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Abstract— This work addresses the problem of time varying
delays in systems and control. In the first part of the paper,
we propose a processing scheme that allows reconstruction of
a signal subject to time-varying delays. We show robustness
of the scheme with respect to sensing and actuation noise.
We obtain a necessary and sufficient result for stability of
compensated scalar linear systems under constant time delay.
Then we apply the scheme to a general n dimensional linear
system subject to time-varying delay in the state feedback.
We present sufficient conditions for stability of the closed loop
system. These conditions provide a constructive procedure to
design the compensation parameter to maximize the delay that
the system can support, while remaining stable.

I. INTRODUCTION

Many systems and processes involve delays in information

sensing and/or actuation commands due to the underlining

communication media. Examples are abundant in several

areas such as chemical, mechanical and biological systems.

In engineering applications many examples can be found

such as vibration absorber in cars, spatially distributed sys-

tems communicating across a channel, and networked control

systems. Time delays cause time-shift or signal distortion

which results in performance degradation and possible insta-

bility. Many results on the stability analysis of such systems

are summarized in [13], [8]. However, to the best of our

knowledge, none of these results attempt to incorporate per-

formance issues in the design process. This is the main focus

of this paper. Existing results that try to mitigate the effect

of delay differ depending on the application. Typically, when

there is no demand for real time signals, data buffering can be

used. More critical problems arise in control and real time

applications when an instantaneous signal is required, and

several methods are available that deal with specific types

of delays. For example, the Smith Predictor [3] provides a

viable solution in the case of constant and known delays;

however, the result is sensitive to parameter variation and it

requires knowledge of the model as well as the value of the

delay. Model predictive control [5] requires knowledge of

the model and delay, and stability is hard to guarantee on a

moving horizon. An approach based on system redaction to

address controllability and stability issues in delayed control

linear systems was provided in [2], there the author shows

how, under proper conditions, a reduction technique can

provide us with a simplified delay free model, whose stability
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and controllability properties are equivalent to the ones in the

original system.

In [17] a stochastic perturbation approach is considered

in which a time varying delay is modeled as a deterministic

part that is a dynamic average model for the delay, and a

stochastic part that enters into the system as a perturbation.

Finally in [7] the finite spectrum assignment approach is

extended to perform stability design for nonlinear input

delayed systems. The control law is designed based on

state prediction over one delay interval. The prediction is

performed using the implicit Euler method and it is based

on the current state measurement and model dynamics.

In this paper we present a novel approach to deal with

time varying delays. The main idea is to delay part of the

transmitted signal by a fixed value which is used as design

parameter, and use the delayed and the original signals to

estimate future values. The stabilizing effect of delay in

control systems has been addressed in [14], [1], where the

authors prove that the presence of appropriate delay in the

input stabilizes the system. Also in [1] it is shown that

oscillatory systems can be stabilized by delayed positive

feedback. In both cases a frequency domain approach is used

to prove the results. Another result on the use of delayed

inputs to stabilize the system can be found in [18], where

the concept of Time Delay Control (TDC) is introduced.

This control method is used to stabilize nonlinear systems

with uncertainty in the dynamics and input disturbances. The

delay is used to estimate the effect of the uncertainties and

the estimate is used to cancel the effect of the uncertainties.

Then, we consider a dynamical system with delay in the

sensor measurement, and prove that under certain conditions

closed-loop stability is guaranteed if the control scheme is

used to reconstruct the sensor measurement signal. The anal-

ysis is carried out in the time-domain using Razumikhin’s

theorem on time-delay systems. A main objective of the

results that we present in this paper is to overcome some

of the restrictions that limit existing prediction schemes. An

important aspect is that the scheme allows us to handle

unknown time varying delays. Moreover no knowledge of

the model of the dynamical system that generates the signal

is needed. Another important aspect is that our scheme can

handle large time varying delays while preserving stability

and good tracking performances. In the case of scalar linear

systems subject to constant time delay we show that it is

possible to obtain an exact upper bound on the delay that

destabilizes the system. This allows comparing the system

with and without compensation. A full version of the present

paper is contained in [12]. The paper is organized as follows:

In Section II we consider the problem of time-varying, possi-
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bly unknown, delays; we describe our processing scheme and

show that the received signal is bounded within a ball around

the transmitted signal. In Section III, we address robustness

of the scheme with respect to noise. Section IV analyzes

the case of scalar linear system under constant time delay.

