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Abstract— This paper addresses planning of continuous paths
for mobile sensors to improve long-term forecast performance.
With the information gain defined by the mutual information
between the continuous measurement path and the future verifi-
cation variables, two expressions for computing the information
gain for a linear time-varying system are derived: the filter form
and the smoother form. The smoother form, inspired by the
conditional independence structure, is shown to be preferable,
since it does not require integration of differential equations
for long time intervals, it simplifies the process of calculating
the accumulated information on the fly, and its time derivative
extracts out the pure impact of sensing regardless of the process
noise. Utilizing the spatial interpolation technique to relate the
sensor movement to the evolution of the observation matrix, the
optimal path planning formulation and the real-time steering
law are presented. A numerical example of a simplified weather
forecast validates the proposed methodology.

I. INTRODUCTION

Motion planning of robotic sensors to gather information

has been recently spotlighted in the context of tracking mov-

ing targets [1]–[4]. The mutual information has often been

employed as the information metric, because it represents the

uncertainty reduction of the quantity of interest by sensor

measurements. [1] presented sensor coordination based on

maximization of the average mutual information between the

measurement and the target state, while [2] suggested a parti-

cle filter-based distributed control method, which optimizes

the mutual information between the measurement and the

instantaneous state.

This work considers motion planning of sensors that mea-

sure the environmental field variables (e.g. UAVs equipped

with pressure and temperature sensors) with the information

metric of mutual information between the measurement and

a subset of the future state. This motion planning is related

to the previous works on path planning for target tracking,

as it shares the idea of representation of vehicle motion as

changes in the observation function. However, there are two

noticeable aspects in this work: first, fully continuous aspects

of the vehicle motion in both time and space manner are

considered, and second, the interest is in long-term forecast

for a specified verification variables rather than tracking of

the target state within short-term planning window.

The spatially continuous feature of the vehicle path can

be addressed by using spatial interpolation techniques such

as Kriging [5] and Gaussian Processes Regression [6] that

predict a value of the quantity of interest at arbitrary points

in continuous space as a function of values at a finite

number of grid points. Using this technique, this work relates
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measurement action in a continuous spatial domain to an ob-

servation function, which is similar to previous path planning

literature. However, the temporally continuous aspects of the

measurement paths and their relation to future forecasts have

not been extensively studied in the path planning context.

[7] addressed continuous path planning based on some type

of information rate, but it did not explicitly quantify the

mutual information. This paper presents an explicit way of

computing the mutual information between the continuous

measurement path and the future verification variables.

In the context of information theory, there has been

a long history of research about the mutual information

between the signal and observation in a continuous-time

domain. Duncan [8] showed that the mutual information

between the signal history and observation history (i.e.

signal during [0, t] and observation during [0, t]) is expressed

as a function of estimation error for a Gaussian signal

through an additive Gaussian channel. Similar quantification

is performed for non-Gaussian signal [9,10] and fractional

Gaussian channel [11]. On the other hand, [12] showed that

the optimal filter for a linear system that maximizes the

mutual information between the observation history for [0, t]
and the state value at t is Kalman-Bucy filter; [13] related

this mutual information to the Fisher information matrix.

Recently, Mitter and Newton [14] presented an expression

for the mutual information between the signal path during

[s, t], s < t and the observation history, with statistical

mechanical interpretation of this expression. Newton [15,16]

extended his previous results by quantifying the mutual

information between the future signal path during [t, T ], t ≤
T and the past measurement history during [0, t] for linear

time-varying [15] and nonlinear [16] systems. However, it

should be noted that all these previous quantifications have

been about the state and observation. In contrast, this work

deals with the mutual information between the values of a

subset of the state at T and the observation history during

[0, t] when T > t.
Regarding the quantification of the mutual information,

this work first presents the filter form, which is a simple

extension of the previous work [12]–[14], by treating the

forecast problem as a filtering problem with longer time

window. However, it then shows that this form might not

be suitable for motion planning for a long-term forecast in

three senses: sensitivity to the model accuracy, computational

cost, and the lack of on-the-fly knowledge of the accumulated

information. Alternatively, the smoother form is suggested,

which regards forecasting as fixed-interval smoothing. The

equivalence of the smoother form to the filter form is proved

based on the conditional independence of the measurement
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Fig. 1. Continuous motion planning of a sensor for best information
forecast: a mobile sensor senses some environmental variable shown in
contour along the path designed to achieve best forecast for the verification
region.

history and the future verification variables for a given

present state value. Using the covariance equations for a two-

filter type smoothing in [17], this work derives the expression

for the mutual information in the forecast problem involving

matrix differential equations that are only integrated over the

planning time window. These features resolve all of the key

problems identified with the filter formulation.

