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Abstract—A new method to enable vehicle mode detection in a
cooperative environment while minimizing communication is proposed.
The behavior of a vehicle is described using a finite number of operating
modes. Each mode is defined by a model which describes the vehicle’s
dynamics as well as a perturbation signature based on Gold codes. To
accomplish mode detection a locally most powerful detector is derived in
which the test statistic is evaluated using the Kalman Filter innovations.
The performance of the locally most powerful detector is tested via Monte
Carlo simulations of a linear and a nonlinear system.

I. INTRODUCTION

Cooperative control approaches, such as those addressed in Refs.

[1] and [2], have been shown to work well in a variety of mis-

sions such as cooperative reconnaissance and coordinated strikes.

“Swarms” of small versions of these vehicles are now being en-

visioned because of the ability to build strong, robust small scale

electronics and smart sensors, economies of scale, and robustness that

accompanies large numbers. Implementation of swarms, or “active

networks” is non-trivial, and involves a coordinated effort to address

control, sensing of the environment, distributed and collaborative

processing, and decision making [3], [4], [5], [6]. Cooperative control

algorithms for these teams of vehicles acting in the presence of a

communication network must be robust to communication failures,

outages, or blackouts, and must also scale well with the numbers

of vehicles. The work here focuses on a non-traditional approach

of enabling inter-vehicle communications for the problem of coop-

erative control, where partner vehicles are considered part of the

environment. The goal is to improve collaborative performance using

minimal communications. Applications where this work would be

enabling include: 1) stealth like missions, where communications

are forbidden, 2) multi-vehicle systems where communications are

“expensive” (i.e. power), such that short broadcasts or multi-hop

are required, 3) multi-vehicle networked systems where faults have

occurred, and 4) active sensor networks with actions that are decided

locally, but global behavior is desired.

More specifically, this paper investigates the problem of locally

estimating (on each vehicle) the behavior of the environment, with

specific focus on partner vehicles, in order to improve performance

and decision making. Partner vehicles are described with behaviors

defined by a finite number of operating modes. Each mode of

the system not only includes a model that describes the vehicle’s

dynamics, but also includes a unique motion-based signature based on

Gold Codes. For example, in the case of cooperative reconnaissance,

the partner vehicle’s operating modes could include: 1) search an

area, 2) locate a target, and 3) identify a target. Therefore the

motion-based signatures are the basis of the non-traditional low-rate

communications protocol between aircraft. A locally most powerful

detection algorithm is used to determine the current operating mode

of each partner vehicle from sensor measurements, thus enabling

vehicles to probabilistically know what their partner vehicles are

doing even with no communications.

In Ref. [7] a suboptimal mode detection is achieved by estimating

the motion of the vehicle and the mode perturbation signature with a

Kalman Filter (KF) (the implementation of the suboptimal approach

in a reconnaissance problem is presented in Ref. [8]). The resultant

estimate is then correlated with a set of mode perturbation signature

replicas. In this investigation, an alternative mode detection method

is derived which evaluates a Neyman-Pearson locally most powerful

hypothesis test statistic using the innovations of the KF. If the

amplitude of the mode perturbation signature is assumed to be small,

the locally most powerful detector is optimal in terms of minimizing

the probability of missed detection for a given probability of false

alarm [9].

The paper is presented as follows. Section II describes the logistics

of using motion-based signatures to transmit information between

vehicles. In Section III, a locally most powerful detector under the

presence of Gaussian measurement noise is derived. In Section IV,

Monte Carlo methods are used to test the detector’s performance on

two examples. First, the KF is used on a linear model, and second the

Sigma Point Filter (SPF) is used on a two-dimensional model with

nonlinear radar-like output equations. Both examples discuss how the

model-based estimators are tuned.

II. MODE ESTIMATION METHOD

The motivation for assigning a unique signature to each of the i

modes is to facilitate mode estimation and thus enable the exchange

of vehicle information in the absence of a formal communication

system. By knowing which mode a partner vehicle is operating in, a

higher quality of cooperation can be realized. Figure 1 shows each

component of this mode estimation process for a two vehicle system.

