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Abstract— A drawback of using Chandrasekhar equations
for regulator problems is the need to perform long-time
integration of these equations to reach a steady state. Since the
equations are stiff, this long-time integration frequently defeats
the computational advantages the Chandrasekhar equations
have over solving the algebraic Riccati equations. In this paper,
we present a strategy for approximating the long-time behavior
of the Chandrasekhar equations. Our approach leverages recent
developments in building accurate, empirical, reduced-order
models for high-order systems. The aim here is to build a
reduced-order model for the Chandrasekhar equations that
is accurate near the steady state gain. We then assemble a
corresponding low-dimensional Riccati equation that can be
solved easily. For this study, we use the proper orthogonal
decomposition (POD) to generate the reduced-order model.
A heuristic for building a suitable input collection for POD
is proposed. Numerical experiments using a 2D advection-
diffusion-reaction (ADR) equation demonstrate the computa-
tional feasibility of our approach.

I. INTRODUCTION

We consider control problems of the form

min
u(·)

∫
∞

0

{〈y(t), y(t)〉 + 〈u(t), Ru(t)〉} dt (1)

subject to

ż(t) = Az(t) + Bu(t), z(0) = z0 (2)

y(t) = Cz(t), (3)

where z(t) ∈ IRn, u(t) ∈ IRm, and y(t) ∈ IRp, for t > 0 and

matrices A, B, C, and R have appropriate dimensions. In this

study, we further assume m ≪ n and p ≪ n. Problems with

this structure frequently arise in the numerical discretization

of distributed parameter control problems.

The solution to the regulator problem is linear state

feedback

u(t) = −Kz(t), t > 0, (4)

where the feedback gain K is defined using the unique

positive definite solution, Π, to the algebraic Riccati equation

AT Π + ΠA − ΠBR−1BT Π + CT C = 0 (5)

as K = R−1BT Π (see e.g. [1] for details). For the problem

dimensions under consideration here, an n×n matrix Riccati

solution Π is used to form the m × n matrix K. Thus,

large values of n require us to exploit the structure in the

problem. This can be done in the algorithm to solve the

Riccati equation (eg. exploiting sparsity in A, B and C [2]

or exploiting the low rank of B and C) or one may use the

Chandrasekhar equations discussed below.
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A. Chandrasekhar Equations

The Chandrasekhar equations were introduced in the con-

trol literature in the 1970’s to solve the Riccati equations (cf.

[3], [4], [5]). In the 1980’s, they were used as a methodology

for solving the infinite horizon control problem when the

system involves a distributed parameter system (cf. [6], [7]).

In the infinite horizon/regulator case, the Chandrasekhar

equations have the form

−K̇(t)=R−1BT L(t)LT (t), K(0) = 0 ∈ IRm×n (6)

−L̇(t)= (A − BK(t))
T

L(t), L(0) = CT ∈ IRn×p. (7)

The solution to the control problem (1)–(4) is then given by

K = lim
t→−∞

K(t).

This approach replaces the need to find the (dense) n × n
solution to the Riccati equation by the integration of (m+p)n
equations backwards in time towards a steady state solution.

While the reduced storage costs of the Chandrasekhar equa-

tions make some large problems tractible that may not be

otherwise solvable, the slow convergence towards a steady

state solution magnify the computational costs associated

with the integration. An attempt to overcome this challenge,

proposed by Banks and Ito [8] in 1991, is to integrate (6)–

(7) until K(t) begins to converge, then to correct the gain

using Kleinman-Newton iterations. In this mode, the Chan-

drasekhar equations become an effective way to compute an

initial guess for iterative methods.

Our proposed methodology follows a similar pattern:

integrate the system (6)–(7) until K(t) begins to converge

over [T, 0] (T < 0). However, at this point, we perform

model reduction on (7) to introduce a reduced problem to

continue integration backwards from t = T .

B. Rationale

The plausibility for our strategy comes from the structure

of the Chandrasekhar equations. As the gain converges, say

K(t) ≈ K̃ for t < T , equation (7) has the form

−L̇(t) =
(

A − BK̃
)T

L(t), t < T < 0,

with L(T ) given. Thus, one would expect the “high fre-

quency” content of the final condition L(T ) to decay rapidly

and thus, solutions to (7) from t = T would be well

approximated by the “low frequency” content in L(T ). In

other words, the solution to this hypothetical equation would

be dominated by the rightmost r eigenvectors of (A−BK̃)T .

