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Abstract— A Lyapunov-based small-gain theorem is pre-
sented for hybrid systems modelled using a recently proposed
framework [9]. Lyapunov small-gain theorems for continuous-
time and discrete-time systems are special cases of our result.
Several examples including networked control systems and reset
systems are presented to illustrate our main result. Our results
are general and they apply to a range of other situations.

I. PRELIMINARIES

Small-gain theorems are ubiquitous in stability and robust-

ness analysis and design of general control systems and they

are indispensable in numerous problems, making them one of

the pillars of stability theory. Small-gain theorems involving

linear input-output gains are now regarded as classical and

a good account of these techniques and tools can be found

in [8]. In the nonlinear context, it was realized in [17] that

working with linear gains is too restrictive and a small-gain

result for monotone stability was proposed. Moreover, the

notion of input-to-state stability (ISS) proposed by Sontag

[21], [22] turned out to be very natural for formulating and

stating general small-gain theorems with nonlinear gains as

first illustrated in [12] for continuous-time systems. These

results were shown to be extremely useful in design of

general control systems and they have already become a part

of standard texts on nonlinear control [11].

Analytic construction of Lyapunov functions is of utmost

importance for nonlinear control systems because they pro-

vide a means to quantify robustness or redesign the con-

troller to improve robustness. Small-gain theorems provide

a unique opportunity for construction of Lyapunov functions

by using ISS Lyapunov functions of the subsystems in the

feedback loop with an appropriate small-gain condition. This

approach was first used for the special case of cascades1

of continuous-time systems [23] and the discrete-time sys-

tems [20]. Lyapunov-based small-gain theorem for general

feedback connections was first reported for continuous-time

systems [13] and then for discrete-time systems [15].

Recent progress in the area of hybrid control systems [9],

[5] has led to a new class of hybrid models that are proving

to be very general and natural from the point of view of

Lyapunov stability theory [3], [4]. An appropriate extension
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1Indeed, in this case one of the gains is zero and, hence, the small-gain
condition automatically holds.

of ISS Lyapunov functions for this class of hybrid systems

was reported in [2]. These hybrid models cover a range

of important classes of systems, such as networked control

systems [6] and reset systems [19].

This novel hybrid systems modelling framework requires

an appropriate generalization of Lyapunov small-gain the-

orems since the existing continuous-time and discrete-time

results do not apply directly. Motivation for obtaining such

results stems from their proven usefulness in the continuous-

time and discrete-time settings. Moreover, there is already

enough evidence that such results would be useful for various

classes of hybrid systems found in the literature. Indeed, it

was shown in [6] that an appropriate Lyapunov-based small-

gain proof can be used to prove stability of a large class

of networked control systems arising from an appropriate

emulation based controller design approach. A Lyapunov-

based small-gain theorem for a class of hybrid systems was

considered in [16].

It is a purpose of this paper to prove a general Lyapunov-

based small-gain theorem that is based on the modelling

framework of [9], [5]. This result generalizes some known

results, such as [16], and it allows us to deal with numer-

ous other important cases, some of which we present for

illustration.

The paper is organized as follows. In Section 2 we

present background and mathematical preliminaries. Section

3 contains the main result of the paper and several special

cases and examples that illustrate its utility. A summary is

given in the last section.

A. Preliminaries

For locally Lipschitz functions, we use the Clarke deriva-

tive, which is defined as follows:

V ◦(x; v) := lim
h→0+,

sup
y→x

V (y + hv) − V (y)

h
.

Consider f : R
n → R. Then, we can define the generalized

gradient of f at x:

∂f(x) := {ζ ∈ R
n : f◦(x; v) ≥ 〈ζ, v〉 ∀v ∈ R

n} .

For a continuously differentiable function f(·), the gener-

alized gradient ∂f(·) coincides with the classical notion of

the gradient, which we denote as ∇f(·). The following is a

direct consequence of [7, Propositions 2.1.2 and 2.3.12].

