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Abstract— The objective of this work is to derive a QP
algorithm tailored for MPC. More specifically, the primary
target application is MPC for discrete-time hybrid systems. A
desired property of the algorithm is that warm starts should be
possible to perform efficiently. This property is very important
for on-line linear MPC, and it is crucial in branch and bound
for hybrid MPC. In this paper, a dual active set-like QP method
was chosen because of its warm start properties. A drawback
with classical active set methods is that they often require
many iterations in order to find the active set in optimum.
Gradient projection methods are methods known to be able
to identify this active set very fast and such a method was
therefore chosen in this work. The gradient projection method
was applied to the dual QP problem and it was tailored for the
MPC application. Results from numerical experiments indicate
that the performance of the new algorithm is very good, both
for linear MPC as well as for hybrid MPC. It is also noticed that
the number of QP iterations is significantly reduced compared
to classical active set methods.

I. INTRODUCTION

The main motivation for this work is control of discrete-
time hybrid systems in Mixed Logical Dynamical (MLD)
form, [1], using Model Predictive Control (MPC). In the
basic linear setup, the MPC problem can be cast in the form
of a Quadratic Programming (QP) problem. When a hybrid
system is to be controlled, the corresponding optimization
problem is changed from a QP problem into a Mixed Integer
Quadratic Programming (MIQP) problem, and hence, the
term Mixed Integer Predictive Control (MIPC) is sometimes
used. The MIQP problem is usually solved using branch and
bound, where sometimes a large number of QP problems
have to be solved. In the MIPC application, these QP
problems are in the form of linear MPC problems. The focus
in this work is to solve linear MPC problems efficiently, espe-
cially in the case when several similar problems are solved
consecutively. This property is not only useful for hybrid
MPC, but also for linear MPC where the QP problem is
resolved in each time instant, and in (smooth) nonlinear MPC
where solvers based on Sequential Quadratic Programming
(SQP) can be used. Also in SQP, several similar linear MPC
problems have to be solved before the solution to the original
nonlinear problem is found.

In this work, the problem structure is utilized in two ways
in order to improve performance. First, since the difference
between the optimization problems to be solved often is
small (especially in branch and bound), the solution from
a previously solved problem is reused as a starting point in
a new problem. This procedure is often called a warm start of
the solver. In previous work by the authors, [2], [3], [4], work
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from several other researchers, e.g., [5], [6], [7], [8], working
with QP methods has been summarized. Based on their work
and experience, the conclusion was drawn that a dual active
set method is the best choice for the MIPC application, where
numerous similar QP problems have to be solved in order to
solve the original MIQP problem. Early work on dual active
set solvers can be found in, e.g., [9]. A more recent method is
found in [5], which has been refined in, e.g., [10]. Second, in
the dual QP solver to be presented, the Karush-Kuhn-Tucker
(KKT) system is solved using a Riccati recursion. This has
previously been done in primal active set QP solvers, e.g.,
[11], and in interior point solvers, e.g., [12]. The material
presented in this paper is based on an extension of the work
presented in [2] and in [3]. In that work, a dual active set QP
solver tailored for MIPC built on a classical active set method
is presented. In this new paper, the classical active set method
used in [2], [3] has been replaced by a gradient projection
method which has the potential to give better performance,
especially for problems with many active constraints at the
optimum, [13]. Early work on gradient projection methods
can be found in [14] and in [15]. Many articles have been
written about gradient projection. The method is used for
optimal control in, e.g., [13] and [16]. In [17], a method
is presented where basic gradient projection iterations are
combined with conjugated gradient iterations.

The contribution in this paper is a gradient projection algo-
rithm working on the dual MPC problem. Gradient projection
methods have previously been recognized as very appropriate
for optimal control problems with simple constraints, but
not for problems with general constraints. In this paper, it
is shown that the dual MPC problem always get simple
bound constraints, independently of the primal constraints.
Consequently, the gradient projection method is expected
to be efficient when applied to the dual problem. This is
confirmed by numerical experiments in this work.

Because of the limited space in this paper, only the linear
MPC problem is considered in detail. The QP relaxations
used in branch and bound for MIPC will also be of linear
MPC type, but the details are left out. A compact introduction
to the basics of MIQP can be found in [3]. For a complete
treatment, see [4] or Paper D in [18] (available on-line).

A. Notation

In this paper, Sn
++ (Sn

+) denotes the set of symmetric
positive (semi) definite matrices with n rows. Furthermore,
let Z be the set of integers, Z++ be the set of positive (non-
zero) integers, and Zi,j = {i, i + 1, . . . , j}.
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B. Problem Definition
There exist different equivalent optimization problem for-

mulations of the linear MPC problem. For example, it can
be written as a QP problem with only control signals as
free variables, or it can be written as a QP problem where
control signals, states and control errors all are free variables.
The derivations of both formulations for a general linear
MPC problem can be found in [19], or in [18, pp. 65–67].
In this paper, it will be seen that the second alternative is
advantageous from a computational point of view and this
formulation is used in this work. Using this second form, the
MPC optimization problem for a linear time-variant system
can be written as

minimize
x,u,e

1
2

N−1∑
t=0

eT (t)Qe(t)e(t) + uT (t)Qu(t)u(t)+

+
1
2
eT (N)Qe(N)e(N)

subject to x(0) = x0

x(t + 1) = A(t)x(t) + B(t)u(t), t ∈ Z0,N−1

e(t) = M(t)x(t), t ∈ Z0,N

h(0) + Hu(0)u(0) ≤ 0
h(t) + Hx(t)x(t) + Hu(t)u(t) ≤ 0,

t ∈ Z1,N−1

h(N) + Hx(N)x(N) ≤ 0
(1)

where e =
[
eT (0), . . . , eT (N)