There are many ways in which model reduction can be

carried out for (7). In this study, we find an empirical basis
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for L using the proper orthogonal decomposition (POD) [9]

(introduced in the control literature under names such as prin-

cipal component analysis [10] and reduced-basis methods

[11], [12], among others) on an input collection consisting

of stored values of the trajectory L.

The derivation of the Chandrasekhar equations introduces

the factorization

−Π̇(t) = L(t)LT (t)

into the differential Riccati equation. Thus,

Π = lim
t→−∞

Π(t) =

∫ 0

−∞

L(t)LT (t) dt

using the final condition Π(0) = 0, and

Π =

∫ T

−∞

L(t)LT (t) dt

︸ ︷︷ ︸

Πres

+

∫ 0

T

L(t)LT (t) dt. (8)

The last term above is integrated using the Chandrasekhar

equation, while we approximate the first integral is approxi-

mated using a low-dimensional basis for L. The expression

(8) above shows a clear connection between finding a good

basis for L and a good basis for Πres.

II. METHODOLOGY

In this section, we outline a methodology for solving

the control problem (1)–(3) using an efficient long-time

integration of the Chandrasekhar equations. First of all,

we follow [8] to integrate (6)–(7) until K(t) “begins to

converge” (or similarly until L(t) can be very accurately

approximated with a low-dimensional basis). This can be

determined in practice by monitoring K, L and the reduced-

order equations for L during the integration backward from 0
to T < 0. For this integration, we use the following algorithm

with the notation Ki ≈ K(−i∆t) and Li ≈ L(−i∆t) to

allow for implementation in conventional forward integration

packages.

Algorithm II.1 (Banks and Ito [8]) Given A, B and C.

Set K0 = 0 and L−1 = L0 = CT . For i = 0, 1, . . .

1) K
(0)
i+1 = Ki + ∆tR−1BT

(
3
2LiL

T
i − 1

2Li−1L
T
i−1

)

2) K
(0)
i+1/2 = 1

2K
(0)
i+1 + 1

2Ki

3) Li+1 = Li + ∆t
(

A − BK
(0)
i+1/2

)T (
1
2Li+1 + 1

2Li

)

4) Ki+1 = Ki + ∆tR−1BT
(

1
2Li+1L

T
i+1 + 1

2LiL
T
i

)

Test for convergence and continue if necessary.

Note that the third step in Algorithm II.1 is implicit due to the

stiffness in the matrix A−BK(t). This algorithm concludes

at an iteration k whence we have the approximation Lk ≈
L(T ).

Secondly, from a collection of ℓ+1 stored time snapshots

of the solution or by performing additional integration to (7),

compute a reduced-basis using POD, i.e.

V = [v1|v2| · · · |vr] = POD(Lk−ℓ, . . . , Lk−1, Lk)

or

V = [v1|v2| · · · |vr] = POD(Lk, Lk+1, . . . , Lk+ℓ),

respectively, where r ≪ n is the number of basis vectors

needed to accurately represent L over (−∞, T ]. We are

choosing the latter of these two approaches here and increas-

ing the time step since integration accuracy is not as critical

in generating the basis. Note that there are three parameters

used in the generation of V : r, ℓ (> r), and T . We will

comment on choices for these parameters below.

Finally, we approximate the solution L in the orthogonal

basis generated by columns of V ,

L(t) = V c(t) where c(t) ∈ IRr.

Thus, (6)–(7) have the form

−K̇(t) = R−1BT V c(t)cT (t)V T (9)

−ċ(t) = V T (A − BK(t))
T

V c(t) (10)

from final conditions K(T ) and c(T ) = V T L(T ). These

equations could be integrated directly since the equation that

needs to be handled implicitly, (10), is low-dimensional.

It may also be advantageous to introduce a new variable

ξ = KV in (9), although introducing a new level of

approximation.

However, as in [8], we will consider the associated Riccati

equation for the “tail” of the integration. If we write

K = K(T ) + Kres, (11)

then Kres = R−1BT Πres and Πres is the solution to

(A − BK(T ))
T

Πres + Πres (A − BK(T ))

− ΠresBR−1BT Πres + L(T )L(T )T = 0.

However, instead of using a Kleinman-Newton iteration on

this Riccati equation, we project this onto V . Define P as

the solution to

ÃT P + PÃ − PB̃R−1B̃T P + c(T )c(T )T = 0. (12)

where Ã = V T (A − BK(T ))V and B̃ = V T B. Since r
is small, the solution of (12) for P is easy to obtain. Our

approach is summarized below.