This work presents a general methodology of continuous

motion planning for forecast problems by combining the

smoother form quantification of the information associated

with a temporally continuous measurement history, and the

spatial interpolation-based representation of spatially contin-

uous measurement. In addition to an optimal path planning

formulation that maximizes the mutual information, a real-

time steering law based on the extension of the information

potential field [7] is presented. A numerical example with a

linearized Lorenz-2003 chaos system validates the suggested

methodological framework.

II. PROBLEM DESCRIPTION

This paper addresses continuous motion planning for mo-

bile sensors to improve forecast over the specified region. In

Fig. 1, a mobile sensor continuously takes measurements of

environmental field variables along a continuous path during

the time interval [0, τ ], while the quantity of interest is the

forecast performance over the verification region, which is a

sub-region of the entire world, at the verification time T . The

objective of the motion planning in this work is to design a

path for the sensor (or paths for the multiple sensors) that

leads to the largest uncertainty reduction in the forecast,

which is represented by the notion of mutual information.

The weather forecasting is a motivating application of this

planning decision, the goal being design of an adaptive

sensor network that supplements fixed observation networks

for the sake of improvement of the forecast for a specific

region [18]–[21].

There are two main aspects in this problem: 1) quantifi-

cation of the information gain associated with a continuous

(in both the temporal and spatial sense) measurement, and

2) path planning techniques that provide optimal (or good

suboptimal) solutions. This paper will define the information

gain for temporally continuous measurement and will sug-

gest formula for effective quantification of the information

gain. Then, a finite dimensional representation of a spatially

continuous path will be provided. This paper will formulate

an optimal motion planning problem and also present a real-

time motion planning law.

III. INFORMATION BY CONTINUOUS MEASUREMENT

Consider an environmental dynamics of state variables

Xt ∈ R
n that is described by the following linear time-

varying system:

Ẋt = A(t)Xt + Wt (1)

where Wt ∈ R
n is a zero-mean Gaussian noise with

E[WtW
′
s] = ΣW δ(t − s), ΣW � 0, which is independent

of Xt. The prime sign ′ denotes the transpose of a matrix.

The initial condition of the state, X0 is normally distributed

as X0 ∼ N (µ0, P0), P0 ≻ 0. This work considers a linear

measurement model for Zt ∈ R
m with additive Gaussian

noise:

Zt = C(t)Xt + Nt (2)

where Nt ∈ R
m is zero-mean Gaussian with E[NtN

′
s] =

ΣNδ(t − s), ΣN ≻ 0, which is independent of Xt and

Ws, ∀s. A linear sensing model can be a good representation

of observation of environmental variables distributed in field,

such as temperature and pressure.

With this environmental system model, this work is inter-

ested in determining the impact of a measurement history

in the past on the uncertainty reduction of some verification

variables in the future. A measurement history up to time t
is defined as

Zt = {Zs : s ∈ [0, t]}. (3)

The verification variables are a subset of the state variables

that can be expressed as

Vt = MV Xt ∈ R
p (4)

where MV ∈ {0, 1}p×n, p < n with every row-sum of MV

being unity. Although this work is specifically interested in

the case entries of MV are zero or one, the results can be

easily extended to a general MV ∈ R
p×n.

Employing entropy as a metric of uncertainty, the uncer-

tainty reduction of a random quantity by another random

quantity is expressed as the mutual information between

them. The information gain by a measurement path, in this

work, is defined as follows:

JV (T, τ) , I(VT ;Zτ ), 0 ≤ τ < T, (5)

which is the mutual information between VT and Zτ . This

represents the entropy reduction of verification variables in

the future time T by the measurement history up to time τ ,

and also the entropy reduction of Zτ by VT .