Proposition 1.1: Consider two continuously differentiable

functions f1 : R
n → R and f2 : R

n → R. Introduce three

sets A := {x : f1(x) > f2(x)}; B := {x : f1(x) < f2(x)};

Γ := {x : f1(x) = f2(x)}. Then, for any v ∈ R
n, the
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function f(x) := max{f1(x), f2(x)} satisfies

f◦(x; v) = 〈∇f1(x), v〉 ∀x ∈ A;

f◦(x; v) = 〈∇f2(x), v〉 ∀x ∈ B; (1)

f◦(x; v) = max{〈∇f1(x), v〉, 〈∇f2(x), v〉} ∀x ∈ Γ

�

The following lemma was proved in [13] and it will be used

in the proof of our main result:

Lemma 1.1: Let χ1, χ2 ∈ K∞ satisfy χ1 ◦ χ2(r) < r for

all r > 0. Then, there exists a K∞ function ρ such that

• χ1(r) < ρ(r) for all r > 0;

• χ2(r) < ρ−1(r) for all r > 0;

• ρ(r) is C1 on (0,∞) and dρ

dr
(r) > 0 for all r ∈ (0,∞).

�

Motivated by hybrid system models proposed in [9],

[5] we consider hybrid systems with inputs that take the

following form (see also [2]):

ẋ = f(x, u) (x, u) ∈ C (2)

x+ = g(x, u) (x, u) ∈ D , (3)

where x ∈ R
n, u ∈ U ⊂ R

m, C,D are sets closed

in R
n × U . Hence, any hybrid system is defined by a

tuple (U,C,D, f, g). The solutions of the hybrid system

are defined on so-called hybrid time domains. A set E ⊂
R≥0 × Z≥0 is called a compact hybrid time domain if

E = ∪J
j=0([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ · · · ≤ tJ . E is a hybrid time domain if for

all (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, . . . , J}) is a compact

hybrid time domain. A hybrid signal is a function defined

on a hybrid time domain. A hybrid input is a hybrid signal

such that u : dom u → U . A hybrid arc is a function φ
defined on a hybrid time domain dom φ, and such that φ(·, j)
is locally absolutely continuous for each j. A hybrid arc

φ : dom φ → R
n and a hybrid signal u : dom u → U is a

solution pair to the hybrid model (2), (3) if:

(S1) dom φ = dom u.

(S2) For all j ∈ Z≥0 and almost all t ∈ R≥0 such

that (t, j) ∈ dom φ we have: (φ(t, j), u(t, j)) ∈
C , φ̇(t, j) = f(φ(t, j), u(t, j)).

(S3) (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ we have

(φ(t, j), u(t, j)) ∈ D , φ(t, j+1) = g(φ(t, j), u(t, j)) .

Under general regularity conditions on (U,C,D, f, g) the

hybrid system possesses solutions that may be non-unique

(see [9]).

II. MAIN RESULT

Our main result is a Lyapunov small-gain theorem that

applies to classes of hybrid systems (2), (3) that can be

decomposed as a feedback connection of two hybrid systems.

In particular, we assume that the hybrid system (2), (3) can

be decomposed as follows:

ẋ1 = f1(x1, x2, u) (x, u) ∈ C (4)

ẋ2 = f2(x1, x2, u) (x, u) ∈ C (5)

x+

1 = g1(x1, x2, u) (x, u) ∈ D (6)

x+

2 = g2(x1, x2, u) (x, u) ∈ D , (7)

where x := (x1, x2), xi ∈ R
ni , u ∈ U ⊆ R

m, f := (f1, f2),
g := (g1, g2) and n := n1 + n2 (i.e. R

n = R
n1 × R

n2 ). We

regard the system (2), (3) as a feedback connection of two

hybrid subsystems with states x1 and x2.

The following assumption is crucial for our main result

and it is an appropriate generalization of assumptions typ-

ically used for continuous-time [13] and discrete-time [15]

Lyapunov-based small-gain theorems:

Assumption 2.1: For i = 1, 2 there exist continuously

differentiable functions Vi : R
ni → R≥0 such that the

following hold:

A1: There exist functions ψi1, ψi2 ∈ K∞ and hi : R
ni →

R
pi such that for all xi ∈ Xi

ψi1(|hi(xi)|) ≤ Vi(xi) ≤ ψi2(|hi(xi)|) , (8)

where Xi is the projection of the set C ∪D∪ (g(D,U)×U)
on the subspace R

ni .