In Section V we recall a version of the Razumikhin-type

theorem. In Section VI we apply the scheme to a linear

system subject to time-varying delay in the state feedback.

Simulations are provided for all the above cases within the

corresponding sections.

II. TIME VARYING DELAYS: COMPENSATION

Consider a smooth signal f (t) : [0,∞) → IR transmitted

from a source to a destination over a channel characterized

by a time varying delay τ(t). Then, the signal received at the

destination is f (t − τ(t)). Throughout the paper we assume

that the following condition on the delay holds:

Assumption 1 The delay τ ∈C1 is bounded |τ(t)| ≤ Bd and

the derivative |τ̇(t)| < 1, ∀t ∈ IR+. This causality condition

on the delay ensures that the time variable is a monotonically

increasing function. In what follows F∗
s (t) and F∗

r (t) =
F∗

s (t − τ(t)) denote the processed signal being sent across

the delay block and the received signal, respectively. For

simplicity we shall use τ instead of τ(t) hereafter.

Theorem 1: Consider a signal f (t) ∈ C2 and assume

| f (k)| ≤ M, k = 0,1,2. Also consider a channel which intro-

duces a time varying delay τ(t). Define a constant delay

T > 0 that is used as design parameter to construct an

estimate of the signal. Define σ ∈ IR+ to be the argument of

the function f , i.e. f : σ → f (σ), then the Taylor expansion

(see [10], [15]) of the delayed signal f (t −T ), around f (t)
is defined as following:

f (t −T ) = f (t)+
d f

dσ
(t)(−T )+ o((−T)2),

Then, we define the approximate derivative of f (t) as fol-

lows:

d̂ f

dσ
(t) =

f (t)− f (t −T )

T
=

d f

dσ
(t)− o(T 2)

T
, T > 0(1)

where o(T 2) is the second order remainder in the Taylor

expansion (see [10], [15]), given by o(T 2) = | f (2)(ξ )|T2

2
, t −

T ≤ ξ ≤ t. Consider the following signal being transmitted

across the channel

F∗
s (t) = f (t)+

d̂ f

dσ
(t)T (2)

Then, the received signal satisfies F∗
r (t) = f (t) + εd , with

|εd | < M(T 2

2
+ τ2

2
+ |T − τ|).

Proof Given (1) and (2), the received signal can be written

as follows:

F∗
r (t) = f (t − τ)+

d̂ f

dσ
(t − τ)T

= f (t − τ)+
d f

dσ
(t − τ)τ +

d f

dσ
(t − τ)(T − τ)

− o(T 2)

The Taylor approximation of the signal f (t) around f (t −τ)
is given by f (t) = f (t − τ)+ d f

dσ (t − τ)τ + o(τ2). Then we

can rewrite the received signal as

F∗
r (t) = f (t)−o(τ2)−o(T2)+

d f

dσ
(t − τ)(T − τ) (3)

By the smoothness assumption on f it follows that:

| d f

dσ
(t − τ)(T − τ)| ≤ M|T − τ| (4)

Also from the expression for the remainder in the Taylor

approximation ([10], [15]) we obtain

|o(τ2)| =
| f (2)(ξ )|τ2

2
≤ M

2
τ2

, t − τ ≤ ξ ≤ t (5)

|o(T 2)| ≤ M

2
T 2 (6)

and the result follows by combining (4) and (5).