A. Filter Form

For linear Gaussian systems, there are known expressions

for the mutual information between the state variables at a

given time and the measurement history up to that time [12]–

[14]. Therefore, one way to compute the information gain is

to consider a filtering problem that estimates XT based on

the measurement history up to time T denoted as ZT ,
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Zτ ∪∅[τ,T ] where ∅[τ,T ] means that no measurement is taken

during [τ, T ]. Then, I(XT ;ZT ) = I(XT ;Zτ ), because no

information is gathered by an empty measurement. This

procedure of obtaining I(XT ;Zτ ) can be extended when

our interest is in I(VT ;Zτ ), as outlined in the following

proposition:

Proposition 1 (Filter Form) For the linear system described

in this paper, the information gain can be computed as

J F
V (T, τ) , I(VT ;Zτ , ∅[τ,T ]) (6)

= 1
2 ldet(MV PX(T )M ′

V ) − 1
2 ldet(MV QX(T )M ′

V ) (7)

where ldet(·) stands for log det(·) of a symmetric positive

definite matrix, and the superscript ‘F ’ stands for the filter

form. PX(T ) and QX(T ) are obtained by integrating the

following matrix differential equations:

ṖX(t) = A(t)PX(t) + PX(t)A′(t) + ΣW (8)

Q̇X(t) = A(t)QX(t) + QX(t)A′(t)

+ ΣW − I[0,τ ](t)QX(t)C(t)′Σ−1
N C(t)QX(t) (9)

with initial conditions PX(0) = QX(0) = P0 ≻ 0, and

I[0,τ ](t) : R+ 7→ {0, 1} is the indicator function that is unity

for t ∈ [0, τ ] and zero elsewhere. The above equations are

well-defined for finite T with P0 ≻ 0.

Proof: The key ideas of the proof are that I(VT ;Zτ ) =
I(VT ; V̂T ) where V̂T is the Bayesian estimate of VT given

Zτ , and that the remaining uncertainty of VT given V̂T is the

estimation error VT − V̂T whose covariance can be obtained

from (9). See Proposition 3 in [22, Chapter 5] for details.

The filter form provides a simple expression for the

information gain for the future verification variables by a

continuous past measurement history, which is described in

terms of the solution of a Lyapunov equation and a Riccati

equation. However, this form of computation involves the

following issues, particularly, in case the forecast horizon is

much longer than the planning horizon, i.e. T ≫ τ :

Remark 1 (Issues in filter form)

(a) In many engineering problems, a linear model is used for

the representation of the short time-scale dynamic behavior

of a nonlinear system. Thus, the filter form of the information

gain is valid in case the quality of the linear model is

guaranteed for the time horizon [0, T ]. If T is large, this

might not be true.

(b) The computational complexity of numerical integration is

linear in the integration time interval; thus, the computation

time for computing J F
V (T, τ) linearly increases with respect

to T . This is not a problem when one is interested in compu-

tation of the information gain for few measurement histories.

However, if the goal is to design an optimal measurement

path, and the computation of information gains for many

different candidate measurement histories is needed, long

integration can cause computational inefficiency.

(c) The on-the-fly knowledge about the information achieved

by the measurement taken thus far can be useful for real-

time path planning decision. However, in the filter form

expression, this information requires significant amount of

further computation. For instance, in order to compute the

information attained by measurement history Zσ, σ < τ at

time σ, further integration of QX(t) over [σ, T ] should be

conducted.

B. Smoother Form

This section will propose a smoother form for the quan-

tification of the information gain, which resolves all the

issues in the filter form listed in Remark 1. It can be shown

that the differential equations for the smoother form are

essentially integrated for the planning time horizon, and that

the information attained by the measurement thus far can be

immediately computed without significant computation. This

section first suggests an alternative expression of the mutual

information that applies to any nonlinear non-gaussian cases:

Proposition 2 If state dynamics satisfy the Markov property,

i.e. a future state is conditionally independent of a past

state given the present state, and the measurement noise is

independent of future process noise, then

I(VT ;Zτ ) = I(Xτ ;Zτ ) − I(Xτ ;Zτ |VT ). (10)

In other words, I(VT ;Zτ ) can be interpreted as the differ-

ence between the information about Xτ contained in Zτ ,

before and after VT is revealed.

Proof: The key proof idea is I(VT ;Zτ |Xτ ) = 0, since VT

and Zτ are conditionally independent each other given Xτ .

See Proposition 4 in [22, Chapter 5] for details.

For linear systems with Gaussian noise described by

(1) and (2), the mutual information between Xτ and Zτ

can be easily computed by using a known expression in

the literature [12]–[14]. The conditional mutual information

I(Xτ ;Zτ |VT ) can be quantified by posing a fixed-interval

smoothing problem that incorporates the continuous mea-

surement history Zτ and the discrete noise-free measurement

of verification variables at time T :

Proposition 3 (Smoother Form) If P0|V , Cov(X0|VT ) ≻
0 is available, the information gain JV (T, τ) can be com-

puted as

J S
V (T, τ) , I(Xτ ;Zτ ) − I(Xτ ;Zτ |VT ) (11)

