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Abstract— In this paper we present a numerical study that
investigates the relationship between the parameter θ , used in
the design of the MinMax controller, and the conditioning of
the approximate algebraic Riccati equations, the sensitivity of
the eigenvalues of I −θ 2PΠ to θ as well as the effect of θ on
the stability radia and the stability margin of the system.

In order to guarantee accurate numerical solutions to the
approximate Riccati equations, the Riccati equations must
remain well-conditioned for the values of θ that are considered.
This condition number reflects the combined sensitivity of the
Riccati equations to the system inputs A, B, R, C and θ . In
addition, we also consider the sensitivity of the eigenvalues of
I − θ 2PΠ to θ . We study the possibility of these sensitivities
serving as an indication of the largest value of θ for which
I − θ 2PΠ remains positive definite. This sensitivity could also
serve as an indication of the accuracy of the computation
of I − θ 2PΠ. Lastly, in order to design efficient low order
controllers, it is important to ensure the robustness of the
design. Stability radius and stability margin serve as measures
of the robustness of the controller.

A one-dimensional nonlinear cable mass system is considered
to illustrate these ideas and numerical results are presented.

I. INTRODUCTION

It is well known that much research attention has been

devoted to the H∞ controller since the original problem was

formulated by Zames [1]. Rhee and Speyer [2] later intro-

duced what has become known as the MinMax controller,

which is really a differential game approach to solving the

H∞ control problem. As such, one of the challenges in the

design of the MinMax controller is determining the “optimal”

value, or range of values, of the parameter θ . Presently, a

costly iterative procedure is used choose the value for θ .

Chen [3] points out that, in general, the iterative procedure

to determine θ is not reliable.

The value of θ should be such that I −θ 2PΠ is positive

definite where P and Π are solutions to algebraic Riccati

equations and depend on θ . To establish the positive definite-

ness of the finite dimensional approximation IN − θ 2PNΠN
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one could compute the eigenvalues of this matrix for different

values of θ . This is for two reasons not a trivial matter.

Firstly, the accuracy of the solutions of the Riccati equations,

P and Π, will influence the accuracy of the eigenvalues.

Secondly, these discretized problems are typically large in

size and it is a challenge to obtain all the eigenvalues

accurately.

As an alternative, we study the conditioning of the Riccati

equations as well as the sensitivity of the eigenvalues with

respect to θ . The condition number of the Riccati equation

reflects the sensitivity of the solution with respect to changes

in AN , BN , RN , CN and θ . The sensitivity of the eigenval-

ues of IN − θ 2PNΠN with respect to θ is investigated to

determine if the sensitivity serves as an indication for which

values of θ the transition takes place and IN − θ 2PNΠN is

no longer positive definite.

In the next section we describe the cable mass system

that we use as to illustrate these ideas. We present a brief

description of the MinMax controller in Section III. In

Sections IV, V and VI brief discussions of the conditioning

of the Riccati equation, the sensitivity of the eigenvalues

with respect to θ and controller robustness as a function of

θ are presented. Each of these sections include numerical

results that illustrate the ideas. A summary of the results

and a discussion of future research follow in Section VII.

II. A STRUCTURAL VIBRATION PROBLEM

The one-dimensional nonlinear cable mass distributed pa-

rameter system considered in this paper was described in [4]

and studied numerically in [5] and [6]. This model can be

viewed as an elastic cable fixed at one end and attached to

a mass at the other end. The mass is suspended by a spring,

which contains nonlinear stiffening terms and is being forced

by a sinusoidal disturbance.

The equations governing this system are as follows:

ρ
∂ 2

∂ t2
w(t,s) =

∂

∂ s

[

τ
∂

∂ s
w(t,s)+ γ

∂ 2

∂ t∂ s
w(t,s)

]

,

for 0 < s < ℓ, t > 0, and

m
∂ 2

∂ t2
w(t, ℓ) = −

[

τ
∂

∂ s
w(t, ℓ)+ γ

∂ 2

∂ t∂ s
w(t, ℓ)

]

−α1w(t, ℓ)−α3[w(t, ℓ)]3 + η(t)+ u(t),

with boundary condition

w(t,0) = 0,

and initial conditions of the form

w(0,s) = w0(s),
∂

∂ t
w(0,s) = w1(s),
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where w(t,s) represents the displacement of the cable at

time t and position s, w(t, ℓ) gives the position of the mass

at time t, ρ and m are the densities of the cable and mass

respectively, τ is tension in the cable, and γ is the coefficient

of the damping term. The spring’s stiffening terms have

coefficients of α1 and α3, with α3 being associated with the

nonlinear effects in the spring. A disturbance enters through

η(t), and u(t) is a control input. This view of the cable mass

system can be seen in Figure 1.