�

III. ROBUSTNESS WITH RESPECT TO NOISE

Next we consider the case in which the signal f (t) is

affected by the noise signal n(t), |n(t)| ≤ β <<
1
3
; this results

in the following compensated signal being sent across the

channel F∗
s = 2 f (t)− f (t −ε)+2n(t)−n(t−ε), while at the

receiver side the following signal is received: F∗
r = 2 f (t −

τ)− f (t −τ−ε)+2n(t−τ)−n(t−τ−ε). It follows that the

noise is not amplified hence

F∗
r ≤ 2 f (t − τ)− f (t − τ − ε)+ β 3

= f (t − τ)+ ε
f (t − τ)− f (t − τ − ε)

ε
+ N

where N < 1. Hence the previous analysis for stability and

tracking can be repeated, including the additional noise term

N.

Theorem 2: Consider a signal f (t) ∈C2, assume | f (k)| ≤
M, k = 0,1,2. The following signal, subject to noise |n(t)| ≤
β <<

1
3

is transmitted across the channel

F∗
s = f (t)+ f (t)− f (t − ε)+ n(t)+ n(t)−n(t− τ)(7)

Then, the received signal satisfies F∗
r (t) = f (t)+εd +N, with

|εd | < M( ε2

2
+ τ2

2
+ 2|ε−τ|

ε ), N < 1.

IV. STABILITY OF SCALAR LINEAR SYSTEMS UNDER

CONSTANT TIME DELAY

In this section we consider a scalar linear system

ẋ(t) = −ax(t)−bx(t− τ) (8)

where x, a, b, k ∈ IR and τ is a constant delay. For such

systems it has been proven (see [13] for reference) that

• The zero delay set S0 i.e. the set of systems (8) which

are stable for τ = 0 is defined by S0 = {(a,b) : a + b >

0}.

• The delay independent set S∞, i.e. the set of systems

which are stable for all values of delays is defined by

S∞ = {(a,b) : a + b > 0, a ≥ |b|}.

• The delay dependent set Sτ , i.e. the set of systems which

are stable only for suitable values of delay τ is defined
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by Sτ = {(a,b) : a + b > 0, b ≥ |a|} and the maximum

value of delay is

τ∗ =
arccos(−a

b
)√

b2 −a2
(9)

Consider next the scalar linear system obtained by applying

the processing scheme

ẋ(t) = −ax(t)−b(2x(t− τ)− x(t − τ − ε)) (10)

again ε is a design parameter. The characteristic equation

associated with (10) is

p(s) = s+ a + b(2− e−sε)e−sτ (11)

Theorem 3: The zero delay set S0, for system (10) is

S0 = {(a,b,ε) : a + b > 0, ∀ε} (12)

Proof The characteristic equation for (10) with zero delay

is

p(s) = s+ a + b(2− e−sε) (13)

denote by α = a + 2b, β = −b, then the system is stable

independently of ε if α + β > 0 and α > |β |. We have α +
β = a+b+b−b, and α −|β |= a+b+b−|b|. The previous

two conditions are satisfied for a + b > 0, hence the result

follows.

�

In other words, if the original system (8) was asymptotically

stable without delay, so is the compensated system (10). Next

we want to compare the two systems when there is a nonzero

delay. First we characterize the class of systems which are

stable independent of delay, i.e. we want to define the set S∞

for system (10).

Theorem 4: The delay-independent stability region for

system (10) is given by S∞ = {(a,b,ε) : a+b > 0,a > |3b|}.

Proof Under the assumption a + b > 0,a > |3b| we aim

to prove by contradiction that the characteristic equation

(11) has no solution in the right half plane for any value

of the delay. Assume that there exist at least one unstable

solution of (11), λ̄ = σ̄ + jω̄ , σ̄ > 0, then the characteristic

polynomial becomes

p(σ̄ + jω̄) = σ̄ + jω̄ + a + b(2− e−(σ̄+ jω̄)ε)e−(σ̄+ jω̄)τ

= σ̄ + a + 2be−σ̄τ cos(ω̄τ)−be−σ̄(τ+ε) cos(ω̄(τ + ε))+

j(ω̄ −2be−σ̄τ s(ω̄τ)−be−σ̄(τ+ε) sin(ω̄(τ + ε))) (14)