It should be noted that the method presented here applies to more than

two vehicles. The first vehicle transfers information by choosing a

corresponding operating mode, i, which is then encoded into a mode

perturbation signature, zi
sig. The scalar mode perturbation signature

is transformed by the controller into a vehicle perturbed reference,

ri
sig, and combined with the nominal vehicle reference, r, to define

the total reference, ri. The controller calculates the total control input

ui
sig as a function of its vehicle state estimate, x̂, and ri. The total

control input drives the nonlinear vehicle dynamics, and its response,

y, is fed into a vehicle state estimator for use by the first vehicle for

its controller.

A mode detection method is used on the second vehicle to detect

the operating mode of the first vehicle. The mode detector block

uses the measurements of the second vehicle’s monitoring sensors,

denoted as y, and the stored mode perturbation signatures replica,

z̃i
sig, to detect the mode which was transmitted by the first vehicle.

The mode estimate, î, is used by the planner on the second vehicle

to modify its behavior.

A. Signature Generation

Consider a rectangular pulse composed of mρ points defined at

T time intervals and chip duration Tc = mρT or with value ρ0 or

ρ1 corresponding to the 0 or 1 respectively (other values could be
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Fig. 1. A block diagram of how information is exchanged via movements
between two vehicles.

used). Let the sequence of such nρ nonoverlapping rectangular chips

(or pulses) for the ith signature be defined as

pi =
[

bi,1,bi,2, . . . ,bi,nρ

]

(1)

where pi ∈ R
nρ and b(·) ∈

[

ρ0,ρ1
]

. The ith mode perturbation

signature, zi
sig, is formally defined at time k as the product of the

chip sequencepi and a sinusoidal carrier:

zi
sig,k = pi

k cos [2π fctk +θk] , (2)

where fc, the carrier frequency, and θ is the carrier phase. By

combining nρ chips, a mode signature, zi
sig is defined.

Pseudonrandom noise (PRN) is a known sequence of bits that,

when added to a base signal, results in a signal which has statistical

properties similar to noise [10]. Gold Codes are a type of PRN

sequences that have desirable properties in terms of auto and cross-

correlation and therefore are chosen to define the mode signatures

in this investigation [11]. Because each mode perturbation signature

zi
sig is defined using the observed vehicle’s internal time clock, the

observing vehicle must use correlation to determine if there a clock

offset, τ, with its stored mode signature replica, z̃sig. The delay, τ,

that maximizes the correlation is the estimated clock offset or delay

and is denoted as τ̂.

In summary, for a direct-sequence system with phase modulation,

the mode perturbation signature with scaling factor asig received is

modeled as:

asig,kzi
sig,k = asig,k pi

k [τ]cos
[

2π fctk +2π fd,k +θk

]

, (3)

where at time k, pi
k is the ith spreading waveform (Gold code with

ρ0 = −1 and ρ1 = 1 for bipolar-phase shift keying (BPSK)) with

phase τ, fc is the carrier frequency, and θk is the random carrier phase.

The variables τ and fd are the code phase delay and carrier frequency

offset, respectively, which must be estimated at the receiver. Equation

(3) is the signal model that would be used at the vehicle observing

(receiving) the mode perturbation signature. The frequency offset, fd ,

may be due to a Doppler shift, or to a drift or an instability in the

transmitter’s oscillator.

B. Controller

Each mode, denoted the ith mode, is correlated with a signature;

there are N modes or mode perturbation signatures defined. The

approach here is to express the signature using Gold Codes, and

then use this signature as an input to the vehicle system dynamics as

shown in Figure 1. To begin, consider at time k a nominal reference

input signal, rk, and a small perturbation to the signal, ri
sig,k. The

total reference signal with the perturbation, ri
k, is then ri

k = rk +ri
sig,k.