Fig. 1. Cable-mass system.

We want to use sensed information to design a feedback

controller that attenuates the disturbance η(t). We assume the

control acts exclusively on the mass, and the only available

measured information is the position and velocity of the

mass. These two observations take the form

y1(t) = w(t, ℓ),

y2(t) =
∂

∂ t
w(t, ℓ).

III. MINMAX CONTROL DESIGN

In this section, we present a short overview of the MinMax

compensator design [2]. Assume the existence of a nonlinear

PDE system of the form

ẋ(t) = A0x(t)+N (x(t))+Bu(t)+Dη(t),

x(0) = x0,
(1)

where x(t) = x(t, ·) ∈ X is the state of the nonlinear system

and X is a Hilbert space. Here, A0 is the system operator

defined on D(A0) ⊆ X , N defined on X is the nonlinearity

in the system, B is the control operator, D is the disturbance

operator. Both the control input, u(t), and the disturbance,

η(t), are defined on Hilbert space U . It is assumed that

knowledge of only part of the system can be obtained through

the state measurement, y, in Hilbert space Y where

y(t) = C x(t). (2)

Typically, C is not the identity operator, so full-state feed-

back cannot be used to control the system. Instead, an

estimate of the state is used in the control law. To provide

this estimate, a compensator is used that has the form

ẋc(t) = Acxc(t)+Fy(t), xc(0) = xc0

and the feedback control law is written

u(t) = −K xc(t)

where xc(t) = xc(t, ·) ∈ X is the state estimate. Designing a

controller of this type requires determining Ac,F , and K .

The MinMax compensator is defined for linear systems,

so one must first linearize the system in (1), (2). Doing so

yields the linear distributed parameter control system (with

state xℓ) defined on X

ẋℓ(t) = A xℓ(t)+Bu(t)+Dη(t), xℓ(0) = xℓ0

with sensed output

y(t) = C xℓ(t).

By solving the Riccati equations

A
∗Π + ΠA −Π(BR−1

B
∗−θ 2

BB
∗)Π +C

∗
C = 0, (3)

where R : U →U is a weighting operator for the control of

the form R = cI, with c a scalar and I the identity operator,

and

A P+ PA
∗−P(C ∗

C −θ 2
C

∗
C )P +BB

∗ = 0, (4)

one can obtain the operators K , F , and Ac via

K = R−1
B

∗Π,

F = (I −θ 2PΠ)−1PC
∗,

Ac = A −BK −FC + θ 2
BB

∗Π.

The resulting feedback control is applied to the original

nonlinear system; the closed loop nonlinear system is then

defined by

d

dt

[

x(t)

xc(t)

]

=

[

A −BK

FC Ac

][

x(t)

xc(t)

]

+

[

N (x(t))

N (xc(t))

]

+

[

D

0

]

η(t).

(5)

For sufficiently small θ , there are guaranteed minimal

solutions Π and P to (3) and (4), respectively, such that

(I−θ 2PΠ) is positive definite and the linearized closed loop

system, i.e. the linearized form of (5), is stable. Note that

if θ = 0, we are considering the classical Linear Quadratic

Gaussian (LQG) compensator design.