σ̄ + a + 2be−σ̄τ cos(ω̄τ)−be−σ̄(τ+ε) cos(ω̄(τ + ε)) = 0

(ω̄ −2be−σ̄τ sin(ω̄τ)−be−σ̄(τ+ε) sin(ω̄(τ + ε))) = 0

from which we get the following conditions:

(σ̄ + a)2 + ω̄2 = 4b2e−2σ̄τ + b2e−
¯2σ(τ+ε)

−4b2e−σ̄(2τ+ε) cos(ω̄ε) = 0

since σ̄ > 0 the following bounds hold:

a2
< (σ̄ + a)2 + ω̄2 ≤ (b24 + b)2e−2εσ̄ + 4b2e−σ̄ε)e−2σ̄τ

≤ (2b + be−σ̄ε)2 ≤ (3b)2 (15)

this leads to a2
< (3b)2 which contradict the original as-

sumption a ≥ |3b|. Next we need to check if σ̄ = 0 is a

solution of (10) in S∞. We have ω̄ 6= 0, since λ = 0 is not a

solution of (10), then repeating the same argument as before

using the fact that |ω̄ | > 0 and e2σ̄τ we obtain a2 ≤ (3b)2.

Then by contradiction it must be that the characteristic

polynomial does not have any unstable root in S∞. Hence

under conditions a + b > 0, a > |3b| system (10) is stable

independent of delay.

�

Note that the class of systems which are stable independent

of delay for system (8) is larger than the class of systems

which are stable independent of delay for system (10). This

class of system is not of interest for us since it assumes

that the open loop system is asymptotically stable and hence

there is no need for feedback control. Next we consider the

delay dependent case, under the assumption that the delay

free system is asymptotically stable (a+b > 0). Note that Sτ

and S∞ are complementary with respect to the set S0, hence

Sτ = {(a,b,ε) : a + b > 0,3b ≥ |a|, ∀ε}.

Theorem 5: The delay dependent set Sτ , for system (10)

is defined by Sτ = {(a,b,ε) : a + b > 0, 3b ≥ |a|, ε}, the

system is stable ∀τ < τ∗ and ε = ε∗ whenever the following

equalities are satisfied with ε ∈ IR+:

a + b(2cos(ω̄τ)− cos(ω̄(τ + ε))) = 0

ω̄ −b(2sin(ω̄τ)− sin(ω̄(τ + ε))) = 0 (16)

explicit values of ω ,τ can be calculates for b2(5−4cos(ε))>

a2

ω̄ =
√

b2(5−4cos(ε))−a2

τ =

asin

(
√

(5−4cos(ε))− a2

b2

5−4cos(ε
√

b2(5−4cos(ε))−a2)

)

−arctan(
sin(ω̄ε)

2−cos(ω̄ε) )

√

b2(5−4cos(ε))−a2

Proof Note that due to the continuity of the solution and from

the fact that the free delay system is stable it is sufficient to

study the case in which the system solution crosses the jω
axis, also since the system is scalar the crossing will only

happens once.

�

A. Simulation Results

We simulated the scalar linear system with no compensa-

tion ẋ(t)= x(t)−3x(t−τ) from (9) we calculated the destabi-

lizing value of delay to be τ∗ = 0.9377. Then we considered

the system with compensation ẋ(t) = x(t)− 3(2x(t − τ)−
x(t − τ − ε)) and from equations (16) we applied a delay of

τ = 1.2 and obtained a value of ε = 0.5151. The simulation

results are plotted in Figure 3.