A2: There exist functions χi, γi ∈ K∞, positive definite

functions αi and positive definite functions λi with λi(s) <
s, ∀s > 0 such that for all (x, u) ∈ C

V1(x1) ≥ max{χ1(V2(x2)), γ1(|u|)}

⇓

〈∇V1(x1), f1(x1, x2, u)〉 ≤ −α1(V1(x1)) , (9)

and for all (x, u) ∈ D

V1(g1(x1, x2, u)) ≤ max{λ1(V1(x1)), χ1(V2(x2)), γ1(|u|)}
(10)

Moreover, for all (x, u) ∈ C

V2(x2) ≥ max{χ2(V1(x1)), γ2(|u|)}

⇓

〈∇V2(x2), f2(x1, x2, u)〉 ≤ −α2(V2(x2)) , (11)

and for all (x, u) ∈ D

V2(g2(x1, x2, u)) ≤ max{λ2(V2(x2)), χ2(V1(x1)), γ2(|u|)}
(12)

A3: The following holds:

χ1 ◦ χ2(s) < s ∀s > 0 . (13)

�

We note that in (9) and (10) we use the same function χ1

(respectively χ2 is the same in (11) and (12)). There are

examples that show that it is not possible, in general, to

exploit different functions for χ1 in (9) and (10) (similarly,

for χ2 in (11) and (12) ). Such examples are omitted due to

space limitations. Moreover, note that we use different forms

of ISS Lyapunov conditions on the sets C and D because

this greatly simplifies the proofs.

Theorem 2.1: Suppose that Assumption 2.1 holds. Let

ρ ∈ K∞ be generated via Lemma 1.1 using χ1, χ2 from

Assumption 2.1. Let:

V (x) := max{V1(x1), ρ(V2(x2))} . (14)

Then, there exist a positive definite function α, ψ1, ψ2 ∈ K∞,

γ̃1, γ̃2 ∈ K and a positive definite function λ, with λ(s) <
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s, ∀s > 0, such that the following holds:

1) For all x ∈ X , where X is a projection of the set C ∪
D ∪ (g(D,U) × U) on R

n, we have:

ψ1(|(h1(x1), h2(x2))|) ≤ V (x) ≤ ψ2(|(h1(x1), h2(x2))|)
(15)

2) For all (x, u) ∈ C we have:

V (x) ≥ γ̃1(|u|) =⇒ V ◦(x; f(x, u)) ≤ −α(V (x)) (16)

3) For all (x, u) ∈ D we have:

V (g(x, u)) ≤ max{λ(V (x)), γ̃2(|u|)} . (17)

�

Proof of Theorem 2.1: Since ρ is generated using χ1, χ2

via Lemma 1.1, we have

χ1(r) < ρ(r) and χ2(r) < ρ−1(r) , ∀r > 0 . (18)

Denote q(r) := dρ

dr
(r) and let V be defined as in (14). The

proof of item 1) is straightforward and it is omitted.

We now establish item 2). The proof is almost identical to

the proof of Theorem 3.1 in [13] but it is reported for sake

of completeness. Let γ̃1(s) := max{ρ ◦ γ2(s), γ1(s)} and

α(s) := min{q ◦ ρ−1(s) · α2 ◦ ρ−1(s), α1(s)}. Suppose that

V (x) ≥ γ̃1(|u|). Now we introduce three sets and investigate

V ◦(x, f(x, u)) on each set.

A = {(x1, x2) ∈ C : V1(x1) < ρ(V2(x2))}

B = {(x1, x2) ∈ C : V1(x1) > ρ(V2(x2))}

Γ = {(x1, x2) ∈ C : V1(x1) = ρ(V2(x2))} .

Consider first x ∈ A. In this case V (x) = ρ(V2(x2)) and

we have that V1(x1) < ρ(V2(x2)) which implies V2(x2) >
χ2(V1(x1)) using (18). Hence, (11) holds and we can write

that whenever V (x) ≥ ρ ◦ γ2(|u|)

V ◦(x; f(x, u)) = q(V2(x2))〈∇V2(x2), f2(x1, x2, u)〉

≤ −q(V2(x2))α2(V2(x2))

= −q ◦ ρ−1(V (x)) · α2 ◦ ρ
−1(V (x)) .