]T
, x =

[
xT (0), . . . , xT (N)

]T
,

u =
[
uT (0), . . . , uT (N − 1)

]T
, and where the matrices

A(t) ∈ Rn×n, B(t) ∈ Rn×m and M(t) ∈ Rp×n define the
system. Furthermore, x(t) denotes the n states of the system,
u(t) denotes the m control inputs, and e(t) denotes the p
controlled outputs. Moreover, Hx(t) ∈ Rc(t)×n, Hu(t) ∈
Rc(t)×m and h(t) ∈ Rc(t) define the inequality constraints,
where c(t) denotes the number of inequality constraints at
time t. Furthermore, the following assumptions are made

Assumption 1: Qe(t) ∈ Sp
++, t = 0, . . . , N

Assumption 2: Qu(t) ∈ Sm
++, t = 0, . . . , N − 1

Note that, when a hybrid MPC problem is solved, the
resulting non-convex MIQP problem can be solved as a
sequence of linear MPC problems in the form in (1), [18].

II. QUADRATIC PROGRAMMING

In this section, the QP problem is introduced and some
basic properties are discussed. Furthermore, the gradient
projection algorithm used in this work is presented. For an
extensive bibliography on QP, see [20]. The MPC problem
in (1) is a QP problem with n̄ variables, p̄ equality constraints
and m̄ inequality constraints in the form

minimize
x1,x2

1
2
[
xT

1 xT
2

] [H̃ 0
0 0

]
︸ ︷︷ ︸

H

[
x1

x2

]
︸︷︷ ︸

x

+
[
f̃T 0

] [x1

x2

]

subject to
[
A1

T
E

A2
T
E

]T

︸ ︷︷ ︸
AE

[
x1

x2

]
= bE ,

[
A1

T
I

A2
T
I

]T

︸ ︷︷ ︸
AI

[
x1

x2

]
≤ bI

(2)

where n̄ = n̄1 + n̄2, x1 ∈ Rn̄1 , x2 ∈ Rn̄2 , H̃ ∈ Sn̄1
++,

f̃ ∈ Rn̄1 , A1 ∈ Rp̄+m̄×n̄1 , A2 ∈ Rp̄+m̄×n̄2 and b ∈ Rp̄+m̄.
Furthermore, E ∈ Zp̄

++ and I ∈ Zm̄
++ denote sets of indices

to rows representing equality constraints and inequality con-
straints respectively in A ∈ Rp̄+m̄×n̄ and b ∈ Rp̄+m̄. The
dual problem to the problem in (2) can be found by forming
the Lagrange dual function and performing maximization
over λ and ν. This is thoroughly described in [2]. By
reformulating the resulting dual maximization problem as
a minimization problem and by removing a constant in the
objective function, the result is a new equivalent QP problem
in the form

minimize
λ,ν

1
2
QD(λ, ν)

subject to A2
T
I λ + A2

T
E ν = 0, λ ≥ 0

(3)

where λ ∈ Rm̄, ν ∈ Rp̄ and

QD(λ, ν) =
[
λ
ν

]T [
A1I
A1E

]
H̃−1

[
A1I
A1E

]T [
λ
ν

]
+

+ 2

(
f̃T H̃−1

[
A1I
A1E

]T

+
[
bI
bE

]T
)[

λ
ν

] (4)

Apart from a known constant and a change of sign, strong
duality holds for the primal problem in (2) and the (with a
slight abuse of notation) dual problem in (3), [4]. The idea
in this work is to solve a primal QP problem in the form
in (2) by solving a dual problem in the form in (3) and then
compute the primal optimal solution from the dual optimal
solution.

A. Gradient Projection for QP
The algorithm presented in this paper is based on a

gradient projection method, which in principle works as an
active set method. However, large changes of the working
set are possible in each iteration. Most properties of active
set methods, like the possibility of efficient warm starts also
hold for this improved method. For an introduction to active
set methods, see, e.g., [21].

In this section, the gradient projection algorithm used in
this work is presented. It is presented for a general problem,
and the efficient computations that utilizes problem structure
will be presented later in the paper.

1) Introduction: A drawback with a classical active set
method is that the working set is changing very slowly. For
each change in the working set, a system of equations for a
Newton step has to be solved. If the initial working set is
very different from the optimal active set, it will take a lot
of effort to reach this set. The idea in a gradient projection
method is to allow a more rapid change of the working
set, which in turn implies that often less Newton systems
have to be solved before the optimal active set is found.
However, when this method is applied to a QP problem
with general inequality constraints, the projection operation
performed in each iteration can become very computationally
expensive. An exception is when the inequality constraints
only consist of upper and lower bounds on variables. An
important example of a problem that has constraints of this
type is the dual QP problem, [21].
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Algorithm 1 Gradient projection algorithm for QP, [21]
1: Compute a feasible starting point x0.
2: Define the maximum number of iterations as kmax.
3: k ← 0
4: while k < kmax do
5: if xk satisfies the KKT conditions for (5) then
6: x∗ ← xk

7: STOP
8: end if
9: “Main step 1” (Gradient projection): Starting in xk,

find the Cauchy point xc.
10: “Main step 2” (Improvement): Find an approximate

minimizer x+ to the subproblem in (6), such that
Q(x+) ≤ Q(xc) and such that x+ is feasible with
respect to the constraints in the problem in (5).