V. RAZUMIKHIN-TYPE THEOREM

In this section we consider general n dimensional systems,

we introduce the notion of retarded functional differential

equation (RFDE) and recall the Razumikhin-Type theorem

from [4], [11], which gives sufficient conditions under which
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a system with delay described by functional differential

equation (FDE) is asymptotically stable. Also we recall the

result from [16] on the ISS version of the Razumikhin-

Type theorem. We consider the following retarded functional

differential equation as defined in [13]

ẋ(t) = f (t,xt ), t ≥ t0 (17)

with initial condition x(t0 + θ ) = φ(θ ), where xt = x(t +
θ ), θ ∈ [−τ,0], τ > 0, x(t) ∈ IRn, (t0,φ) ∈ IR+×Cb

n,τ , Cb
n,τ =

{φ ∈ C([−τ,0], IRn) : ‖φ‖ < b} where C([−τ,0], IRn) de-

notes the Banach space of continuous vector functions φ :

[−τ,0]→ IRn and b ∈ IR+, and f is continuous, locally Lips-

chitz and f (t,0) = 0 on t ≥ t0. Also we recall that a function

x : IR → IRn, x(t) = x(t0,φ)(t) denote the unique solution of

(17). Next we recall the Razumikhin-Type theorem.

Theorem 6 (Razumikhin-Type from [4], [11]): Consider

the system described by the functional differential equation

(17) xt = x(t + θ ), θ ∈ [−τ,0], τ > 0, and f (t,0) = 0 on

t ≥ t0. Assume that

i.) u, v, w : IR+ → IR+ are continuous strictly increasing

functions u(s), v(s), w(s) positive for s > 0, and u(0) =
v(0) = 0;

ii.) q1 > 1 is a constant.

If there is a continuous function V : IR+ × IRn → IR+ such

that

(I) for t ∈ IR+ and x ∈ IRn

u(|x|) ≤V (t,x) ≤ v(|x|) (18)

(II) there is a q2 ≥ 1
q1

such that ∀t ≥ t0

sup
θ∈[−τ,0]

V (t + θ ,x(t + θ )) < q1V (t,x(t)), (19)

implies ∀t ≥ t0

sup
θ∈[−τ,0]

|x(t + θ )| ≤ q1q2|x(t)| < u−1 (q1v(|x(t)|))

(III) for any t0 ∈ IR+

V̇ [t,x(t)] ≤−w([|x(t)|]) whenever

sup
θ∈[−τ,0]

|x(t + θ )| ≤ q|x(t)|, q = q1q2 ≥ 1 (20)

then the zero solution of (17) is uniformly asymptotically

stable.

VI. STABILITY OF LINEAR SYSTEMS UNDER

TIME-VARYING DELAY

It is known that stable linear systems are inherently robust

with respect to small delays [13], [8]. As the value of delay

increase stability is no longer guaranteed. To improve the

system robustness with respect to delays in the loop, we

apply the scheme to a linear system subject to time-varying

delay in the state feedback. We prove stability of linear

systems under our scheme, the argument of the proof is

based on Razumikhin’s theorem [4], [11]. Please note that

in the case of n > 1 order systems we provide an upper

bound on the delay that the compensated system can support

while preserving stability, we are not able to analytically

evaluate performance with respect to the non-compensated

system, due to the conservativeness of the used approach.

We only compare the two systems in the simulation results.

Future work will include performance analysis of the scheme

with respect to the uncompensated system. Consider the

linear time-invariant system ẋ(t) = Ax(t)+ Bu(t) where the

matrices A ∈ IRn × IRn
, B ∈ IRn × IRm, are such that (A,B) is

stabilizable. Consider the following stabilizing state feedback

control law u(t) = Kx(t) such that Ã = (A+BK) is Hurwitz.

If the measured and transmitted state x(t) is affected by time

varying delay τ : IR+ → IR+ that satisfy assumption 1, then

we have the following feedback law u(t) = Kx(t−τ). Instead

of transmitting x(t), we transmit the processed signal

x∗s (t) = x(t)+ (x(t)− x(t− ε)) (21)

for some positive design parameter ε . Then the correspond-

ing control input is u(t) = Kx∗s (t − τ) and the closed loop

system becomes

ẋ(t) = Ax(t)+ BK(2x(t− τ)− x(t − τ − ε)) (22)

with τ ∈ [0,τm] where τm = maxz τ(z) < ∞ and xt = x(t +
θ ), θ ∈ [−τ̄,0], τ̄ = τm +ε . This results in a LTI system with

multiple delays, which is a special case of FDE (17), (see

[9], [13] and [4], [6] ). Note that A is an Hurwitz matrix and

the system (22) is linear time invariant hence it satisfies all

the properties of (17).