A standard approach to computational implementation of

the PDE systems defined in the previous sections is to

approximate the equations in (5). When a finite element

method is applied to discretize the spatial variable, one

obtains the finite dimensional system
[

ẋN(t)

ẋN
c (t)

]

=

[

AN −BNKN

FNCN AN
c

][

xN(t)

xN
c (t)

]

+

[

NN(xN(t))

NN(xN
c (t))

]

+

[

DN

FNEN

]

η(t)

(6)

where N is related to the number of elements in the uniform

mesh, and xN ,xN
c ∈ XN ⊂ X where XN is a finite dimensional

subspace of X . Corresponding to this system, discretized

forms of the algebraic Riccati equations in (3), (4) are

computed. These operators are used to construct the finite

dimensional versions of the MinMax controller.
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TABLE I

SYSTEM PARAMETERS

ρ τ γ m ℓ α1 α3

1 1 .005 1.5 2 .01 3

For our numerical experiments we use linear B-splines

and convergence has been obtained for N = 80. The system

parameter values used are given in Table I.

The eigenvalues of IN − θ 2PNΠN computed using the

eig function in MATLABr suggests that the largest pos-

sible MinMax controller parameter θ that will guarantee

(I −θ 2PΠ) being positive definite is 0.45.

IV. RICCATI CONDITIONING

The condition number of a problem is an indication of

the sensitivity of the problem to perturbations in the data.

These perturbations can be due to finite precision arithmetic,

corrupted data, et cetera. It is well known that in order

to guarantee accurate solutions, the problem must be well-

conditioned and the algorithm must be stable.

In the case of the Algebraic Riccati Equation (ARE),

A∗X + XA−XSX +C∗C = 0,

the condition number measures the sensitivity of the solution

to first order perturbations in A, S (where S includes B, R

and θ ) and Q where Q = C∗C.
The relative condition number, [7], is defined by

κ(A,B,Q) = sup
δ→0

{

‖∆X‖

δ‖X‖
:
‖∆A‖

‖A‖
≤ δ ,

‖∆S‖

‖S‖
≤ δ ,

‖∆Q‖

‖Q‖
≤ δ

}

where ∆A = Ã−A, ∆S = S̃− S and ∆Q = Q̃−Q and Ã, S̃

and Q̃ refer to the perturbed versions of A, S and Q.

If εκ(A,S,Q) ≪ 1 the problem is said to be well condi-

tioned and very ill conditioned if εκ(A,S,Q)≈ 1 where ε is

related to the floating-point environment.

Byers, see [8], defined an approximate condition number

in terms of the Frobenius norm. Kenney and Hewer, see

[9], extended these ideas and obtained sharper bounds for

the approximate condition number. They also extended the

norms to norms other than the Frobenius norm. If κL and κU

respectively denote the lower and upper bounds defined by

Kenney and Hewer, then

κL

3
≤ κ ≤ κU

where the spectral norm is used. Computing κL and κU

involves five Lyapunov solutions and seven matrix norms.

We compute these upper and lower bounds on the condi-

tion numbers of the discretized Riccati equations:

(AN)∗ΠN + ΠNAN −ΠN
[

BN(RN)−1(BN)∗− θ 2BN(BN)∗
]

ΠN

+(CN)∗CN = 0 (7)

and

ANPN + PN(AN)∗−PN
[

(CN)∗CN− θ 2(CN)∗CN
]

PN

+BN(BN)∗ = 0. (8)

In Tables II and III we present these bounds for increasing

θ .

TABLE II

CONDITIONING OF (7)

θ κL κU

0.00 5.0482×104 1.2556×106

0.05 5.0406×104 1.2543×106

0.10 5.0181×104 1.2506×106

0.15 4.9819×104 1.2447×106

0.20 4.9344×104 1.2368×106

0.25 4.8789×104 1.2274×106

0.30 4.8205×104 1.2173×106

0.35 4.7667×104 1.2075×106

0.40 4.7279×104 1.1995×106

0.45 4.7201×104 1.1952×106

TABLE III

CONDITIONING OF (8)

θ κL κU

0.00 2.2655×106 1.1986×107

0.05 2.2099×106 1.1899×107

0.10 2.0583×106 1.1653×107

0.15 1.8475×106 1.1292×107

0.20 1.6164×106 1.0872×107

0.25 1.3922×106 1.0455×107

0.30 1.1854×106 1.0115×107

0.35 0.9786×106 0.9972×107

0.40 0.6037×106 1.0342×107

0.41 0.6146×106 1.0552×107

0.42 0.8447×106 1.0846×107

0.43 1.0684×106 1.1264×107

0.44 1.3347×106 1.1869×107

0.45 1.7174×106 1.2793×107

The bounds are an order of magnitude larger for (8) than

what it is for (7). This implies that P is more sensitive

to changes than Π is. We also observe from Table II that

the bounds for the condition number of (7) decrease as θ
increases even though the bounds remain of the same order.