11: xk+1 ← xk

12: k ← k + 1
13: end while
14: No solution was found in kmax iterations.

Gradient projection methods are suitable for problems with
many active constraints in the optimum. This property is
important in optimal control applications where often many
control inputs are at their boundaries at the optimum, [13].
The algorithm presented in this work shares some similarities
with the one presented in [17], where the gradient projection
method is combined with a conjugated gradient method. The
differences between the algorithms are that the algorithm
presented in this paper works on the dual QP problem and the
Newton step is computed using a Riccati recursion instead
of conjugated gradient iterations.

The algorithm presented in this work is inspired by the one
in [21]. To simplify the presentation, a generic QP problem
in the form

minimize
x

Q(x) =
1
2
xT Hx + fT x

subject to x ≥ 0
(5)

is considered, where H ∈ Sn̄
+ and f ∈ Rn̄. In the algorithm

presented in this work, analogous ideas are applied to a dual
QP problem in the form in (3).

2) The two main steps of the algorithm: Each iteration
of the algorithm can be considered to consist of two steps;
“Main step 1” and “Main step 2”. The point found in the first
step is called a Cauchy point and it has the property that it
is good enough to guarantee global convergence, [21]. The
purpose of the second step is to improve the convergence
rate. The algorithm applied to a problem in the form in (5)
is outlined in Algorithm 1. In “Main step 1”, the gradient
is computed at the current point. After the gradient has
been computed, a line search optimization along the negative
gradient (i.e., steepest descent) direction is performed. If an
inequality constraint is encountered before a minimizer is
found along the line, the search direction is bent-off such
that the constraint remains satisfied. The idea to project the
search direction onto the feasible set is in this paper used
for different types of search directions and the operation is
here called projected line search. This procedure is illustrated

xk

[xk + αp]
+

Fig. 1: The figure illustrates how the points along the line
starting in the point xk in the direction p are projected back
onto the positive orthant during the projected line search
operation. The resulting path is piecewise linear.

in Figure 1. The search is continued until either a local
optimal solution is found along the resulting piecewise linear
path, the search is stopped by constraints in sufficiently
many directions to make it impossible to continue in any
of the initial directions, or the step size tends to infinity
without any constraints blocking the way. In the latter case,
an eigenvector corresponding to a zero eigenvalue has been
found and the problem is unbounded. In “Main step 2”, a
smaller optimization problem is defined from the original
one, where all constraints that are active after the first step are
kept locked. During this part of the algorithm, subproblems
in the form

minimize
x

Qs(x) =
1
2
xT Hx + fT x

subject to xi = xc
i , i ∈ A(xc)

xi ≥ 0, i /∈ A(xc)

(6)

are solved approximately, where A(xc) denotes the active
set in the last Cauchy point. To obtain global convergence
of Algorithm 1, it is only necessary that the approximate
solution is feasible with respect to the constraints of the
original problem in (5) and that the objective function value
of the approximate solution x+ is not worse than the already
found Cauchy point xc, [21]. A common choice is to run a
conjugated gradient method on the subspace defined by the
locked constraints, [21], [17]. In this work, an alternative
approach has been used. The search direction is taken as
the vector from the current point toward the minimizer of a
problem in the form

minimize
x

Qs(x)

subject to xi = xc
i , i ∈ A(xc)

(7)

which is the Newton step for the problem in (7) since
the problem is quadratic. In this problem, the inequality
constraints in (6) have been disregarded, and it is in this work
solved directly using a Riccati recursion. This is explained
in detail in Section IV-C. The computed step is projected
onto the inequality constraints of the problem in (6). Hence,
this part of the algorithm can be interpreted as a projected
Newton step, which has been previously discussed in, e.g.,
[13]. Note that, it is not in general true that the projection
of the Newton step from (7) onto the feasible set of the
problem in (6) will lead to the true minimizer of (6) in one,
or several, iterations. This potential problem is discussed
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in [16], where also a remedy is presented. In this paper,
this problem is avoided in alternative ways. Partly this is
performed by alternating between iterations where the New-
ton step is projected and gradient projection iterations. The
negative gradient direction does not suffer from the problem
and it ensures convergence (under certain assumptions) as
described in [21]. For details, see [18, pp. 155–159].