Theorem 7: Consider the system (22), with τ ∈ [0,τm],
where ε and τm < ∞ are positive numbers and define Ã =
(A + BK). Assume that the delay free system is stable

and hence by converse Lyapunov theorem, for an arbitrary

matrix Q > 0 there is a unique positive definite matrix

P = PT such that, ÃT P + PÃ = −Q. Then the system (22)

is asymptotically stable if the following upper bound on the

maximum delay τm + ε holds: (τm + ε) ≤ T̄ = λmin(Q)
2|BK|λmax(P)A2

,

where A2 = q2(|A| + 3|BK|), |.| denotes the induced L2

norm, λmin(Q), λmax(P) are the minimum and maximum

eigenvalues of Q and P respectively and q = ε∗
√

λMq1
λm

> 1,

where
√

λm

λMq1
≤ ε∗ < 1 and q1 > 1 are constants. For brevity

we denote λM = λM(P), λm = λm(P) as the maximum and

minimum eigenvalues of P respectively and in the future |x|
will denote the Euclidian norm.

Proof The proof is based on the Razumikin-Type Theorem

6. We need to prove that under the stated assumptions, the

conditions of Theorem 6 are satisfied, and hence stability

follows by the same theorem. The delay free system ẋ =
(A + BK)x = Ãx is asymptotically stable with the Lyapunov

function V (x) = xT Px which satisfies u(x) = λm(P)|x|2 ≤
V (x) ≤ λM(P)|x|2 = v(x), ∀x ∈ IRn, where u,v are the K∞

functions defined in Theorem 6. We need to verify that

condition (II) is satisfied. Assume that for some q1 > 1 and

τ̄ = τm + ε , the following condition holds:

sup
s∈[−τ̄,0]

V (x(t + s)) < q1V (x(t)), (23)
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note that we can define a constant

√

λm

λMq1
≤ ε∗ < 1 such that

if the inequality (23) holds, then the following one holds

sup
s∈[−τ̄,0]

V (x(t + s)) ≤ ε∗q1V (x(t)), (24)

which implies the following:

sup
s∈[−τ̄,0]

|x(t + s)| ≤ sup
s∈[−τ̄,0]

√

x(t + s)T Px(t + s)

λm

(25)

=

√

sup
s∈[−τ̄,0]

x(t + s)T Px(t + s)

λm

≤ ε∗
√

q1

λm

x(t)T Px(t) ≤
√

q1λM

λm

|x(t)|

Then, we define q2 = ε∗
q1

√

λMq1

λm
≥ 1

q1
, and from (25) obtain

sup
s∈[−τ̄,0]

|x(t + s)| ≤ q1q2|x(t)|

<

√

q1λM

λm

|x(t)| = u−1(q1v(|x|))(26)

Hence condition (II) is satisfied. To prove condition (III)

consider the closed loop system (22) and rewrite Ã = A+BK

to obtain

ẋ(t) = Ãx(t)+ BK(x(t − τ)− x(t)

+ (x(t − τ)− x(t− τ − ε))) (27)

= Ãx(t)+ BK

(

∫ t

t−τ
−ẋ(s)ds+

∫ t−τ

t−τ−ε
ẋ(s)ds

)

We can upper bound the term (
∫ t

t−τ −ẋ(s)ds+
∫ t−τ

t−τ−ε ẋ(s)ds)
as follows:

(

∫ t

t−τ
−ẋ(s)ds+

∫ t−τ

t−τ−ε
ẋ(s)ds

)

≤ (τ + ε) sup
s∈[t−τ−ε,t]

(|ẋ(s)|) (28)