In the case of (8), the bounds decrease up to θ = 0.4 but

start increasing for θ > 0.4. As mentioned before, direct

computations of the eigenvalues IN −θ 2PNΠN using the eig

function in MATLABr suggest that the critical value where

IN − θ 2PNΠN is no longer positive definite, is around θ =
0.45. It seems as if the condition number of (8) could serve

as a verification of the value of θ where the matrix is no

longer positive definite.

V. SENSITIVITY OF THE EIGENVALUES

As discussed in the introduction, we are interested in the

sensitivity of the eigenvalues of IN −θ 2PNΠN with respect to

θ . In particular, this sensitivity could serve as an indication

of the values of θ for which the matrix is no longer positive

definite.

For the sake of compactness, we omit the superscript N.

Consider the eigenvalue problem

(I−θ 2PΠ)x = λ x.
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Taking the derivative with respect to θ leads to

∂

∂θ
(I −θ 2PΠ)x +(I−θ 2PΠ)

∂x

∂θ
=

∂λ

∂θ
x + λ

∂x

∂θ
vT

vT x

(

−2θPΠ−θ 2 ∂P

∂θ
Π−θ 2P

∂Π

∂θ

)

x =
∂λ

∂θ
(9)

where v is the eigenvector of (I − θ 2PΠ)T associated with

λ .

To obtain
∂Π

∂θ
and

∂P

∂θ
, we consider the derivatives of (7)

and (8) respectively.

In order to obtain
∂Π

∂θ
from

A∗ ∂Π

∂θ
+

∂Π

∂θ
A−

[

ΠBR−1B∗ ∂Π

∂θ
+

∂Π

∂θ
BR−1B∗Π

]

+θ 2ΠBB∗ ∂Π

∂θ
+

[

θ 2 ∂Π

∂θ
+ 2θΠ

]

BB∗Π = 0

we have to solve a Lyapunov equation of the form

D1X1 + X1DT
1 + Q1 = 0, (10)

where

X1 =
∂Π

∂θ
,

D1 = A∗−ΠBR−1B∗ + θ 2ΠBB∗,

Q1 = 2θΠBB∗Π.

Similarly, to obtain
∂P

∂θ
from

A
∂P

∂θ
+

∂P

∂θ
A∗−

[

PC∗C
∂P

∂θ
+

∂P

∂θ
C∗CP

]

+θ 2PC∗C
∂P

∂θ
+

[

θ 2 ∂P

∂θ
+ 2θP

]

C∗CP = 0.

we solve a Lyapunov equation of the form

D2X2 + X2DT
2 + Q2 = 0, (11)

where

X2 =
∂P

∂θ
,

D2 = A−PC∗C + θ 2PC∗C,

Q2 = 2θPC∗CP.

Both (10)and (11)are solved using the lyap function in

MATLABr.

In Table IV we present the sensitivity
∂λ

∂θ
for increasing θ .

The sensitivity of that eigenvalue of (I−θ 2PΠ) that changes

from positive to non-negative first, is the largest of all the

sensitivities and we present those values.

From Table IV we see that the absolute value of the

sensitivity of that eigenvalue that has the smallest positive

real part increases as θ increases. The sensitivity associated

with θ = 0.45 implies that the value of λ will decrease

TABLE IV

SENSITIVITY OF EIGENVALUE

θ
∂λ

∂θ
0.00 0

0.05 −0.3377

0.10 −0.6886

0.15 −1.0670

0.20 −1.4897

0.25 −1.9777

0.30 −2.5589

0.35 −3.2717

0.40 −4.1712

0.45 −5.3406

5.34 times as much as the corresponding change in θ . This

sensitivity is quite significant and one may question the

reliability of the eigenvalue computation which is used to

verify that (I−θ 2PΠ) is positive definite.

Even though the size of the sensitivities increases with

increasing θ and the rate of change in the sensitivities also

increases, there is no clear indication when (I−θ 2PΠ) is no

longer positive definite.