Now, consider x ∈ B. Since V1(x1) > ρ(V2(x2)), we have

using (18) that V1(x1) > χ1(V2(x2)) and V (x) = V1(x1).
Hence, (9) holds and whenever V (x) ≥ γ1(|u|) we can write

V ◦(x; f(x, u)) = V ◦
1 (x1, f1(x1, x2, u)) ≤ −α1(V (x)) .

Finally, consider x ∈ Γ. Then, using Proposition 1.1, we

have that when V (x) ≥ max{ρ ◦ γ2(|u|), γ1(|u|)}, then

V ◦(x; f(x, u)) ≤ −min{q ◦ ρ−1(V (x)) · α2 ◦ ρ−1(V (x)),
α1(V (x))} = −α(V (x)) .

Hence, (16) holds.

We now show that item 3) holds. Let

λ(s) := max{λ1(s), ρ ◦λ2 ◦ ρ
−1(s), χ1 ◦ ρ

−1(s), ρ ◦χ2(s)};

γ̃2(s) := max{γ1(s), ρ ◦ γ2(s)} .

Note that λ(s) < s for all s > 0. Indeed, λ1(s) < s and

λ2(s) < s for all s > 0 by assumption. The latter implies

that ρ ◦ λ2 ◦ ρ
−1(s) < s for all s > 0. By construction of ρ

(see (18) ) we have that χ1 ◦ ρ−1(s) < s and ρ ◦ χ2(s) < s
for all s > 0, which shows that λ(s) < s for all s > 0.

Using the definition of V in (14) and (10), (12) we can

write for all x ∈ D, u ∈ U :

V (g(x, u)) = max{V1(g1(x1, x2, u)), ρ(V2(g2(x1, x2, u)))}
≤ max {λ1(V1(x1)), χ1(V2(x2)), γ1(|u|),
ρ ◦ λ2(V2(x2)), ρ ◦ χ2(V1(x1)), ρ ◦ γ2(|u|)}
= max

{

λ1(V1(x1)), χ1 ◦ ρ−1 ◦ ρ(V2(x2)), γ1(|u|),
ρ ◦ λ2 ◦ ρ−1 ◦ ρ(V2(x2)), ρ ◦ χ2(V1(x1)), ρ ◦ γ2(|u|)

}

≤ max{λ(V (x)), γ̃2(|u|)} .

Hence, (17) holds. �

Remark 2.1: Our construction covers pure continuous-

time systems (when D = ∅) and pure discrete-time systems

(when C = ∅). We note that we have not presented a

construction of a smooth Lyapunov function but this can be

achieved in the same manner as in [13] by using an appropri-

ate converse ISS Lyapunov theorem for hybrid systems that

was provided in [2]. We omit the details for space reasons.

�

Remark 2.2: Our condition (15) is more general than

those in [13], [15] since we consider ISS with respect to

general sets whereas in the cited references only ISS with

respect to the origin is considered (i.e. the references consider

only the case when hi(xi) = xi). While this generalization

is easily achieved if we revisit results in [13], [15], it is very

useful in the context of hybrid systems in situations when

additional “clock” variables need to be introduced in order

to constrain the hybrid time domain with the aim of ensuring

that all conditions of Assumption 2.1 hold. The use of clock

variables will be illustrated in the next section. �

III. SPECIAL CASES

The purpose of this section is to show that our main

result applies to various examples, such as reset systems and

networked control systems. However, for networked control

systems, the conclusion of Theorem 2.1 typically does not

hold without introducing extra clock variables that ensure

certain conditions, such as average dwell time or reverse

average dwell time [10]. With clock variables satisfying

appropriate dwell time conditions, it is often possible to

construct the functions Vi satisfying Assumption 2.1.

The list of examples that we present is not exhaustive

and our main result applies to many other cases that are not

presented for space reasons. Moreover, most proofs in this

section are omitted for space reasons.