= J0(τ) − 1
2 ldet(I + QX(τ)∆S(τ)) (12)

where J0 , 1
2 ldetSX|V − 1

2 ldetSX , ∆S , SX|V −SX , and

SX , SX|V , and QX are determined by the following matrix

differential equations:

ṠX = −SXA − A′SX − SXΣW SX (13)

ṠX|V = −SX|V (A + ΣW SX) − (A + ΣW SX)′SX|V

+ SX|V ΣW SX|V (14)

Q̇X = AQX + QXA′ + ΣW − QXC ′Σ−1
N CQX (15)

with initial conditions SX(0) = P−1
0 , SX|V (0) = P−1

0|V ,

and QX(0) = P0. The superscript ‘S’ denotes the smoother

form, and the time argument is omitted as no confusion is
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expected.

Proof: The sketchy proof is as follows. For a linear Gaussian

setting, (10) is stated as

I(VT ;Zτ ) =1
2 [−ldet SX(τ) − ldet QX(τ)]

− 1
2

[
−ldet SX|V (τ) − ldet QX|V (τ)

]

where SX(τ),Cov(Xτ |Zτ )−1, SX|V (τ),Cov(Xτ |VT )−1,

QX(τ),Cov(Xτ |Zτ ), and QX|V (τ),Cov(Xτ |Zτ , VT ). It

was shown in [17] that Q−1
X|T = Q−1

X +SX|V −SX ; therefore,

ldetQX − ldetQX|T = ldet(I + QX∆S). See Proposition 5

in [22, Chapter 5] for details.

For the linear setting as in this work, P0|V can be

computed by the covariance update formula:

P0|V = P0−P0Φ
′
(T,0)M

′
V [MV PX(T )M ′

V ]
−1

MV Φ(T,0)P0.

where Φ(T,0) is the state transition matrix from time 0 to

T . Note that the inverse on the right-hand side exists for

finite T with P0 ≻ 0. A fixed-point smoothing using state

augmentation can be easily applied for finding P0|V . In case

the linear system is used to approximate short-term behavior

of a nonlinear system whose long-term behavior is tracked

by some nonlinear estimation scheme, P0|V information

can be provided by this nonlinear estimator. For instance,

in the ensemble-based estimation framework, the ensemble

augmentation technique presented by the authors [21] can

be used for this purpose.

Remark 2 (Resolution of Issues in Filter Form) Note that

given P0|V , every differential equation for the smoother form

is integrated forward up to time τ . The only part for which

a long integration might be involved in is the calculation of

the conditional initial covariance P0|V , which is performed

only once before incorporating the measurement history.

(a) Regarding the model validity issue in Remark 1, if P0|V

is provided from a nonlinear estimation scheme, the time

interval over which the validity of the linear model needs

to be guaranteed is [0, τ ], as the long-term nonlinear feature

of dynamics is incorporated in P0|V . Even when there is

no such nonlinear estimator, the smoother form allows for

pinpointing the possible effect of the limited model validity

to the sole term P0|V , which enables separate analysis of

improving the quality of this term.

(b) As to computational complexity, only one quantity,

QX(τ) is dependent on the measurement history. Thus, if

one needs to evaluate the information gains for different

measurement histories, then one can simply integrate the

Ricatti equation to get QX(τ), while J0 and ∆S have been

computed in advance.

(c) For the smoother form, the information gain accom-

plished by a partial measurement history Zσ, σ < τ is

straightforwardly computed as J S
V (T, σ), the same expres-

sion as (12) with the matrix values evaluated for time σ.

Since all the matrix differential equations are integrated

forward, J S
V (T, σ) is available in real time without further

computation. The on-the-fly information will be discussed in

detail in section III-C with the notion of mutual information

rate.

Conventional path planning problems [7] aim for reducing

the uncertainty in the state estimate at the end of the

planning window: i.e. min ldet QX(τ). Recalling that the

forecast problem written in the smoother form considers

min ldet(I + QX(τ)∆S(τ)), the smoother form objective

function can be regarded as some weighted version of the

conventional objective function. Depending on ∆S(τ), the

solutions of the two problems can be very different; however,

a planning algorithm for the conventional decision can be

easily extended to the forecast problem, since the smoother

enables projection of the decision space from a long forecast

horizon [0, T ] on to a short planning horizon [0, τ ].

C. Mutual Information Rate and On-The-Fly Information

This section analyzes time derivative of the mutual in-

formation and the on-the-fly accumulated information to

identify important features of the smoother form expression

in terms of information supply and dissipation.