3) Gradient Projected onto the Nullspace of the Hes-
sian: In this section, the case when the problem in (7) is
unbounded is discussed. When this occurs, there does not
exist any point where the KKT conditions are satisfied. For
simplicity, the equality constraints in (7) are now eliminated
as described in [21, pp. 428–434] and an equivalent problem
in the form

minimize
x

Q̂s(x) = 1
2xT Ĥx + f̂T x (8)

is considered. The KKT system for this reduced problem is

Ĥx + f̂ = 0 (9)

If f̂ 6∈ range Ĥ there is no solution to the system of equa-
tions in (9). In such a case, an alternative search direction has
to be chosen. One possibility is to choose the steepest descent
direction, but then the convergence rate will be rather slow.
In this work, the search direction is chosen as the projection
of the steepest descent direction onto the nullspace of the
Hessian Ĥ . This choice is motivated in [18, pp. 192–193]
and the resulting direction (with unit length) in the point x0

can be written as

−ĝ(x0) = −P
(
Ĥx0 + f̂

)/∥∥∥P (Ĥx0 + f̂
)∥∥∥ (10)

where P = Z
(
ZT Z

)−1
ZT . The columns in Z form a basis

for the nullspace of Ĥ .

III. THE DUAL MPC PROBLEM

The optimization problem in (1) is in the form in (2).
Hence, the dual optimization problem to (1) is in the form
in (3). Then, without going into details, the dual problem
to (1) can be written as

minimize
x̃,ũ

JD(x̃, ũ) =
1

2
ũ

T
(−1)Q̃ũ(−1)ũ(−1) + q̃

T
ũ (−1)ũ(−1)

+
1

2

N−1X
τ=0

„
x̃

T
(τ)Q̃x̃(τ)x̃(τ) + ũ

T
(τ)Q̃ũ(τ)ũ(τ)

+ 2x̃
T

(τ)Q̃x̃ũ(τ)ũ(τ) + 2q̃
T
ũ (τ)ũ(τ)

«
+ q̃

T
x̃ (N)x̃(N)

subject to x̃(0) = B̃(−1)ũ(−1)

x̃(τ + 1) = Ã(τ)x̃(τ) + B̃(τ)ũ(τ), τ ∈ Z0,N−1ˆ
0 −Ic(N−τ−1)

˜
ũ(τ) ≤ 0, τ ∈ Z−1,N−1

(11)

where x̃ =
[
x̃T (0), . . . , x̃T (N)

]T
,

ũ =
[
ũT (−1), . . . , ũT (N − 1)

]T
and where x̃(τ) ∈ Rñ and

ũ(τ) ∈ Rm̃(τ). For a detailed derivation of the dual problem
in (11), see [2], where also detailed relations to the primal
variables are presented.

By Assumption 1 and Assumption 2, it can be shown,
[18, p. 164], that the following inequality holds[

Q̃x̃(τ) Q̃x̃ũ(τ)
Q̃T

x̃ũ(τ) Q̃ũ(τ)

]
� 0, τ = −1, . . . , N − 1 (12)

Once the optimal solution to the dual problem in (11) is
known, the optimal solution to the primal problem in (1)
can easily be computed.

IV. TAILORED COMPUTATIONS

In this section, tailoring of the most computationally
demanding parts of the algorithm presented in Section II-
A for the specific application MPC is discussed. Because of
the limited space in this paper, some of the algorithms are
only briefly discussed, while others are discussed in detail.
For a complete treatment of all algorithms, including formal
algorithm descriptions, see Paper D in [18].

A. Tailored Projected Line Search

The projected line search operation is performed by first
searching for breakpoints where the search direction is bent
and second performing one-dimensional optimizations along
segments between breakpoints until the first local mini-
mizer is found. See Figure 1. The one-dimensional objective
function on each of those segments is a convex quadratic
function. This makes it easy to find the exact optimizer
for a segment. In this work, the solution of these one-
dimensional optimization problems have been tailored for the
MPC application with a resulting computational complexity
of O(N). This is described in detail in [18, pp. 165–167].

B. Computation of Steepest Descent Direction

The steepest descent direction is the direction of the neg-
ative gradient. The computation of this search direction has
been tailored for the dual MPC problem, and an algorithm
with complexity O(N) has been found. This is described in
detail in [18, pp. 167–168].

C. Newton Step Computation

The Newton step computation is an important part of the
algorithm presented in this paper. In each iteration in “Main
step 2”, the solution to an equality constrained QP in the
form in (7) has to be computed and the result gives the
Newton step. This means that for a subset of the inequality
constrained components in ũ(τ) in the problem in (11), the
inequality constraints are temporarily considered as equality
constraints. For the remaining components in ũ(τ), the
inequality constraints are temporarily disregarded. Denote
the part of ũ(τ) that is subject to an equality constraint v(τ)
(i.e., v(τ) = 0) and the part that is unconstrained w(τ).

1) Efficient Factorization of the KKT System Coefficient
Matrix: After a straightforward elimination of the variable v
(i.e., v = 0), the KKT conditions for the subproblem in (7)
are 24 0 Ã B̃w

ÃT Q̃x̃ Q̃x̃w

B̃T
w Q̃T

x̃w Q̃w

35 "
λ
x̃
w

#
=

"
0
−q̃x̃

−q̃w

#
(13)

where λ =
[
λT (0), . . . , λT (N)

]T
, and where Ã, B̃w, Q̃x̃,

Q̃x̃w, Q̃w, q̃x̃ and q̃w are defined in Appendix A. In order
to solve this system of equations efficiently, the coefficient
matrix is factorized. If there exist matrices P̃ ∈ S(N+1)ñ,
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G̃ ∈ S
PN−1