Algorithm II.2 (Long-Time Integrator for (6)–(7))

Given A, B and C.

1) Apply Algorithm II.1 until time T < 0.

2) Build a reduced-basis V for L(t), t < T .

3) Solve (12) for P , set K̃res = R−1BT V PV T .

4) Use (11) to obtain K.

A. Comments

• The size of the reduced-basis, r, and the final time, T ,

are determined by how well L can be approximated in

the columns of V over (−∞, T ]. This assessment can

be built into the time integration as a stopping criteria.

Since the initial time integration dominates the cost of

this algorithm, r should be taken large enough so that

additional vectors lead to negligible improvement.
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• Steps 3) and 4) above are mathematically equivalent to

integrating (9)–(10) from t : T → −∞. However, the

small size of the Riccati problem (12) removes the need

to apply Algorithm II.1 to (9)–(10).

• Steps 3) and 4) represent an attempt to approximate

Πres and use this to compute Kres. The accuracy of this

calculation depends on the adequacy of the columns of

V to approximate L. Namely, if

∫ T

−∞

‖L(t) − V V T L(t)‖ dt < ǫ/2,

then we have the estimate

‖Πres − V V T ΠresV V T ‖ ≤ ǫ‖Πres‖
1/2.

• A natural question is “how close is the solution V PV T

to Πres when P is obtained from (12)?” The answer

depends on ǫ‖Πres‖
1/2 and a Lyapunov bound. This

will be the subject of a follow-up paper.

• We are actually interested in the approximation of Kres

by K̃res. In this paper, we use a numerical example

to investigate how well this can be approximated in

practice.

• In our experiments ℓ > 3r was sufficient.

III. NUMERICAL EXAMPLE

We demonstrate the effectiveness of our algorithm by

solving a control problem involving the two-dimensional

advection-diffusion-reaction (ADR) equation with two con-

trol inputs on the boundary and one control output. This

linear distributed parameter control problem is motivated

by the problem of controlling the two-dimensional Burgers

equation.

A. Problem Description

Our example is motivated by the boundary control of the

two-dimensional Burgers equation to a steady-state reference

solution first posed in Camphouse and Myatt [13]. The model

equations are

wt +

(
1

2
c1w

2

)

ξ

+

(
1

2
c2w

2

)

η

= µ (wξξ + wηη) (13)

with domain sketched in Fig. 1. As in [13], we consider

parameter values c1 = 1 and c2 = 0, and will use either

µ = 1/200 or µ = 1/300 (the latter was considered in [13]).

Control is applied on the top Γ1 and bottom Γ2 surfaces of

the internal rectangular obstruction. The control objective is

to steer the flow to the steady-state solution, denoted by W .

Thus, let W solve

c1WWξ + c2WWη = µ (Wξξ + Wηη)

with

W |Γin
=

1

.242
η(.48 − η),

∂W

∂n
|Γout

= 0,

and

W |Γ−Γin−Γout
= 0.

K

K

K

K

K K K Kin out

1

2

wall

wall

wallwall

(0,0)

(0.99,0.48)

(0.15,0.15)

(0.24,0.33)

Fig. 1. Computational domain for 2D Burgers equation

The control objective is achieved by linearizing the two-

dimensional Burgers equation about W and using linear

feedback control to stabilize the perturbation z from the

steady-state. If we define w = W + z and substitute into

(13), we obtain

zt + c1 (Wzξ + zWξ) + c2 (Wzη + zWη) = µ (zξξ + zηη)
(14)

with

z|Γin
= 0,

∂z

∂n
|Γout

= 0,

z|Γ1
= u1, z|Γ2

= u2, and z|Γwall
= 0.

Note that we have discarded the nonlinear term c1zzξ +
c2zzη and used the fact that c1WWξ + c2WWη =
µ (Wξξ + Wηη) = 0. If we wish to control w to the steady-

state W , then we want to drive z to zero.

Linear feedback control amounts to designing a control for

the advection-diffusion-reaction equation (14) to stabilize z.

We follow [13] and seek to minimize the output

y(t) =

∫ ξ=.8

ξ=.6

∫ η=0.45

η=0.03

z(ξ, η, t)dη dξ.