While computing the filter form mutual information

J F
V (T, τ), the following two quantities are available on the

fly at time t < τ : the mutual information between the

current state and the measurement thus far, I(Xt;Zt), and

its projection on to the verification variables, I(Vt;Zt). The

time derivative of the former can be written as

d
dt
I(Xt;Zt)

= 1
2tr

{
Σ−1

N CQXC ′
}
− 1

2tr
{
ΣW (Q−1

X −P−1
X )

}
. (16)

The first term depending on the observation represents the

information supply and the second term depending on the

process noise represents the information dissipation [14].

Similarly, the rate of I(Vt;Zt) can be expressed as

d
dt
I(Vt;Zt)

= 1
2tr

{
Σ−1

N CQXM ′
V (MV QXMV )−1MV QXC ′

}
+ β(t),

with some β(t) that has no explicit dependency on C. It

should be pointed out the sign of β(t) is indefinite; I(Vt;Zt)
can increase without measurement and can decrease with

measurement.

Proposition 4 The time derivative of the smoother form

information gain at t, J S
V (T, t) , J0(t) − 1

2 ldet(I +
QX(t)∆S(t)), is written as:

d
dt
J S

V (T, t) = 1
2tr

{
Σ−1

N C(t)Π(t)C(t)′
}
≥ 0 (17)

where Π , QX(SX|V − SX)[I + QX(SX|V − SX)]−1QX .
Since all the correlation through the process noise has already

been captured in SX|V , the mutual information rate is non-

negative regardless of the process noise. If one stops taking

measurement at time t, the information reward stays constant.

Thus, the mutual information rate for the smoother form

can figure out the pure impact of sensing on the entropy

reduction of the verification variables, while the rates for the

filter forms depend on the process noise.
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Proof: The expression in (17) can be derived using
d
dt

ldetM1 = tr{M−1
1

d
dt

M1} for M1 ≻ 0, and the cyclic

property of trace. Utilizing the matrix inversion lemma [23],

Π = QX∆SQX − QX∆S(Q−1
X + ∆S)−1∆SQX = Π′.

By the Wigner’s theorem [24], Π � 0; this leads to

tr{Σ−1
N CΠC ′} ≥ 0. See Proposition 6 in [22, Chapter 5]

for details.

Remark 3 (Information Rate for Multiple Sensors) In case

there are ms sensors constituting the overall observation

matrix C =
[
C ′

1 . . . C ′
ms

]′
, the mutual information rate

can be written as

d
dt
J S

V (T, t) = 1
2

∑ms

i=1tr
{
Σ−1

Ni
Ci(xi, yi)Π(t)Ci(xi, yi)

′
}

where (x,y) represents the positions of the all the sensors,

and ΣNi
is the (i, i)-th entry of ΣN . In other words, the total

rate of change of mutual information is the sum of rate of

change of the mutual information of individual sensors.

Example 1 Fig. 2 compares the histories of the three on-the-

fly quantities: J S
V (T, t) from the smoother form, I(Xt;Zt)

and I(Vt;Zt) from the filter form. The following system

matrices are used with τ = 2 and T = 5:

A =

[
0.1 1
−1 −0.5

]
, ΣW =

[
0.01 0
0 0.01

]
, P0 =

[
1 0.5

0.5 1

]

C =
[
0.5 0.5

]
, ΣN = 0.01, MV =

[
0 1

]
.

Notice that J S
V (T, t) at t = τ is the same as I(Vt;Zt) at

t = T , which confirms the equivalence of the filter form and

the smoother form. For J S
V (T, t), it is found that information

increases in the presence of measurement and stays constant

in the absence of measurement. In the history of I(Xt;Zt),
the information supply over [0, τ ] increases the information

while the information dissipation over [τ, T ] decreases the

information. The history of I(Vt;Zt) is fluctuating; it can

decrease with measurement and can increase without mea-

surement, because information can be supplied/dissipated

from/to the other state variables Xt \ Vt via dynamics.

In consequence, the filter form quantities, I(Xt;Zt) and

I(Vt;Zt), cannot be a good indicator of the accumulated

information I(VT ;Zt); only the smoother form quantity

J S
V (T, t) represents the accumulated information.