In order to express the scalar signature zi
sig in the physical reference

coordinates, rk, let tr
z (·) denote the mapping from the scalar signature

to the reference:

ri
sig = asigtr

z

(

zi
sig

)

. (4)

Finally, a feedback controller which minimizes the tracking is re-

quired to assure that the vehicle tracks the desired total reference ri
k.

Such controller feedback controller that can be linear, nonlinear, etc.,

can be expressed as:

ui
k = c

(

x̂k,rk + ri
sig,k

)

. (5)

C. Hybrid Model

The behavior of a vehicle in a team of vehicles is formulated as

a hybrid system defined by a finite set of N operating modes. The

vehicle dynamics and state evolution for the ith mode are governed

by:

xk+1 = f i
(

xk,u
i
k,z

i
sig,k,wk

)

, yk = hi
(

xk,u
i
k,z

i
sig,k,vk

)

, (6)

where at time k, xk ∈ R
nx is the state, yk ∈ R

ny the measurement,

uk ∈ R
nu the control input from Equation (5), and zi

sig,k ∈ R is a

scalar signature which represents the ith mode. The process noise

wk and sensor noise vk are zero-mean white Gaussian signals with

covariances, E
[

wkwT
k

]

= Qk, E
[

vkvT
k

]

= Rk.

III. THE LOCALLY MOST POWERFUL MODE DETECTOR

In this section an optimal test statistic is derived which is based

on detection theory that consists of solely correlating the measured

movements of the vehicle with mode perturbation signature replicas.

However, it is advantageous to derive an equivalent mode detection

test statistic which integrates a model-based estimator used to handle

noisy measurements. The results in this section show that the sum of

the innovations of the model-based estimator is an equivalent way to

evaluate the locally most powerful mode detector.

Consider a signal detection problem which has two hypotheses:

H0 : y = n, (7)

H1 : y = asigz
i,τ,θ, fc

sig +n, (8)

where y ∈ R
nm is a vector containing nm scalar measurements and

n ∈ R
nm is zero-mean Gaussian noise, with covariance P ∈ R

nm×nm .

The variable z
i,τ,θ, fc

sig is a stacked vector of nm scalar signatures z
i,τ,θ, fc

sig ,

z
i,τ,θ, fc

sig =















z
i,τ,θ, fc

sig,1

z
i,τ,θ, fc

sig,2

...

z
i,τ,θ, fc

sig,nm















, (9)

where

z
i,τ,θ, fc

sig,k = pi
k [τ]cos [2π fctk +θk] . (10)

Given the measurements y, the hypothesis H0 represents the belief

that there was no signal present, while the hypothesis H1 represents
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the belief that a signal was present. The term z
i,τ,θ, fc

sig ∈R
nm defines the

mode perturbation history for the ith mode, as a function of the Gold

Code with phase τ, carrier sinusoid phase θ, and carrier frequency fc.

The frequency offset term, fd , is omitted from z
i,τ,θ, fc

sig without loss

of generality. The parameter asig is the unknown scalar amplitude of

the mode perturbation history. The measurement probability density

functions, or likelihoods, under both hypotheses are written as:

p(y|H0) =
1

2π
nm
2 |P|

1
2

exp

[

−
1

2
yT P−1y

]

, (11)

p(y|H1) =
1

2π
nm
2 |P|

1
2

exp

[

−
1

2

(

y−asigz
i,τ,θ, fc

sig

)T
P−1

(

y−asigz
i,τ,θ, fc

sig

)]

. (12)

The corresponding Neyman-Pearson hypothesis test statistic [9] for

evaluating whether to accept H1 is then written as a likelihood ratio:

λ(y) =
p(y|H1)

p(y|H0)
≥ λthresh, (13)

where λthresh is a threshold that if exceeded, determines whether

hypothesis H1 should be accepted. It is noted that λthresh can be

chosen as to minimize a probability of false alarm.