τ=−1 m̃w(τ) and K̃ ∈ R
PN−1

τ=−1 m̃w(τ)×(N+1)ñ such
that

P̃ = Q̃x̃ +
(
I + Ã

)T
P̃
(
I + Ã

)
− K̃T G̃K̃

G̃K̃ = −
(
Q̃T

x̃w + B̃T
w P̃
(
I + Ã

))
G̃ = Q̃w + B̃T

w P̃B̃w

(14)

then the following factorization holds

24 Q̃x̃ ÃT Q̃x̃w

Ã 0 B̃w

Q̃T
x̃w B̃T

w Q̃w

35 =

24`
Ã + B̃wK̃

´T −P̃ −K̃T

0 I 0
0 0 I

35 ·
24 I 0 0

0 I 0

B̃T
w 0 I

35 24−P̃ I 0
I 0 0

0 0 G̃

35 24I 0 B̃w

0 I 0
0 0 I

35 24Ã + B̃wK̃ 0 0

−P̃ I 0

−K̃ 0 I

35 (15)

The existence and uniqueness of such matrices has already
been considered in [22] under the assumption that Q̃w � 0
and it was shown that P̃ � 0 and G̃ � 0. In this work, the
result is generalized to the singular case, i.e., when Q̃w � 0
is singular. Note that, it follows directly from the equation
in (14) that G̃ is uniquely determined by P̃, and that G̃ � 0
if P̃ � 0 since Q̃w � 0. Furthermore, the outer four matrices
in (15) are non-singular. Note especially that Ã + B̃wK̃ is
invertible and lower triangular with diagonal elements equal
to −1 for any choice of Ã, B̃w and K̃, [18, p. 191]. This
implies that the KKT system is non-singular if and only if
the center matrix is non-singular. Notice that, the upper left
block

»
−P̃ I
I 0

–
in this matrix is non-singular. Hence, the KKT

system is non-singular if and only G̃ is non-singular.
It will now be shown that there exist matrices P̃ � 0 and

K̃ such that the equations in (14) hold. These equations can
be expressed in the block matrices of which the involved
matrices consist. The result is

P̃ (N) = 0

G̃(0) = Q̃w(−1) + B̃
T
w(−1)P̃ (0)B̃w(−1)

F̃ (τ + 1) = Q̃x̃(τ) + Ã
T

(τ)P̃ (τ + 1)Ã(τ)

G̃(τ + 1) = Q̃w(τ) + B̃
T
w(τ)P̃ (τ + 1)B̃w(τ)

H̃(τ + 1) = Q̃x̃w(τ) + Ã
T

(τ)P̃ (τ + 1)B̃w(τ)

G̃(τ + 1)K̃(τ + 1) = −H̃
T

(τ + 1)

P̃ (τ) = F̃ (τ + 1)− K̃
T

(τ + 1)G̃(τ + 1)K̃(τ + 1)

(16)

where all equations are to be satisfied for τ = 0, . . . , N −
1 unless otherwise stated. It will now be shown that
there exist matrices P̃ (τ) � 0, and K̃(τ + 1) such that
G̃(τ + 1)K̃(τ + 1) = −H̃T (τ + 1). Furthermore, it will be
shown that P̃ (τ) is unique, also in the case when the
KKT system is singular. It follows directly from (16) that
P̃ (N) � 0. Now, assume that P̃ (τ + 1) � 0 for an arbitrary
τ ∈ {0, . . . , N − 1}. Then, it follows from the equations
in (16) and (12) that F̃ (τ + 1) � 0. Furthermore,»

F̃ (τ + 1) H̃(τ + 1)

H̃T (τ + 1) G̃(τ + 1)

–
=

»
Q̃x̃(τ) Q̃x̃w(τ)

Q̃T
x̃w(τ) Q̃w(τ)

–
+

ˆ
Ã(τ) B̃w(τ)

˜T
P̃ (τ + 1)

ˆ
Ã(τ) B̃w(τ)

˜
� 0

(17)

by the equation in (12), the assumption that P̃ (τ + 1) � 0,
and the fact that the last term in the expression is quadratic.
By the Schur complement formula for positive semidefinite
matrices the following holds

»
F̃ (τ + 1) H̃(τ + 1)

H̃T (τ + 1) G̃(τ + 1)

–
� 0 ⇔

G̃(τ + 1) � 0,
“

I − G̃(τ + 1)G̃
†
(τ + 1)

”
H̃

T
(τ + 1) = 0,

F̃ (τ + 1)− H̃(τ + 1)G̃
†
(τ + 1)H̃

T
(τ + 1) � 0

(18)

where † denotes the pseudoinverse. Furthermore, notice that

P̃ (τ) = F̃ (τ + 1)− H̃(τ + 1)G̃†(τ + 1)H̃T (τ + 1) (19)

which follows from the equations in (16), a basic property
of the pseudoinverse (i.e., G̃ = G̃G̃†G̃) and the symmetry
of G̃(τ +1). By combining (18) and (19), it directly follows
that P̃ (τ) � 0, and by induction it follows that this is
true for all τ = N, . . . , 0. Furthermore, since there exists
a solution K̃(τ + 1) to a system of equations in the form
G̃(τ + 1)K̃(τ + 1) = −H̃T (τ + 1) if(

I − G̃(τ + 1)G̃†(τ + 1)
)

H̃T (τ + 1) = 0 (20)

it is possible to conclude that there exist matrices K̃(τ + 1)
for all τ = N−1, . . . , 0. Note, however, that K̃(τ +1) is not
unique in the case when the KKT system is singular since
G̃(τ) is singular for at least one τ in that case. Finally, it
follows from (19) that P̃ (τ) is independent of the choice of
K̃(τ + 1), and is hence unique.