IV. PATH REPRESENTATION

The previous section suggests a formula to quantify the

information gain for a continuous measurement history in

a finite-dimensional linear system framework. This section

shows how to relate the motion of a sensor in continuous

space to a measurement history in the time domain, starting

with the spatial interpolation method. This method describes

the continuous field of the environmental variables in terms

of a finite number of variables associated with the specified

grid points. This work assumes that the environmental vari-

ables at location r can be represented as a linear combination

of those at a finite number, nG, of grid points ri’s:

ξt(r) =
∑nG

i=1λi(r, ri)ξt(ri) (18)
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Fig. 2. On-the-fly information by a partial measurement path Zt

where ξt(·) ∈ R
nE represents the environmental variables

associated with given location at time t, and the coefficient λi

is determined as a function of the location vectors r and ri.

This paper considers time-invariant λi, although the results

can be easily extended to time-varying cases. Many spatial

interpolation techniques such as Kriging [5] and Gaussian

processes regression (GPR) [6] provide expressions of the

form in (18). In determining the coefficients for the linear

combination, this paper specifically considers the zero-mean

GPR method, which is equivalent to Simple Kriging, with

squared exponential covariance function. The coefficients

λi(r, ri) are expressed as λi(r, ri) =
∑nG

j=1αijρ(r, rj)
where ρ(r, rj) is defined as

ρ(r, rj) , exp
[
− 1

2 (x − xj)
2/l2x − 1

2 (y − yj)
2/l2y

]

in the two-dimensional space, and αij is the (i, j)-th ele-

ment of the matrix [ρ(ri, rj)]
−1. The parameters lx and ly

represent the correlation length scales in each direction. For

an isotropic environment, lx = ly can be assumed, but for

the atmospheric application considered in section VI, it is

more reasonable to consider different length scales in each

direction because the zonal and meridional variations of the

weather are very different.

Under the assumption in (18), the environmental dynamics

over the whole continuous space can be fully described by

the dynamics of the finite number of variables at grid points.

The state vector Xt ∈ R
n, n = nG × nE is defined as

Xt = [ξt(ri)
′ · · · ξt(rnG

)′]
′
, and this work considers linear

dynamics for Xt as in (1).

Consider a sensor located at r at time t that receives

measurement of ξt(r). Since ξt(r) is a linear combination

of ξt(ri)’s, the observation equation for this sensor can be

expressed as Zt = C(t)Xt + Nt where C(t) ∈ R
nE×n is

C(t) = [λ1(r, r1)InE
· · · λnG

(r, rnG
)InE

] . (19)

For notational convenience, a single-sensor case will be

considered in the later part of this paper on; extension to

multiple sensors is straightforward.

If a sensor is continuously moving, its motion is fully

described by the time history of the location vector r(t).
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Thus, the effect of the sensor’s motion on the estimation

system is through the evolution of the observation matrix

C(t) due to changes in λi(r, ri)’s in time. Consider a sensor

moving along a specified path pτ = {r(t) : t ∈ [0, τ ]} where

r(t) is known for all t ∈ [0, τ ]. Then, the evolution of

observation matrix Cτ = {C(t) : t ∈ [0, τ ]} can be derived

by relating C(t) and r(t). Then, the information gain as-

sociated with this path, denoted as JV (T, τ ;pτ ), can be

computed by evaluating QX(τ ; Cτ ), which is the final value

of the Riccati equation corresponding to observation matrix

history Cτ , while J0 and ∆S have been computed in advance

independently of pτ .

To account for the limited mobility of the sensor, the path

is, in general, represented as a set of equations of the location

vector and its time derivatives: f(r(t), ṙ(t), r̈(t),u(t)) = 0

where u is the control input for the sensor motion. For

instance, a two-dimensional holonomic motion of a UAV

sensor platform with constant speed v can be written as

ẋ(t) = v cos θ(t), ẏ(t) = v sin θ(t) (20)

where θ(t) is the flight path angle, which is treated as a

control input in this model.

V. PATH PLANNING FORMULATIONS

A. Optimal Path Planning

The optimal motion planning determines the path pτ ,

or equivalently the time history of the control input, that

maximizes the smoother form information gain J S
V (T, τ) =

J0−
1
2 ldet(I+QX(τ ; Cτ )∆S). The prior and posterior initial

covariance P0 and P0|V , respectively, are computed first;