A. A second order reset system

Consider a first order plant controlled by a first order reset

element (FORE) (for similar models of reset systems see

[19]):

x ∈ C =⇒

{

ẋ1 = λpx1 + bx2 =: f1(x1, x2)
ẋ2 = λrx2 + kx1 =: f2(x1, x2)

x ∈ D =⇒

{

x+

1 = x1

x+

2 = 0
, (19)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC08.1

3382



where x := (x1, x2); x1 and x2 are respectively (scalar) plant

and controller (FORE) states; C := {x : x1(x2 − ǫx1) ≤ 0};

D := {x : x1(x2 − ǫx1) ≥ 0}; ǫ, b, k > 0, λp, λr < 0 are

such that the following holds:

2k

|λr |
< ǫ <

|λp|

2b
(20)

Next we show that all conditions of Theorem 2.1 hold. First,

we let V1(x1) = x2
1 and V2(x2) = x2

2, which shows that

A1 of Assumption 2.1 holds with h1 = |x1| and h2 = |x2|.
Now we show that A2 holds. Hence, considering x ∈ C, we

obtain using b > 0 and the second inequality in (20):

〈∇V1(x1), f1(x1, x2)〉 = 2x1(λpx1 + bx2)

≤ λpx
2
1 + (λp + 2bǫ)x2

1

≤ λpV1(x1) , (21)

and since λp < 0, we conclude that (9) holds. In a similar

fashion, since k > 0 we have for all x ∈ C:

〈∇V2(x2), f2(x1, x2)〉 = 2x2(λrx2 + kx1)

≤ 2λrx
2
2 + 2kǫx2

1

which implies:

V2(x2) ≥
2kǫ

|λr |
V1(x1)

⇓ (22)

〈∇V2(x2), f2(x1, x2)〉 ≤ λrV2(x2) ,

and since λr < 0 we conclude that (11) holds.

Now we consider jump equations on the set D. Note that

x ∈ D implies that |x2| ≥ ǫ|x1|. Hence, we can write:

V1(x
+

1 ) = x2
1 ≤ ǫ−2x2

2

= max{0 · V1(x1), ǫ
−2V2(x2)} , (23)

and the system satisfies (10). Now consider V2:

V2(x
+

2 ) = 0 = max{0 · V2(x2), 0 · V1(x1)} , (24)

which shows that (12) holds and this completes the proof

of the condition A2 in Assumption 2.1 with the gains

κ1(s) = ǫ−2s and κ2(s) = 2kǫ
|λr|

s. Hence, the first inequality

in (20) guarantees that A3 holds. Therefore, all conditions

of Theorem 2.1 hold and the Lyapunov function construction

in the theorem applies in this case. We emphasize that the

reset system (19) may have the origin asymptotically stable

even when (20) is not satisfied (for example, see [19]).

The condition (20) facilitates establishing stability using the

small-gain analysis tool of this paper using the magnitude

squared for the individual Lyapunov functions.

B. An impulsive system

Suppose that a sequence of switching times ti are given

and an impulsive system is given by2:

ẋ(t) = f̃(x(t), µ(t), u(t)) t ∈ [ti, ti+1] (25)

µ(t+i ) = g̃(x(ti), µ(ti), u(ti)) . (26)

2We assume that u is continuous so that the second equation makes sense.

We use the notation µ(t+
i

) := limt→ti,t>ti
µ(t).

In many cases it is very natural to decompose the above

system into a feedback connection of the “continuous” x
subsystem and the “jump” µ subsystem (see [16]). Moreover,

sometimes it is natural to assume that the x subsystem is ISS

from the inputs (µ, u) to the state x and the µ subsystems

is ISS from the inputs (x, u) to the state µ. More precisely,

we assume:

Assumption 3.1: There exist continuously differentiable

functions W1,W2 such that:

B1 There exist c > 0, K∞ functions ψ1,i, i = 1, 2, κ1 and

γ1 such that for all x, µ, u we have:

ψ11(|x|) ≤W1(x) ≤ ψ12(|x|) (27)

W1(x) ≥ max{κ1(W2(µ)), γ1(|u|)}

⇓ (28)

〈∇W1(x), f̃ (x, µ, u)〉 ≤ −cW1(x)

B2: There exist d > 0, K∞ functions ψ2,i, i = 1, 2, κ2 and

γ2 such that for all x, µ, u we have:

ψ21(|µ|) ≤W2(µ) ≤ ψ22(|µ|) (29)

W2(g̃(x, µ, u)) ≤ max{e−dW2(µ), κ2(W1(x)), γ2(|u|)}(30)

B3: There exists σ > 0 such that:

eσκ1(e
σκ2(s)) < s, ∀s > 0 . (31)