This problem for minimizing y(t) above is discretized using

finite elements to arrive at a linear control problem of the

form (1)–(3). We consider various problem sizes (n) by

changing the number of finite elements used to approximate

the operators in (14). The number of control inputs (m = 2)

and control outputs (p = 1) are independent of discretization

size.

Note that it is more natural to compare convergence

of functional gains [14] for distributed parameter control

problems. The notion of convergence is then in a function

space rather than a space that varies with n. In our notation,

these functional gains, h1 and h2, have the form

[Kx] (t) =

[ ∫

Ω
h1(ξ, η)z(ξ, η, t) dΩ

∫

Ω
h2(ξ, η)z(ξ, η, t) dΩ

]

.

The finite element approximation of h1 and h2 are then

considered as the mesh is refined (as n → ∞).
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Fig. 2. Finite Element Mesh: 182 DOF

TABLE I

RELATIVE ERROR FROM EARLY TERMINATION

final time (T ) relative error in gains (Erel)

-0.5 0.999989

-1.0 0.999643

-1.5 0.984436

-2.0 0.932892

-4.0 0.514311

-10.0 0.028214

B. Integration of Chandrasekhar Equations

In our first experiment, we applied Algorithm II.2 to the

ADR control problem above with a very coarse mesh corre-

sponding to n = 182, see Fig. 2. In all of our experiments,

we use a uniform time step of ∆t = 1/256 = 0.0039. For

this discretization, we used the parameter value µ = 1/200.

As a measure of the accuracy of our algorithm, we compute

the relative error of the gains

Erel =

∫

Ω
(hc

1 − hr
1)

2 + (hc
2 − hr

2)
2 dΩ

∫

Ω
(hr

1)
2 + (hr

2)
2 dΩ

.

where superscripts refer to gains obtained by c: Chan-

drasekhar equations by Algorithm II.2 and r: Riccati equa-

tions directly (using the algorithm lqr in MATLAB).

The slow convergence of the Chandrasekhar equations

towards a steady state solution is documented in Table I.

Here, we see that the that there is a 2.8% relative error when

integrating the equations out to T = −10. This represents

2560 time steps in Algorithm II.1. This slow convergence

is disappointing and it responsible for the limitations of the

Chandrasekhar equation approach. We do point out that the

error reduction from 0 to -2 is much worse than from -2

to -4. In fact, the relative error does appear to drop quickly

from -4 to -10, but the computational cost is too great if we

want very accurate solutions. Obviously, we would like to

minimize the cost of the first step in Algorithm II.2 by only

integrating the Chandrasekhar equations as far as needed to

develop a good approximation for the tail of L. We study

the influence of the integration time T below.

C. Effectiveness of Algorithm II.2

Our second experiment tests the accuracy of Algorithm

II.2. To begin with, we plot the first functional gain h1

obtained after integrating the Chandrasekhar equations to

T = −2 in Figure 3 and after completion of Algorithm II.2 in

Figure 4 (the results for gains h2 are similar). These figures

demonstrate that the functional gain changes substantially in

steps 2) – 4). Thus, the algorithm makes significant updates

to K(T ) even though the premise of the algorithm is that K
is nearly converged. The first 6 POD modes used to generate

V using an additional ℓ = 30 integration steps are plotted in

Fig. 5. Similarity between mode 1 and h1(T ) are clear. The

change (in structure) in h1 we observe is then facilitated by

the remaining 5 modes.

Fig. 3. Functional Gain at T=-2

Fig. 4. Functional Gain with Correction

Mode 1

Mode 3

Mode 5

Mode 2

Mode 4

Mode 6

Fig. 5. POD Modes of L
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The accuracy of Algorithm II.2, given by relative error

Erel for different integration times |T | and different sizes

of the reduced-order model (r) is presented in Fig. 6. As

we expect, Erel is reduced with longer integration time

and larger model dimension. However, we observe that

longer integration times lead to smaller model dimension

requirements to get “maximum” accuracy. This supports our

rationale that components of higher frequency modes are

ultimately eliminated with integration. It is impressive that

the relative error of 50% obtained at T = −4 can be reduced

4 orders of magnitude with a 4 dimensional model.
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Fig. 6. Relative Error vs. Basis Size (r), Different T

Obviously, there seems to be a limit in the amount of

useful information contained in our reduced-bases. To obtain

more content in the basis, we would need more content

in the input collection. However, the expense of working

with a larger input collection soon outweighs any potential

gain in the accuracy of the basis. More effective basis

selection strategies, however, could lead to high payoff in

this algorithm.