J0 and S0 are computed using these information. Then,

the optimization problem only involving the computation of

QX(τ ; Cτ ) is posed. This optimization problem is indeed a

nonlinear optimal control problem (OCP) with a terminal

cost functional. The control variables for this OCP are the

controls for the sensor motion, e.g. θ(t) for two-dimensional

holonomic motion, while there are two types of state vari-

ables: the vehicle position variables, x and y, and the entries

of the QX(t) matrix. The optimal path planning problem for

a two-dimensional holonomic mobile sensor is stated as

θ⋆(t) ∈ arg min
θ(t)

ldet(I + QX(τ ; Cτ )∆S) (21)

subject to

Q̇X = AQX + QXA′ + ΣW − QXC(x, y)′Σ−1
N C(x, y)QX

ẋ = v cos θ, ẏ = v sin θ

QX(0) = P0, x(0) = x0, y(0) = y0 (22)

where C(x, y) is expressed as a function of x and y to

emphasize that dependency in time is only through the

evolution of x and y. Regarding the size of this OCP, there

is one control variable and the number of state variables

is n(n + 1)/2 + 2. Constraints in the sensor’s motion such

as endpoint restriction, waypoint requirement, nonholonomic

aspect of motion can be easily incorporated by modifying the

vehicle’s dynamics and by imposing additional constraints.

Also, multiple sensor problems can be dealt with by adding

associated dynamic/kinematic constraints and by modifying

the expression of the observation matrix.

B. Information Potential Field and Real-Time Steering

Optimal path planning gives a motion plan for maximum

information reward, but, since it requires the solution of a

nonlinear optimal control problem, it can be computationally

expensive if n is large due to a large state dimensions for

the dynamic constraints. Thus, it is beneficial in practice to

devise a computationally cheap feedback guidance law. One

way to derive a real-time steering mechanism is to build

some potential field and to move along the gradient of that

field. The mutual information rate discussed in section III-C

can be utilized to construct an information potential field.

This type of information potential field extends a similar

notion presented in [7], which derived the expression of
d
dt

(ldetQ−1
X (t)) and neglected terms unrelated to the obser-

vation matrix to build a potential field. This section builds

a potential field with the smoother form information rate in

(17), which consists of a single term explicitly dependent on

the observation matrix.

For the two-dimensional holonomic sensor motion in (20),

the guidance law is presented as

θG(t) = atan2

{
∂
∂y

(
d
dt
J S

V (T, t)
)
, ∂

∂x

(
d
dt
J S

V (T, t)
)}

where d
dt
J S

V (T, t) is the smoother form mutual information

rate, and atan2 denotes the four-quadrant arctangent.

Since the relationship between C(x, y) and (x, y) is

known, the mutual information rate can be particularly

written as a function of spatial coordinates: d
dt
J S

V (T, t) =
1
2tr

{
Σ−1

N C(x, y; t)Π(t)C(x, y; t)′
}

, and the gradient of

the this expression can be evaluated accordingly. In case

C(x, y; t) ∈ R
1×n, namely, there is only one environmental

variable of interest, the spatial derivative can be written as

∂
∂p

(
d
dt
J S

V (T, t)
)

= Σ−1
N C(x, y; t)Π(t)d(p), p = x, y

where d(p) is an n-dimensional column vector whose i-th
elements are d(p)i = −l−2

p

∑
jαijρ(r, rj)(p− pj), p = x, y

In case C is not a row vector, the relation in Remark 3

suggests that the mutual information rate and its gradient

are nothing more than the sum of those with individual rows

of the observation matrix.

VI. NUMERICAL EXAMPLE

This section deals with numerical implementation of the

proposed path planning formulations, to confirm that the

linear estimation theoretic formula together with the path rep-

resentation technique realizes the continuous measurement

path for mobile sensors.

A. Model and Scenario

A simplified weather forecast problem is considered for

numerical verification. This paper employs the same two-

dimensional Lorenz-2003 model as used in [20]. The system
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equations are

ξ̇ij = −ξij − ζi−4,jζi−2,j + 1
3

∑
k∈[−1,1] ζi−2+k,jξi+2+k,j

− µηi,j−4ηi,j−2 + µ
3

∑
k∈[−1,1] ηi,j−2+kξi,j+2+k + F

where ζij , 1
3

∑
k∈[−1,1] ξi+k,j , ηij , 1

3

∑
k∈[−1,1] ξi,j+k

for (i, j) ∈ [1, Li]×[1, Lj ]. The subscript i denotes the west-

to-eastern grid index, while j denotes the south-to-north grid

index. The boundary conditions of yi+Li,j = yi−Li,j = yi,j

and yi,0 = yi,−1 = 3, yi,Lj+1 = 0 in advection terms, are

applied to model the mid-latitude area as an annulus. The

parameter values are Li = 72, Lj = 17, µ = 0.66 and F =
8. The size of 1 × 1 grid corresponds to 347 km × 347

km in real-life distance, and 0.05 time units in this model

is equivalent to 6 hours of real-life time. The overall system

is tracked by a nonlinear estimation scheme, specifically a

ensemble square-root filter (EnSRF) [25] data assimilation

scheme, with incorporating a fixed observation network of

size 186.