�

While B1 and B2 are very related to conditions A1 and A2

in Assumption 2.1, it is not hard to see that the conclusion of

Theorem 2.1 can not hold under Assumption 3.1. However,

we will show next that if all of the above conditions hold

and the sequence of times satisfies

ǫ ≤ ti+1 − ti ≤ ǫ (32)

for any fixed ǫ > 0 and some ǫ ∈ (0, ǫ] then Assumption 3.1

implies that functions Vi, depending on (x, µ) and the clock

state that is introduced below, can be constructed to satisfy

Assumption 2.1. Thus, Theorem 2.1 applies. To introduce

appropriate “clock” variables, let us consider the following

hybrid system:

τ̇ = 1 τ ∈ [0, ǫ] (33)

τ+ = 0 τ ∈ [ǫ, ǫ] .

Then, it is easy to show that the hybrid time domain E :=
dom τ for any solution of the above hybrid system must

satisfy (32) which implies the following:

j − i ≤ ǫ−1(t− s) + 1 ∀(t, j), (s, i) ∈ E

with t+ j > s+ i (34)

t− s ≤ ǫ(j − i) + ǫ ∀(t, j), (s, i) ∈ E

with t+ j > s+ i . (35)

Note that the hybrid domain E is different for different

solutions τ(t, j) and, actually, any sequence ti satisfying (32)

corresponds to the hybrid time domain for some solution

τ(t, j) of (33).
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In the sequel, we imbed the impulsive system (25), (26)

into an appropriate hybrid system which models a family of

all impulsive systems (25), (26) with sequences ti satisfying

(32). In order to be consistent with our small-gain setting, we

introduce two clock variables τ1, τ2 and rewrite the impulsive

system (25), (26) as the following hybrid system:

ẋ = f̃(x, µ, u)
τ̇1 = 1
µ̇ = 0
τ̇2 = 1















τ1 = τ2
τ1 ∈ [0, ǫ]

(36)

x+ = x
τ+

1 = 0
µ+ = g̃(x, µ, u)
τ+

2 = 0















τ1 = τ2
τ1 ∈ [ǫ, ǫ]

. (37)

In this case, we need to consider C := {(x, τ1, µ, τ2) :
τ1 ∈ [0, ǫ], τ1 = τ2} and D := {(x, τ1, µ, τ2) : τ1 ∈
[ǫ, ǫ], τ1 = τ2}. It is not hard to see that the clock variables

τ1, τ2 guarantee that the jumps can only occur at times ti
that satisfy (32). Moreover, we decompose the above system

into two subsystems with states (x, τ1) and (µ, τ2) and we

show next that Assumption 2.1 holds for the system (36),

(37) under appropriate conditions.

Theorem 3.1: Suppose that Assumption 3.1 holds. Then,

Assumption 2.1 holds for the system (36), (37) with x1 :=
(x, τ1) and x2 := (µ, τ2), h1(x1) := x, h2(x2) := µ, C :=
{(x, τ1) : τ1 ≤ ǫ}, D := {(µ, τ2) : τ2 ∈ [ǫ, ǫ]} and

V1(x1) := eL1τ1W1(x) (38)

V2(x2) := e−L2τ2W2(µ) , (39)

where L1 ∈ (0,min{c, σ/ǫ}) and L2 ∈ (0,min{d/ǫ, σ/ǫ}).
�

The condition (32) can be relaxed and the same result

proved by modifying the clock variables that are used in

the hybrid model. In particular, instead of (32) one can use

the notions of average and reverse average dwell times (see

[10], [4]) and the following result on hybrid time domains

for clock variables is useful in such cases:

Proposition 3.2: Let δ1, δ2 ∈ R≥0, λ ∈ R>0 and N ∈
Z>0. A hybrid time domain E satisfies

j − i ≤ δ1(t− s) +N ∀(t, j), (s, i) ∈ E with

t+ j > s+ i (40)

t− s ≤ δ2(j − i) + λ ∀(t, j), (s, i) ∈ E with

t+ j > s+ i (41)

if and only if E = dom (τ1, τ2) for some solution (τ1, τ2)
to the hybrid system

for (τ1, τ2) ∈ C

{

τ̇1 ∈ [0, δ1]
τ̇2 = 1

(42)