Summarizing, the factorization exists also in the case
when the KKT system is singular. However, the factorization
is not unique in that case because there is a freedom in
the choice of K̃(τ + 1). Despite this, P̃ (τ) and G̃(τ) are
unique. The factorization can be performed very efficiently
as the well-known Riccati recursion, which is known to have
linear computational complexity in the prediction horizon.
For further details see, e.g., [22].

If the KKT system is singular, this will be found during
the solution process of the equation G̃(τ + 1)K̃(τ + 1) =
−H̃T (τ + 1) in the Riccati recursion. Generally, G̃(τ + 1)
can be factored using, e.g., the QR factorization or the SVD
factorization. Both work also in the singular case and they
can be used to compute the nullspace of G̃(τ + 1), which is
needed in the computation of the nullspace of the entire KKT
system. This will be considered in detail in Section IV-D. An
alternative is to use the Cholesky factorization as in [22] and
monitor if it breaks down.

2) Solving the KKT System Using a Riccati Recursion:
Once the KKT coefficient matrix has been factorized using
the Riccati recursion, the system in (13) can be solved
using backward and forward substitutions, all with linear
computational complexity in the prediction horizon length,
as described in, e.g., [22]. The result is basically the Newton
step, and this computation is only performed if the factoriza-
tion step terminates without any detection of singularity. If
singularity is detected, the search direction presented in the
next section is used. For further details, see [18, p. 172].

D. Inconsistent KKT System

If the KKT system is inconsistent, an alternative search
direction has to be found as discussed in Section II-A.3.
In this section, it is described how such a direction can be
computed efficiently.
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1) Nullspace Computation: Consider the factorization of
the KKT system coefficient matrix in (15) and multiply out
the two outer matrices on each side of the center one. The
result is24 Q̃x̃ ÃT Q̃x̃w

Ã 0 B̃w

Q̃T
x̃w B̃T

w Q̃w

35
=

24ÃT −P̃T −K̃T

0 I 0

B̃T
w 0 I

35 24−P̃ I 0
I 0 0

0 0 G̃

35 24 Ã 0 B̃w

−P̃ I 0

−K̃ 0 I

35 , Π
T

ΣΠ

(21)

Note that

ξ ∈ null(ΠT ΣΠ)⇔ ΠT ΣΠξ = 0⇔ ΣΠξ = 0 (22)

since Π is non-singular. Furthermore,

ΣΠξ = 0⇔ Ση = 0 and ξ = Π−1η (23)

Let the columns of the matrix NΣ be a basis for the nullspace
of Σ, and the columns of NΣΠ a basis for the nullspace of
ΠT ΣΠ . It is straightforward to generalize the ideas in (22)
and in (23) in order to compute an entire basis for the
nullspace of ΠT ΣΠ using a basis for the nullspace of Σ.
That is, NΣΠ can be computed as

NΣΠ = Π−1NΣ (24)

Note that, Π is non-singular independently of which solution
K̃(τ + 1) that is used. Furthermore, since Π depends on
K̃(τ + 1), Π is non-unique. However, for every choice
of K̃(τ + 1), the columns of NΣΠ form one basis for
the nullspace of ΠT ΣΠ since Π is always non-singular.
The computations in (24) can be performed very efficiently
thanks to the structure of NΣ and Π . For further details,
see [18, p. 174].

2) Projection of the Steepest Descent Direction: In this
section, it will be shown how the search direction discussed
in Section II-A.3 can be computed efficiently for this ap-
plication. The desired search direction is the projection of
the negative gradient in the current point onto the nullspace
of the reduced Hessian of the dual subproblem in the form
in (7). By comparing the nullspace equation for the reduced
Hessian (states eliminated) with the nullspace equation for
the KKT system coefficient matrix in (15) it can be shown,
[18, p. 175], that the nullspace of the reduced Hessian can
be computed by computing the nullspace of the KKT sys-
tem coefficient matrix in (15). How this can be efficiently
computed has already been shown in the previous section.

After the nullspace has been computed, the projection of
the gradient onto the nullspace spanned by the columns in
NΣΠ can be found as

ĝ = NΣΠ

(
NT

ΣΠNΣΠ

)−1
NT

ΣΠg (25)

where g is the gradient, and where NT
ΣΠNΣΠ is non-singular

since the columns of NΣΠ are linearly independent because
they are basis vectors. In [18, pp. 192–193], it is shown that
−ĝ is the direction that gives the fastest descent possible in
the nullspace of the Hessian. Due to the structure in NΣΠ ,
the matrix NT

ΣΠNΣΠ is often sparse and the computations
in (25) can therefore often be performed very efficiently. A
truly tailored version of this projection operation is left as
future work.

V. NUMERICAL EXPERIMENTS

In this section, the QP algorithm presented in this paper
is applied to random linear MPC problems. Since the main
objective of this work is control of hybrid systems, also an
MIPC problem is considered. All computational performance
tests have been performed on a computer with two processors
of the type Dual Core AMD Opteron 270 sharing 4 GB
RAM (the code was not written to utilize multiple cores)
running CentOS release 4.6 (Final) Kernel 2.6.9-55.ELsmp
and MATLAB 7.2.0.294. Computational times have been
measured using the MATLAB command cputime.