It is desirable to remove the dependence of p(y|H1), Equation (12),

on the carrier phase θ, since it would simplify the formulation and

reduce the number of computations required in the evaluation of the

detection test statistic. A random carrier phase delay θ is assumed

in this formulation, and can be modeled as a uniformly distributed

random variable from 0 to 2π radians. This represents the belief

that all phases are equally likely to occur. The marginal probability

density, pθ (y|H1), for the probability density function, Equation (12),

can be computed to remove its dependency on the carrier phase delay.

The likelihood ratio is reformulated by substituting pθ (y|H1) into

Equation (13) which results in:

λθ(y) =
pθ (y|H1)

p(y|H0)
. (14)

By expanding Equation (14) and then moving the terms correspond-

ing to p(y|H0) inside the integral, the Neyman-Pearson hypothesis

test statistic can then be simplified to:

λθ(y) = cλ

∫ 2π

0
exp

{

asigyT P−1z
i,τ,θ, fc

sig .

}

−
1

2
a2

sig

(

z
i,τ,θ, fc

sig

)T
P−1z

i,τ,θ, fc

sig

}

dθ. (15)

where cλ = 1
2π .

Because asig is unknown and must be estimated, a Neyman-

Pearson locally most powerful test statistic is then formulated. First,

in hypothesis H1 it is assumed that asig is known. Equation (15) is

used to derive a Neyman-Pearson locally most powerful (LMP) test

in the limit of small, but known asig. The LMP theory shows that

this limits minimizes the probability of missed detection for a given

probability of false alarm for all small asig [9]. The LMP test is

derived by expanding Equation (15) into a Taylor series around asig

that yields:

λθ (y) ≈ λθ (y)|asig=0 +
∂λθ (y)

∂asig

∣

∣

∣

∣

asig=0

asig +
1

2

∂2λθ (y)

∂a2
sig

∣

∣

∣

∣

∣

asig=0

a2
sig.

(16)

The first term in the Taylor series in Equation (16) is a constant

defined as cλ0
. Evaluating the second term of the series in Equation

(16) requires differentiating Equation (15) with respect to asig, which

after substituting asig = 0 yields:

∂λθ(y)

∂asig

∣

∣

∣

∣

asig=0

= cλ

∫ 2π

0
yT P−1z

i,τ,θ, fc

sig dθ. (17)

In order to compute the integral with respect to θ, it is necessary to

expand the expression for the mode perturbation signature, z
i,τ,θ, fc

sig . At

time k, the discrete time version of the mode perturbation signature

in Equation (2) has the form:

z
i,τ,θ, fc

sig,k = pi
k (τ)cos [2π fctk −θk] , (18)

where the unknown carrier phase delay, θk, is subtracted to simplify

the derivation. Using trigonometric identities Equation (18) can be

written as:

z
i,τ,θ, fc

sig,k = z
i,τ, fc

cos,k cos [θk]+ z
i,τ, fc

sin,k sin [θk] , (19)

where z
i,τ, fc

cos,k = pi
k (τ)cos [2π fctk] , and z

i,τ, fc

sin,k = pi
k (τ)sin [2π fctk]. Sub-

stituting Equation (19) into Equation (17) and computing the integral

with respect to θ results in
∂λ(y)
∂asig

∣

∣

∣

asig=0
= 0. Therefore no useful

locally most powerful detector is found from the second term since

it vanishes for small asig.

Moving onto the third term in the series, the likelihood ratio, Equa-

tion (15), can be differentiated with respect to asig. The differentiation

of Equation (15) twice with respect to asig and then substituting

asig = 0 yields:

∂2λθ(y)

∂a2
sig

∣

∣

∣

∣

∣

asig=0

= cλ

∫ 2π

0

{

−
(

z
i,τ,θ, fc

sig

)T
P−1z

i,τ,θ, fc

sig

+
(

yT P−1z
i,τ,θ, fc

sig

)2
}

dθ. (20)

For clarity, the terms inside the integrals are computed separately.