The path planning problem is posed for the linearized

model for the local region defined by the indices (i, j) ∈
[47, 50] × [12, 14]. A linear invariant model is obtained by

deriving the Jacobian matrix of the dynamics around the

nonlinear estimate for ξij’s at the grid points in the local

region. Thus, the state vector Xt ∈ R
n, n = 12 represents

the perturbation of the ξij’s from the ensemble mean. In

this linear model, the dependence of the local dynamics on

the evolution of the outside dynamics is ignored in deriving

the Jacobian matrix (or A matrix). Instead, this effect is

incorporated in the process noise term, i.e. the states on

the boundary of the local region, which may be effected

by outside dynamics more substantially, are assumed to

be subject to larger process noise. The correlation length

scale parameters for spatial interpolation are chosen as lx =
1, ly = 0.7 grids.

The goal is to design a 6-hr flight path (τ = 6 hrs) for

a single UAV sensor platform to improve the forecast over

the right-most three grid points in the local region in 72

hrs (T = 72 hrs). The motion of the UAV is described

as 2-D holonomic motion and it flies at constant speed

v = 1/3 grid/hr, equivalently, 116 km/hr. The initial location

of the UAV is (49, 13). The prior and posterior initial

covariance matrices, P0 and P0|V are provided by the EnSRF

data assimilation scheme, where P0|V is computed by the

ensemble augmentation method [21].

B. Results

Two proposed path planning methods, optimal path plan-

ning and the gradient-based real-time steering, are compared

with the myopic versions of them. The myopic path planning

takes into account I(Xτ ;Zτ ) instead of I(VT ;Zτ ), the

underlying hypothesis being that uncertainty reduction in

the current estimate would lead to uncertainty reduction in

the future forecast. More specifically, the optimal myopic

solution minimizes ldetQX(τ), and the myopic real-time

steering utilizes the filter form information rate in (16) to

construct an information potential field.

TABLE I

INFORMATION GAINS FOR DIFFERENT STRATEGIES

Opt RT Opt. Myo. Myo. RT. Best SL Worst SL

0.69 0.62 0.20 0.14 0.43 0.14

Each of the two optimal control problem is formulated

as a nonlinear program (NLP) by parameterizing the control

history as a piecewise linear functions with 12 segments.

TOMLAB/SNOPT v6.0 [26] is used to solve NLPs; real-

time steering solutions, and various straight-line solutions

are used as initial guess for the optimization. Solutions of

NLPs are obtained within two minutes and satisfy first-order

optimality criteria. The best and the worst straight-line paths

are also considered for comparison. The best straight-line

strategy solves an NLP to find the constant flight path angle

θ0 that maximizes the smoother form information gain.

Table I represents the information gains J S
V (T, τ) for

the considered methods. It is noted that the information

gains for the two myopic solutions are highly suboptimal

– almost close to the worst straight-line. Fig. 3 depicts

the UAV trajectories for different strategies overlaid with

the information field at the initial time. Trajectories for the

myopic decisions (plus the worst straight) head northward,

while others head southward where the information potential

field indicates a high information peak. It turns out that the

myopic information field based on the filter form information

rate in (16) suggests that there is an information peak in

the north-western part of the grid region; this is why the

two myopic decisions head northward [22]. Fig. 4 represents

the accumulated information gains, I(VT ;Zt), t < τ , for

different strategies. The optimal trajectory is not a virtually

attractive route in a short-term view (up to 2 hrs), but a large

amount of information is gathered in the later part of the

optimal trajectory. The optimal strategy sometimes sacrifices

immediate reward in order to lead the sensor to better site

at a later time. Fig. 5 shows the optimal trajectory snapshot

every hour overlaid on the information potential field at each

time. Note that variation in the potential field is solely due

to the measurement, since the smoother form does not have

information dissipation.

VII. CONCLUSIONS

A methodology for continuous motion planning of sensors

for information forecast was presented. The key contribution

of this work is to provide the framework of quantifying in-

formation by a continuous measurement path. The smoother

form formula of the information gain that reduces the time-

scale of the decision space enhanced computational effi-

ciency and enabled on-the-fly evaluation of the accumulated

information. An optimal path planning formulation and a

real-time steering law were presented with employing spatial

interpolation for path representation. A numerical example

for the simplified weather forecast verified the applicability

of the proposed theoretical framework. Future work will

extend the proposed method to problems in other domains.
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