Then, for τm and for q = q1q2 = ε∗
√

λMq1

λm
> 1 we have

that whenever supα∈[t−τm−ε,t] |x(α)| ≤ q|x(t)|, the following

holds:

sup
α∈[t−2τm−2ε,t]

|x(α)| =

max{ sup
α1∈[t−2τm−2ε,t−τm−ε]

|x(α1)|, sup
α2∈[t−τm−ε,t]

|x(α2)|}

< max{q|x(t − τm − ε)|,q|x(t)|}
< q2|x(t)|

from which we can bound (28) as follows:

(

∫ t

t−τ
−ẋ(s)ds+

∫ t−τ

t−τ−ε
ẋ(s)ds

)

≤ (τ + ε)q2(|A|+ 3|BK|)|x(t)|
= (τ + ε)A2|x(t)|

where A2 = q2(|A|+ 3|BK|). Next consider the derivative of

V (x) = xT Px along the trajectory of (27):

V̇ = −|x(t)|T Q|x(t)|

+ 2x(t)T PBK

(

∫ t

t−τ
−ẋ(s)ds+

∫ t−τ

t−τ−ε
ẋ(s)ds

)

(29)

whenever (
∫ t

t−τ −ẋ(s)ds+
∫ t−τ

t−τ−ε ẋ(s)ds), we have

V̇ ≤ −x(t)T Qx(t)+ 2P|BK||x(t)|((τ + ε)A2)|x(t)|)
≤ |x(t)|T (−Q+ 2P|BK|((τ + ε)A2))|x(t)| (30)

Define T̄ = λmin(Q)
2|BK|λmax(P)A2

, then for (τm + ε) < T̄ , we obtain

Q−2P|BK|((τ + ε)A2 = W > 0, and hence

V̇ ≤ −|x(t)|TW |x(t)| = −w(|x|) (31)

where w is the function defined in Theorem 6. Then by

Razumikhin theorem we have that the closed loop system

(27) is asymptotically stable.

�

A. Simulation Results

We simulated an LTI system with A =

[

0.1 1

−1 0.1

]

,

B = [1;1], K = [−0.15−0.15]. The delay in the feedback loop

is τ(t) = (1+0.25sin(0.5t)). We used the processing scheme

(21) with parameters Q = I, P =

[

8.6990 −0.0765

−0.0765 11.7602

]

and q1 = 1.1, ε∗ = 0.8199 and ε = .075. The resulting state

dynamics are depicted in Figure 2. If we gradually increase

the delay, the compensated system preserve stability until a

value of the delay τ(t) = (1.5+0.5sin(0.5t)). We obtain the

following upper bound on the delay T̄ = 0.075. Although

the sufficiency of the analysis result does not allow for

an exact characterization of the robustness property of the

scheme, we can observe from the simulation results that the

stability of closed-loop system is preserved for large values

of delays under our scheme, as compared to uncompensated

delayed state feedback. We repeat the simulation introducing

a random noise n(t), such that the signal to noise ratio is

10. The resulting output signal preserve the same signal to

noise ratio, as shown in Figure 1, hence the scheme does not

amplify the noise as was shown in Section III.

VII. CONCLUSION AND FUTURE WORK

We presented a scheme to process signals to be sent across

a channel which introduces time-varying unknown delays.

We proved that under appropriate conditions on the signal to

be processed the received signal is guaranteed to have small

error with respect to the transmitted signal. We applied our

scheme to a control system with actuation delays and gave

sufficient conditions for stability. For scalar linear systems

under constant time-delay an exact bound on the delay which

the system can support is given, this allows us to have a

direct comparison with the compensation free system. A

conservative upper bound on the admissible delay was also

provided for the case of n > 1 dimensional systems. Future

work will focus on considering higher order terms in the
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Fig. 1. From the top: 1) Noise-free closed loop system dynamics for
original system xd , and delayed system xr . 2) Noise-free compensated
system x∗r . 3-4) Noisy closed loop system dynamics for original system
xd , and compensated system x∗r , transient (Top) and steady state (Bottom).

Taylor series expansion to achieve better estimation, this will

also allow us to handle signal at high frequency. We will

also consider extension of the present result to discrete time

systems.
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