The first term is derived by realizing that
(

z
i,τ, fc
cos

)T
P−1z

i,τ, fc
cos ≈

(

z
i,τ, fc

sin

)T
P−1z

i,τ, fc

sin for a diagonal P (uncorrelated noise), and a long

time interval, and then computing the integral over θ yielding:

−

∫ 2π

0

(

z
i,τ,θ, fc

sig

)T
P−1z

i,τ,θ, fc

sig = czT P−1z. (21)

The second term is computed by substituting the signature definition

in Equation (19) into Equation (20) and computing the integral over

θ yielding:
∫ 2π

0

(

yT P−1z
i,τ,θ, fc

sig

)2
dθ = π

(

yT P−1z
i,τ, fc
cos

)2
+π

(

yT P−1z
i,τ, fc

sin

)2
.

(22)

Substituting the two terms, Equations (21) and (22), into Equation

(20) results in:

∂2λθ(y)

∂a2
sig

∣

∣

∣

∣

∣

asig=0

= cλ

{

czT P−1z +π
(

yT P−1z
i,τ, fc
cos

)2

+π
(

yT P−1z
i,τ, fc

sin

)2
}

. (23)

Finally by substituting Equations (21) and (23) into Equation (16)
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results in the following definition of the LMP test statistic:

λLMP (y) ≈ cλ0
+

1

2
cλ

{

czT P−1z +π
(

yT P−1z
i,τ, fc
cos

)2

+π
(

yT P−1z
i,τ, fc

sin

)2
}

a2
sig. (24)

As stated in Equation (13), λLMP (y) can be compared to λthresh to

determine the acceptance of hypothesis H1, or λLMP ≥ λthresh. This

inequality after substituting Equation (24) can be manipulated to yield

the following:

(

yT P−1z
i,τ, fc
cos

)2
+

(

yT P−1z
i,τ, fc

sin

)2
≥

1

π

(

2
λthresh − cλ0

cλa2
sig

− czT P−1z

)

,

(25)

or

λLMP ≥ λLMP,tresh. (26)

The left-hand side of the inequality can be evaluated independent of

asig.

The test statistic in Equation (26) indicates, to a particular level

of probability of false alarm, a signal is present. In the proposed

application more information is required, namely that the correct

signal has been detected. Because the signatures vary over i, τ, fc,

λ
i,τ, fc

LMP (y) =
(

yT P−1z
i,τ, fc
cos

)2
+

(

yT P−1z
i,τ, fc

sin

)2
. (27)

From Equation (27) define η
i,τ, fc

LMP,cos and η
i,τ, fc

LMP,sin as the square of the

correlations between the measurements y and the mode perturbation

signatures with in-phase and quadrature carriers. The approach is to

use λ
∗
LMP both as a signal detector and as an optimization tool over

i, τ, fc, or

λ
∗
LMP = max

i,τ, fc

{

η
i,τ, fc

LMP,cos +η
i,τ, fc

LMP,sin

}

. (28)

The test statistic in Equation (28) is a function of the ith mode, Gold

Code phase τ, and frequency fc, but it is not a function of the carrier

phase delay θ. These parameters are estimated by maximizing λ
i,τ, fc

LMP ,

or

î, τ̂, f̂c = argmax
{

η
i,τ, fc

LMP,cos +η
i,τ, fc

LMP,sin

}

. (29)

The LMP statistic in Equation (28) was developed by assuming that

asig is known. But in practice, asig is estimated. Thus, the terms on

the right-hand side of Equation (28) must be related to the estimator.

Consider the alternate hypothesis,

H1,cos : y = asigz
i,τ, fc
cos +n, (30)

where Equation (30) differs from H1, Equation (8), by the fact that

the mode perturbation signature is expressed in terms of the in-phase

(z
i,τ, fc
cos ) signature replica. The likelihood for H1,cos is written as:

p
(

y|H1,cos

)

=
1

2π
nm
2 |P|

1
2

exp

[

−
1

2

(

y−asigz
i,τ, fc
cos

)T
P−1

(

y−asigz
i,τ, fc
cos

)]

. (31)

