qi is a bounded sequence implied by (14), we have

|S(2)
t | ≤C

T1

∑
i=0

a2
i |Πt,i|2 +C

t

∑
i=T1+1

a2
i |Πt,i|2 , S

(2,a)
t + S

(2,b)
2 .

Since Πt,i is bounded, for any given ε > 0, we can take a

sufficiently large T1 such that supt≥T1
S

(2,b)
t ≤ ε . On the other

hand, limt→∞ Πt,i = 0. Hence, limt→∞ S
(2)
t = 0.

We continue to determine the limit for S
(1)
t . By extending

the treatment in [5] (pp. 125) to a sequence of time-varying

covariances, we may use (B.4) to show that

lim
t→∞

|S(1)
t −

t

∑
i=0

ai exp(B̂
t

∑
k=i+1

ak)Qi exp(B̂T
t

∑
k=i+1

ak)| = 0,

where B̂ = B̃+αI/2. Subsequently, we need to show that the

second term in the difference has a limit as t → ∞.

Fix any ε > 0. First, by (A4) we may take a large T0

such that supk≥0 |(1/T0)∑
k+T0
i=k Qi −Q

ṽ| ≤ ε . For the proof

below, once T0 is selected, it suffices to consider t = kT0.

Denote Mt,i = exp(B̂∑t
k=i+1 ak). The estimates below appear

a bit technical. However, the basic idea is relatively simple.

Intuitively, when j is large, on the time window [ jT0 +1,( j+
1)T0], since ai varies slowly, the pair (ai,Mt,i) appearing in

aiMt,iQiM
T
t,i may be frozen as its value at the starting time

jT0 + 1, incurring only a small error. Let K0 be fixed, we

may verify that for all K0T0 < i < j ≤ i + T0, |aiMt,iM
T
t,i −

a jMt, jM
T
t, j| ≤CT0a2

i where C does not depend on (T0,K0).
For k ≥ K0 + 1, we have

kT0

∑
i=0

aiMt,iQiM
T
t,i =

K0T0

∑
i=0

aiMt,iQiM
T
t,i +

k−1

∑
j=K0

( j+1)T0

∑
i= jT0+1

aiMt,iQiM
T
t,i

where t = kT0. Then we set S̃t = ∑k−1
j=K0

∑
( j+1)T0

i= jT0+1 aiMt,iQiM
T
t,i,

and it is easy to show that

∣

∣

∣S̃t −
k−1

∑
j=K0

( j+1)T0

∑
i= jT0+1

a jT0+1Mt, jT0+1QiM
T
t, jT0+1

∣

∣

∣ ≤CT0

kT0

∑
i=K0T0+1

a2
i .

Hence

∣

∣

∣S̃t −
{ k−1

∑
j=K0

( j+1)T0

∑
i= jT0+1

a jT0+1Mt, jT0+1Q
ṽ
MT

t, jT0+1

∣

∣

∣ (B.5)

≤CT0

kT0

∑
i=K0T0+1

a2
i +Cε,

where C does not depend on T0 and we obtain the term Cε
by using (14) and the fact supk≥0 ∑k

i=0 ai|Mk,iM
T
k,i| < ∞.

By switching the index jT0 +1 back to i in (B.5) and taking

into account the error incurred, we obtain the estimate

∣

∣

∣S̃t −
k−1

∑
j=K0

( j+1)T0

∑
i= jT0+1

aiMt,iQ
ṽ
MT

t,i

∣

∣

∣ ≤CT0

kT0

∑
i=K0T0+1

a2
i +Cε

where t = kT0 and C does not depend on (T0,K0). This gives

|S̃t −
kT0

∑
i=0

aiMt,iQ
ṽ
MT

t,i| ≤CT0

kT0

∑
i=K0T0

a2
i +Cε + o(1), (B.6)

where t = kT0 and we have used ∑
K0T0
i=0 ai|Mt,iQ

ṽ
MT

t,i|= o(1).
Now, after T0 is selected, we may fix a large K0 so that

CT0 ∑
kT0
i=K0T0

a2
i ≤ ε . Subsequently, we pick up T ′

0 sufficiently

large such that for all t ≥ T ′
0 , we have ∑

K0T0
i=0 ai|Mt,iQ

ṽ
MT

t,i| ≤
ε . Hence the right hand side of (B.6) is upper bounded by

(C +2)ε for all t ≥ T ′
0 . Note that for any given T0,K0, |St −

S̃t | → 0 as t = kT0 → ∞, and therefore, it follows that

lim
t→∞

|St −
t

∑
i=0

ai exp(B̂
t

∑
k=i+1

ak)Q
ṽ
exp(B̂T

t

∑
k=i+1

ak)| = 0,

(B.7)

where the second term in the difference has a limit with

a standard integral representation
∫ ∞

0 eB̂tQ
ṽ
eB̂T tdt (see [16],

[5]). Finally, we may verify (A.4) by elementary estimates.