The random linear MPC problems are in the form in (1)
with n = 10, p = 10, m = 5 and c(t) = 10, t = 0, . . . , N−1
for different values of N in the range 50 to 450. For each
prediction horizon length, 10 stable random systems are
found using the MATLAB function drss. The constraints
are bound constraints on the control signals and are chosen
such that both feasible as well as infeasible problems are
present among the test problems. Out of the 50 problems,
38 are feasible. The reference signal is chosen as a vector
of sinusoids with random phases; one for each output of
the system. Furthermore, the cost matrices in the objective
function have also been chosen randomly, but in a way that
they are symmetric and positive definite.

In the examples, dense and sparse formulations of the
MPC problem have been solved. The sparse formulation is
a formulation in the form in (1). The objective function’s
Hessian and the equality constraints in this problem are
sparse. After eliminating x and e, the result is a new
equivalent QP problem without equality constraints. The
objective function’s Hessian of this problem is dense but
of smaller size since the only free variables are the control
signals u. Warm starts have not been considered in the linear
experiments.

The average computational times measured during this
experiment are shown in the left plot in Figure 2. The
algorithm presented in this paper is implemented in the
function drgpqp. “CPLEX sparse” denotes CPLEX given
a sparse representation of the MPC problem, and the default
settings in CPLEX are used. This means that a primal
Interior Point (IP) solver will be used to solve the problem.
“CPLEX dual sparse” is the sparse formulation solved using
a dual active set solver in CPLEX. “CPLEX dual dense”
is the dense version of the MPC problem solved by a dual
active set solver in CPLEX. As been mentioned previously,
dual active set solvers are preferable in applications where
warm starts are used. Consequently, CPLEX uses its dual
solver as the default solver for the node problems in branch
and bound. Hence, the comparisons between drgpqp and
CPLEX’s dual solvers are the most important ones in this
application where warm starts will be frequently performed.
The primal solver is only shown as a reference. As can
be seen in Figure 2, drgpqp has lower computational
complexity compared to CPLEX’s dual solvers for large
values of N . Note that drgpqp is implemented entirely in
m-code, while CPLEX is running in compiled code. Hence,
the trends are most interesting in this experiment, and the
absolute times are of minor interest. According to the result
in this experiment, the m-coded solver built on the ideas in
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Fig. 2: These plots show the computational times and number
of active set QP iterations for different QP solvers. The
QP algorithm described in this section is drgpqp. The
conclusion drawn is that the computational time as well
as the number of QP iterations grows more slowly for the
algorithm presented in this work compared to other dual
solvers.

this work has lower absolute computational time compared
to the dual solver in CPLEX applied to the sparse problem.
For some reason, the absolute performance is rather bad
for this configuration. Even though the solution returned is
correct, it cannot be excluded that some error occurs, or
some significant overhead is added, e.g., in CPLEXINT
during the call to CPLEX. Another possible explanation
is that CPLEX does not solve this problem formulation
efficiently from scratch, and that the dual solver in CPLEX is
optimized for warm starts rather than solving a problem from
scratch. The computational complexities in this experiment
grow approximately as O(N1.5) for drgpqp, O(N1.2) for
“CPLEX sparse”, O(N1.9) for “CPLEX dual sparse”, and
O(N2.9) for “CPLEX dual dense”. In the right plot in
Figure 2, the average numbers of QP iterations are compared.
Since CPLEX is not open source software, it is hard to make
a fair comparison. The number of iterations presented for
CPLEX is the status variable denoted “simplex iterations”,
which is assumed to be proportional to the number of Newton
steps computed. Note that, the number of reported active
set QP iterations for “CPLEX sparse” is zero, since it is
an IP solver rather than an active set solver. The result
from this experiment indicates that the method used in this
work significantly cuts down the number of QP iterations
needed to reach the optimal solution. It should, however, be
mentioned that each iteration in the algorithm presented in
this work is more expensive than in a classical active set
solver. In future research, an attempt will be made to reduce
the computational time by updating factorizations to a higher
extent than today rather than computing them from scratch.
Furthermore, inexact line searches will be tested instead of
the exact line searches that are used in the current algorithm.

In the second part of the simulations, the algorithm is
applied to an MIPC problem where the attitude of a satellite
is to be controlled. The control signals consist of one real-
valued control signal and two binary-valued control signals.
The discrete-time model has three states. The setup, except
for the QP solver used in branch and bound, is identical to
what has been previously presented in [3], where also further
details about the experiment setup can be found. The average
computational times are presented in the left plot in Figure 3
and the average accumulated (in the branch and bound tree
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Fig. 3: These plots show the computational times and number
of cumulated QP iterations for six different MIQP solvers.
The result is that the algorithm presented in this paper is
the m-code implementation with the best performance for
large values of N . Even though the implementation of the
algorithm in this paper is far behind CPLEX when absolute
computational times are compared, its computational time
grows similar compared to the one of CPLEX, also when
sparsity is utilized by the latter. Furthermore, the right plot
gives an indication of that the algorithm presented in this
work is rather efficient in terms of number of QP iterations.

for each problem) number of QP iterations are presented in
the right plot in Figure 3. Since the branch and bound part of
CPLEX is much more advanced with highly developed pre-
processing and heuristics, etc., than the one in drmigpqp,
drmiqp and miqp, CPLEX has been “detuned” in order
to make the comparison more fair. This is indicated by the
acronym “NPP” (No PreProcessing) in the plots, and the
parameters modified are listed in [18, pp. 191–192].