Assuming that the hypothesis H1,cos is satisfied, an estimate of asig

can be found by maximizing the likelihood p
(

y|H1,cos

)

given in

Equation (31) or:

âsig = argmax
asig

p
(

y|H1,cos

)

= min
asig

L
[

y|H1,cos

]

, (32)

where L is defined as the log likelihood. Because the natural

logarithm function is monotonically increasing, it can be used to

simplify Equation (32):

L∗
[

y|H1,cos

]

= min
asig

[

−
1

2

(

y−asigz
i,τ, fc
cos

)T
P−1

(

y−asigz
i,τ, fc
cos

)

]

,

(33)

where clog = log
(

2π− m
2 |P|−

1
2

)

is a constant and can be removed

from the optimization in Equation (33) with no loss in generality.

From Equation (33), the optimal maximum likelihood estimate of

asig is:

âsig,H1,cos
=

yT P−1z
i,τ, fc
cos

(

z
i,τ, fc
cos

)T
P−1z

i,τ, fc
cos

. (34)

Substituting Equation (34) into Equation (33) results in:

L
[

y|H1,cos, âsig

]

=
1

2






yT P−1y−

[

yT P−1z
i,τ, fc
cos

]2

(z
i,τ, fc
cos )T P−1z

i,τ, fc
cos






, (35)

where L
[

y|H1,cos, âsig

]

is defined as the likelihood when the optimal

value of the estimate of asig is used.

Equation (35) is very similar to η
i,τ, fc

LMP,cos in Equation (28). as a

LMP test statistic similar to Equation (28) to determine the transmit-

ted signal parameters. Noting that the yT P−1y term in Equation (35)

is not a function of asig or the optimization variables i, τ, and fc, and

c
i,τ, fc

sig =
(

z
i,τ, fc

sig,cos

)T
P−1z

i,τ, fc

sig,cos (36)

is known, the in-phase test statistic can be written as:

η
i,τ, fc

LMP,cos =
1

2

[

yT P−1z
i,τ, fc
cos

]2
, (37)

=
{

−L
[

y|H1,cos, âsig

]

+L [y|H0]
}

c
i,τ, fc

sig , (38)

where L [y|H0] is the likelihood for H0 or asig = 0. Note that adding

L [y|H0] to the negative value of L
[

y|H1,cos, âsig

]

, does not modify

the solution to the optimization problem over i, τ, and fc.

Consider another hypothesis,

H1,sin : y = asigz
i,τ, fc

sin +n, (39)

where Equation (39) differs from H1, Equation (8), by the fact that the

mode perturbation signature is expressed in terms of the quadrature

(z
i,τ, fc

sin ) signature replica. The same procedure can be used to show

that:

η
i,τ, fc

LMP,sin =
{

−L
[

y|H1,sin, âsig

]

+L [y|H0]
}

c
i,τ, fc

sin . (40)

Substituting Equations (38) and (40) into Equation (28) produces

the following optimization:

î, τ̂, f̂c = argmax
i,τ, fc

[

η
i,τ, fc

LMP,cos +η
i,τ, fc

LMP,sin

]

, (41)

= argmax
i,τ, fc

{

2 ·L [y|H0]−L
[

y|H1,cos, âsig

]

−L
[

y|H1,sin, âsig

]}

(42)

where the constant c
i,τ, fc

sig is removed from Equation (42) as it is

inconsequential to the optimization.

With the proposed optimization of the test statistic in Equation

(28), the likelihoods in Equations (37) and (40) are now related to

the KF which is used to recursively estimate âsig.

It is proposed that the amplitude of the perturbation signature, asig,

is estimated from noisy measurements using a model-based estimator.

Consider the discrete time linear system:

xk+1 = Akxk +Buuk +wx
k, (43)
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where xk ∈ R
nx is the system state, uk ∈ R

nu is the control input

and wx
k ∈ R

nx is zero-mean Gaussian process noise with covariance

Qk . Consider a full-state feedback control law with gain K based

on Equation (5) where the objective of the controller is to make the

system track a reference (that includes a mode perturbation signature

or Gold Code).