for (τ1, τ2) ∈ D

{

τ+

1 ∈ τ1 − 1
τ+

2 = max{0, τ2 − δ2}
. (43)

where C := [0, N ] × [0, λ] and D := [1, N ] × [0, λ]. �

The above result shows that a sequence of times ti satisfying

average and reverse average dwell time conditions can be

reproduced by using the clock variables (τ1, τ2) whose

hybrid model is given in Proposition 3.2. It is not hard to

show that Theorem 3.1 can be modified to include the clock

variables given in Proposition 3.2 but this is omitted for space

reasons. Note also that (34), (35) are special cases of (40),

(41) if we take N = 1, δ2 = λ = ǫ, δ1 = ǫ−1.

C. Networked control systems

Motivated by results in [20], [6] we consider a class of

networked control systems that are modelled as the following

hybrid system:

ẋ = f̃1(x, e, w)
τ̇1 = 1

ė = f̃2(x, e, w)
τ̇2 = 1
ṡ = 0























τ1 = τ2
τ1 ∈ [0, ǫ]

(44)

x+ = x
τ+

1 = 0
e+ = h(s, e)
τ+

2 = 0
s+ = s+ 1























τ1 = τ2
τ1 ∈ [ǫ, ǫ] .

(45)

The above system can be obtained by following an

emulation-like procedure and the variable x represents the

combined states of the plant and the controller, whereas the

variable e represents an error that captures the mismatch

between the networked and actual values of the inputs and

outputs that are sent over the network. Variables τ1, τ2
represent clocks and s can be thought of as the variable

that counts the number of transmissions. It was shown in

[20] that the jump equation for e is solely described by the

network protocol. A construction similar to the one we will

present below was given in [6] but we show how our general

result (Theorem 2.1) applies in this case. In particular, we

use the following:

Assumption 3.2: There exist continuously differentiable

functions W1,W2 such that:

C1 There exist γw, c > 0, K∞ functions ψ1,i, i = 1, 2 and

γ1 such that for all x, e, s, w we have:

ψ11(|x|) ≤W1(x) ≤ ψ12(|x|) (46)

W1(x) ≥ max{γwW2(s, e), γ1(|w|)}

⇓ (47)

〈∇W1(x), f̃1(x, e, w)〉 ≤ −cW1(x)

C2: There exist L, d > 0, K∞ functions ψ2,i, i = 1, 2 and

γ2 such that for all x, e, s, w we have:

ψ21(|e|) ≤W2(s, e) ≤ ψ22(|e|) (48)

W2(s+ 1, h(s, e)) ≤ e−dW2(s, e) (49)

and

〈∇W2(e), f̃2(x, e, w)〉 ≤ L(W2(s, e) +W1(x)) (50)

+γ2(|w|) .
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C3: ǫ > 0 is such that:

ǫ < min

{

d

L2

,
1

L1 + L2

ln

(

L2 − L

γw4L

)}

, (51)

where 0 < L1 < c and L2 > L. �

The condition (49) characterizes the so called uniformly

globally exponentially stable protocols that were introduced

in [20]. We only consider ISS with linear gain in (47) in

order to state an explicit condition on ǫ in terms of γw and

other variables in (51). The main result of this subsection is

stated next:

Theorem 3.3: Suppose that Assumption 3.2 holds for the

system (44), (45). Then, Assumption 2.1 holds for the system

(44), (45) with x1 := (x, τ1) and x2 := (e, s, τ2), h1(x1) :=
x, h2(x2) := e, C := {(x, τ1) : τ1 ≤ ǫ}, D := {(e, s, τ2) :
τ2 ∈ [ǫ, ǫ]} and

V1(x1) := eL1τ1W1(x) (52)

V2(x2) := e−L2τ2W2(s, e) . (53)

�

IV. CONCLUSIONS

We have presented a general Lyapunov small-gain theorem

for a large class of hybrid systems. Continuous-time and

discrete-time results are obtained as special cases of our

main result. We applied our result to several examples to

illustrate its generality and usefulness and we showed how in-

troduction of certain “clock” variables aids our constructions.

A result on hybrid domains for a class of hybrid systems

that ensure appropriate average and reverse average dwell

time conditions was presented and it may be of independent

interest. Numerous other situations can be covered with our

results and some these will be addressed in the journal

version of this paper.
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