The MIQP algorithm using the QP solver presented in
this paper is referred to as drmigpqp. Furthermore, miqp
is the freely available solver described in [23] solving a
dense (states and control error eliminated) formulation of
the problem, drmiqp is an implementation of the algorithm
presented in [3], “CPLEX dense NPP” is CPLEX when
given a dense version of the problem and preprocessing has
been turned off, “CPLEX sparse” is CPLEX when given
a sparse version (states kept) of the problem and default
settings are used (i.e., basically all features in CPLEX are
enabled), and finally, “CPLEX sparse NPP” is CPLEX when
given a sparse formulation of the problem and preprocessing
has been turned off. All solvers except miqp are using warm
starts in branch and bound. In this example, for prediction
horizons longer than 20 time steps, the computational com-
plexity for the algorithm presented in this paper grows ap-
proximately as O(N1.5), while for the generic solver miqp,
using the QP solver quadprog, it grows approximately as
O(N3.6). The computational complexity for CPLEX grows
in the default configuration approximately as O(N0.9). After
detuning, CPLEX computational time grows approximately
as O(N1.8) using the sparse formulation and O(N3.6) using
the dense formulation. The implementation of the branch
and bound algorithm used in this work is the one originally
implemented in miqp. Hence, it is exactly the same branch
and bound code used in the results for drmigpqp, drmiqp
and miqp.

The algorithm has also been applied to random problems
similar to those used in the first part of this section, but with
integer variables included in the problem. The performance
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in these tests has not been as good as in the satellite example.
The major explanation might be that for more advanced
problems, more nodes have to be explored during branch and
bound and it gets more crucial that the implementation of the
branching is performed efficiently. This will be improved in
the future. Furthermore, even though CPLEX is “detuned”,
it still explores a significant smaller number of nodes than
drmigpqp. This is not a result of the algorithm presented
in this paper, but a result of that the branch and bound part,
and possibly some heuristic, of the code in CPLEX still
cuts away large parts of the tree. The random problems are
thoroughly discussed in [18, pp. 181–183].

Summarizing, the result presented in this paper should be
interpreted like a “proof of concept”. The intention is not to
present the QP solver for MPC and MIPC. To be useful in
practice, there are some features that remain to be added. For
example, for the MIPC application, an efficient preprocessing
algorithm has to be used in and before branch and bound.
Despite that there are improvements that could be made, the
main goal in this work has in large been reached. Especially,
the number of QP iterations has been significantly reduced
compared to a classical active set method.

VI. CONCLUSIONS

The main result in this work is a QP algorithm that
combines several important concepts into an algorithm with
very good computational performance for MPC and MIPC
problems. The algorithm has warm start properties similar
to a classical active set method working in the dual space.
Furthermore, it identifies the active set significantly faster
than a classical active set method. Moreover, all computa-
tions of major complexity, except for a projection operation,
have been tailored for the MPC problem. The projection
operation is not frequently used, but it would be interesting
in the future to fill in this last gap to an all tailored algorithm.
In numerical experiments, the performance is good; for QP
problems the computational complexity grows slower than
the one of CPLEX’s dual solvers as the length of the
prediction horizon grows. Furthermore, the numerical results
indicate that the algorithm solves the problem using fewer
QP iterations than the active set solvers in CPLEX. When
the algorithm is applied to MIPC problems, the performance
is still good on simple problems, but it seems like the branch
process has to be more efficiently implemented to maintain
high performance also in more difficult problems. Examples
of future work are to test inexact line search methods and
to test if more advanced factorization updates are necessary
and how they can be efficiently implemented.

APPENDIX

A. Definitions of Stacked Matrices

Q̃x̃ = diag
“

Q̃x̃(0), . . . , Q̃x̃(N − 1)
”

,

Q̃w = diag
“

Q̃w(−1), . . . , Q̃w(N − 1)
”

,

Q̃x̃w̃ = diag
“

Q̃x̃w(0), . . . , Q̃x̃w(N − 1)
”

,

q̃x̃ =
h
0, . . . , q̃

T
x̃ (N)

iT
, q̃w =

h
q̃

T
w(−1), . . . , q̃

T
w(N − 1)

iT
,

B̃w = diag
“

B̃(−1), . . . , B̃(N − 1)
”

,

G̃ = diag
“

G̃(0), . . . , G̃(N)
”

, P̃ = diag
“

P̃ (0), . . . , P̃ (N)
”

(26)

Ã =

266666664

−I 0 ... 0 0
Ã(0) −I ... 0 0

0 Ã(1)
. . . 0 0

...
...

. . .
. . .

...
0 0 ... Ã(N−1) −I

377777775
, K̃ =

266666664

0 0 ... 0 0
K̃(1) 0 ... 0 0

0 K̃(2)
. . . 0 0

...
...

. . .
. . .

...
0 0 ... K̃(N) 0

377777775
(27)
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