VI. CONTROLLER ROBUSTNESS

Though it is not the primary focus of this paper, our ulti-

mate goal is to design low order controllers that will stabilize

an original plant, not just a PDE model of the plant or a high

order finite dimensional approximation of it, for a physical

system of interest. To increase the likelihood that our low

order controllers will stabilize the plant, a problem for which

the low order controller was not originally designed, we

want to ensure controller robustness. In our numerical results,

we will offer two measurements of robustness by which to

compare our controllers for the physical system of interest.

Since we will be comparing robustness of finite dimen-

sional closed loop systems, the following discussion is

phrased in a finite dimensional setting. One measurement is

the stability margin, which measures the distance from the

imaginary axis to the nearest eigenvalue for a given matrix.

The second measurement is the complex stability radius as

described in [10]. In computing the stability radius of a given

matrix, JN , we seek to find the distance from JN to the

nearest unstable matrix. This is achieved by searching for

the minimum singular value of JN in some rectangular region

of the complex plane, thereby describing the distance of JN

from singularity.

We desire to compare robustness measures of the MinMax

controlled system for varying values of θ . Thus, we compute

the stability radius and stability margin for the matrix
[

AN −BNKN

FNCN AN
c

]

, (12)

for a vector of θ values: θ = 0.00 : 0.05 : 0.45. These

computations are presented in Table V.

Note that the stability radius is on the same order of

magnitude regardless of the value of θ used to compute the

MinMax controller. The same is true of the stability margin.
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TABLE V

ROBUSTNESS MEASURES FOR MINMAX CONTROLLED SYSTEMS

θ Stability Radius Stability Margin

0.00 0.03125585592333 0.03212894355587

0.05 0.03302852263542 0.03199043497269

0.10 0.03278730359443 0.03165074454705

0.15 0.03239237117549 0.03121865446290

0.20 0.03188657176539 0.03072362659148

0.25 0.03127803722047 0.03014851940854

0.30 0.03075754754857 0.02944021129271

0.35 0.03048102682009 0.02846715159222

0.40 0.03095214388041 0.02685943898823

0.45 0.03327271528664 0.02499459268316

The stability margins decrease as θ increases, but all margins

are on the same order of magnitude for the interval of θ
values considered.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we have used a one-dimensional cable-mass

system as a numerical testbed to examine conditioning of the

MinMax Riccati equation, the sensitivity of the eigenvalues

of I − θ 2PΠ with respect to θ and controller robustness as

a function of θ . Specifically, we examined conditioning of

the MinMax control and filter algebraic Riccati equations

as a means to gauge sensitivity of the Riccati equations to

perturbations in AN , BN , RN , CN and θ . It was found that

the solution to the filter Riccati equation is more sensitive to

changes in the above inputs than the solution to the control

Riccati Equation. Numerical results suggest that the condi-

tion number of the filter Riccati equation could serve as a

verification of the value of θ where the matrix IN −θ 2PNΠN

is no longer positive definite. More investigation needs to be

done to explore this hypothesis.

As another means to investigate values of θ where IN −
θ 2PNΠN is no longer positive definite, the sensitivity of

the eigenvalues of this matrix was also examined. The size

of the sensitivities increases as θ increases and reaches a

point where the eigenvalue computations can no longer be

guaranteed to be accurate. Since these computations are used

to verify that IN −θ 2PNΠN is positive definite, one could get

an estimate for which values of θ this matrix is no longer

guaranteed to be positive definite.

Finally, since we are interested in controller robustness, we

calculated stability radii and stability margins of the MinMax

controlled cable-mass system for various θ values. It was

found that the stability radii and margins are all on the same

order of magnitude for the domain of possible parameter

values of this problem.

From the results observed here, it appears that the optimal

θ is perhaps not that crucial. It seems as if there is a

range of values of θ for which the Riccati conditioning,

eigenvalue sensitivities for the quantity IN − θ 2PNΠN , and

controller robustness are comparable and reasonable. Pre-

liminary studies indicate that the full order MinMax observer

yields comparable performance results for the same domain

of θ values considered here.

Further studies will include a set of case studies to identify

examples where this approach results in better determination

of the optimal minmax parameter.
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