Proof of Lemma 7: We write z1
k − z1

∞ = −∑∞
i=k+1 aiν

1
i .

Let δk =
√

k∑∞
i=k+k2+1

aiν
1
i . Then

E|δk|2 = O(1/k) (B.8)

as k → ∞. It suffices to show that
√

k ∑k+k2

i=k aiν
1
i converges

in distribution to a normal random variable.

Denote Σk, j =
√

k ∑
k+ j
t=k atv

1
t and sk, j = k ∑

k+ j
i=k a2

i σ2
i for j ≥

0. Let i be the imaginary unit, and for all the estimates below,

t is interpreted as a real number. We can show that

∆k,N ,|E exp{itΣk,N}− exp(−sk,Nt2/2)|

≤exp(−sk,Nt2/2)
N

∑
j=0

∣

∣

∣E exp{itΣk, j + sk, jt
2/2}

−E exp{itΣk, j−1 + sk, j−1t2/2}
∣

∣

∣
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for any N > k. Now we have
∣

∣

∣E exp{itΣk, j + sk, jt
2/2}−E exp{itΣk, j−1 + sk, j−1t2/2}

∣

∣

∣

≤exp{sk, jt
2/2}|E exp{ita jv

1
j

√
k}− exp{−t2ka2

jσ
2
j /2}|

,exp{sk, jt
2/2}Dk.

For random variable ξ , denote H(t,ξ ) = eitξ − 1 − itξ +

t2ξ 2/2. Let H
(1)
k = H(ta j

√
k,v1

j), H
(2)
k = exp{−t2ka2

jσ
2
j }−

1+ t2ka2
jσ

2
j /2. Denote σ -algebra F 1

i = F (v1
0, · · · ,v1

i ). Then

Dk = |EH
(1)
k −H

(2)
k − (t2ka2

j/2)E(E[|v1
j|2|F 1

j−1]−σ2
j )|

≤ E|H(1)
k |+ |H(2)

k |+(t2ka2
j/2)E

∣

∣E[|v1
j |2|F 1

j−1]−σ2
j

∣

∣ .

By the elementary inequality |H(t,ξ )| ≤ min{t2ξ 2, |tξ |3/6}
(see [6], pp. 292), we have

|H(1)
k | ≤ t2a2

jk|v1
j |21(|v1

j |>εk1/3) + t3a3
j |v1

j |3k3/21(|v1
j |≤εk1/3)

for any given ε > 0, and furthermore, |H(2)
k | ≤ t4k2a4

jσ
4
j . Let

cs = supk, j≥k(sk, j/2) < ∞. We have

∆k,N ≤ecst
2
{ k+N

∑
j=k

t2a2
jkE|v1

j |21(|v1
j |>εk1/3) (, ∆

(1)
k,N)

+
k+N

∑
j=k

t3a3
jk

3/2E|v1
j |31(|v1

j |≤εk1/3) (, ∆
(2)
k,N)

+
k+N

∑
j=k

t4k2a4
jσ

4
j (, ∆

(3)
k,N)

+
k+N

∑
j=k

(t2ka2
j/2)E

∣

∣E[v1
j |2|F 1

j−1]−σ2
j

∣

∣ (, ∆
(4)
k,N)

}

.

We have

∆
(1)
k,N ≤ sup

j

E|v1
j |21(|v1

j |>εk1/3)k
∞

∑
j=k

a2
j ≤C sup

j

E|v1
j |21(|v1

j |>εk1/3),

where C = supk≥1 k ∑∞
j=k a2

j < ∞, and

∆
(2)
k,N ≤t3k3/2+1/3ε

∞

∑
j=k

a3
jE|v1

j |21(|v1
j |≤εk1/3)

≤εt3k3/2+1/3(sup
j

E|v1
j |2)Ck−2 = εCt3k−1/6(sup

j

E|v1
j |2)

for all k ≥ 1, by the fact that for all k ≥ 1, ∑∞
j=k a3

j ≤Ck−2.

Similarly, ∆
(3)
k,N ≤Ct4k−1 for all k ≥ 1. Next,

∆
(4)
k,N ≤Ct2k

∞

∑
j=k

j−2E
∣

∣E[|v1
j |2|F 1

j−1]−σ2
j

∣

∣

where limk→∞ k ∑∞
j=k j−2E|E[|v1

j |2|F 1
j−1]−σ2

j | = 0 by (18)

and Lemma 11.

Now, we take N = k2, and it follows that given any

compact interval [T1,T2], we have

lim
k→∞

sup
t∈[T1 ,T2]

|E exp{itΣk,k2}− exp(−sk,k2 t2/2)| = 0.

On the other hand, we have limk→∞ sk,k2 = α−2σ̄2. Hence

lim
k→∞

sup
t∈[T1,T2]

|E exp{itΣk,k2}− exp(−α−2σ̄2t2/2)|= 0.

Recalling (B.8), this completes the proof.
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