As a final experiment, we reproduce the gains obtained in

Camphouse and Myatt [13]. In their study, they considered

µ = 1/300. Our coarse mesh above is insufficient to

approximate Burgers equation with a standard Galerkin finite

element procedure at this parameter value. Thus, we consider

a much finer mesh in Fig. 8, leading to n = 1413 degrees of

freedom. We again compare the difference in the functional

gains after step 1) (for T = −2) and step 4) of Algorithm

II.2 in Figs. 8 and 9, respectively. In Fig. 10, we again

observe good improvement in the accuracy of the gains as

the dimension of our reduced-order model is increased and

as more time-snapshots are incorporated into building the

POD basis from T = −2.

D. Comparison to Kleinman-Newton Iterations

As a final comparison, we compare our approach to

the Kleinman-Newton iterations as proposed in Banks and

Ito [8]. The initial step of integrating the Chandrasekhar

equations is the same in both cases. Thus, the comparisons

must be made on the remainder of the algorithms.

Fig. 7. Finite Element Mesh: 1413 DOF

Fig. 8. Functional Gain at T=-2

Fig. 9. Functional Gain with Correction
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Fig. 10. Relative Error vs. Basis Size (r), Different T
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In Algorithm II.2, the work is dominated by step 2. The

only work involving matrices of dimension n in steps 3

and 4 include BT
(m×n)V(n×r) and (R−1BT V P )(m×r)V

T
(r×n)

matrix products in step 3 and a sum of (m× n) matrices in

step 4. In step 2, we used a reduced SVD on a matrix of size

n × ℓ, however, we could have simply performed a Gram-

Schmidt procedure on this matrix featuring cost O(nℓ2).
In the Kleinman-Newton method, we implemented a Smith

method with variable shifts as in [8]. For our comparison,

we used optimal shifts that required all eigenvalues of A −
BK(T ) (these shifts would not be available in practice).

To achieve comparable errors, we required about 70 sparse

(n×n) linear solves for n = 182 and about 140 sparse (n×n)

linear solves for n = 1413. Thus, Algorithm II.2 leads to a

substantial improvement since it has work less than the cost

of 1 sparse (n × n) linear solve.

However, the Kleinman-Newton method can achieve far

greater accuracy with additional iterations. Algorithm II.2

has accuracy limited by how well L is approximated in

span(V). In addition, the Kleinman-Newton method has the

additional feature that it can correct numerical integration

errors that may have been introduced in approximating the

Chandrasekhar equations.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We presented an attractive alternative to the hy-

brid Chandrasekhar/Kleinman-Newton algorithm for solving

large scale Riccati equations introduced in [8]. Our method,

which may be labeled as a hybrid Chandrasekhar/reduced-

Riccati algorithm, replaces the relatively more expensive

Kleinman-Newton iterations with a very low order Riccati

problem. The effectiveness of this algorithm was shown for a

distributed parameter control problem consisting of boundary

control of the advection-diffusion-reaction equations.

Note that this approach differs from the usual model

reduction approach to large scale control problems since we

use the large dimensional problem from 0 to T . The stan-

dard approach is to reduce the dimensional of the problem

immediately, then solve the control problem. Although our

approach is more expensive, we only introduce a reduced-

basis once we have gleaned enough information from the

full problem. In this sense, the hybrid approach introduced

here tries to solve the control problem more accurately by

introducing the approximation later in the solution process.

B. Future Works

There are certainly a number of remaining questions that

will be answered in future works. First of all, we are basing

our model reduction on the proper orthogonal decomposition.

This is an important model reduction method, but is primarily

used in nonlinear equations. It does make some sense to use

this approach in our setting since we have the integration

history of L available and (7) is nonlinear in the variables K
and L. However, the differential equation for L (7) is linear

in the L variable. Thus, other model reduction methods may

allow for continued reduction in relative error with model

size. Part of our future work will also consider the trade-

offs in longer integration of Chandrasekhar equations in the

present approach vs. number of Kleinman-Newton iterations

to achieve the same relative error tolerance.

Furthermore, the analysis of this method can be ap-

proached by considering the accuracy in which Πres can

be approximated using a reduced Riccati equation (12). We

have an initial estimate of the accuracy of this solution as a

function of the accuracy of the basis generated by columns

of V to represent L over (−∞, T ]. We intend to expand

upon this analysis in a future paper.
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