The evolution of the nominal reference is expressed as a random

walk described by matrix Ar and zero-mean Gaussian process noise

wr
k ∈R

nx,nx with covariance Qr
k. Stacking xk, rk, and asig into a vector,

the following system is derived:





xk+1

rk+1

asig,k+1



 =







Ak −BuK BuK BuKtr
z

(

z
i,τ, fc

sig

)

0 Ar 0

0 0 1











xk

rk

asig,k



+wk, (44)

where 0 are matrices of zeros of appropriate dimensions and wk =
[

wx
k wr

k wa
k

]T
is a stacked vector containing the process noise for

the state, the reference, as well as the process noise perturbing the

amplitude of the perturbation signature, wa
k . Let xk =

[

xk rk asig

]T

be the stacked state vector used in Equation (44). It should be noted

that asig is added to the system state in order to relate the likelihoods

in Equations (37) and (40) to the KF. In the measurement output

equation, vk is zero-mean Gaussian noise with covariance Rk added

to x.

The next step is to relate the KF estimate of the system from

Equation (44) to the LMP detector. The form of the LMP in

Equation (28) is related to the KF by considering the negative log

likelihood cost conditioned on measurements up to sample k. The

joint probability distribution of the measurements up to k conditioned

on the hypothesis H{·}, where H{·} is either H0 (the signal is absent),

H1,cos (the in-phase component of the signal is present), or H1,sin (the

quadrature component of the signal is present), can be written as:

p
[

Yk|H{·}

]

= p
[

yk,Y
k−1|H{·}

]

(45)

The distribution can be furthered simplified using Bayes’ Rule:

p
[

Yk|H{·}

]

= p
[

yk|Y
k−1

,H{·}

]

p
[

Yk−1|H{·}

]

=
k

∏
j=1

p
[

y j|Y
j−1

,H{·}

]

.

(46)

Because a KF is used to estimate the augmented state, xk, the

distributions in Equation (46) are Gaussian, or

p
[

y j|Y
j−1

,H{·}

]

= N
[

y j − ŷ j;0,S j|H{·}

]

= p
[

νi|H{·}

]

, (47)

where ν j = y j − ŷ j is the estimator’s innovation at sample j, and S j is

its covariance. Substituting Equation (47) into Equation (46) equals:

p
[

Yk|H{·}

]

=
k

∏
j=1

p
[

ν j|H{·}

]

(48)

Since p
[

Yk|H{·}

]

is conditioned on the system model, Equation (48),

is actually the likelihood of the measurement sequence. In other

words, p
[

Yk|H{·}

]

is equivalent to the likelihood function derived in

Equation (35) or Equation (40). The negative log likelihood function,

Equation (48), is also related to the KF innovations:

LKF

(

Yk|H{·}

)

= − log p
[

Yk|H{·}

]

=

[

1

2

k

∑
j=0

νT
j S−1

j ν j

]

H{·}

. (49)

The log likelihood function for the KF for each hypothesis is the sum

of the innovations up through sample k conditioned on the hypothesis

H{·} [12]. Since L
(

Yk|H{·}

)

is the likelihood function of the KF,

the following substitutions can be made in Equations (38) and (40):

L
[

y|H{·}, âsig

]

= LKF

(

Yk|H{·}

)

, (50)

where âsig = 0 for H0. The expressions in Equation (50) can be

rewritten in terms of the KF innovations Equation (49) yielding:

L
[

y|H{·}, âsig

]

=

[

1

2

k

∑
j=0

νT
j S−1

j ν j

]

H{·}

(51)

It is now possible to relate the KF innovations to the original LMP

statistic in Equation (27) and the associated optimization problem in

Equation (28). Equation (51) can be substituted into Equation (42)

to rewrite the signal detection optimization problem over i, τ, and fc
in terms of the KF innovations:

î, τ̂, f̂c = max
i,τ, fc







2 ·

[

1

2

k

∑
j=0

νT
j S−1

j ν j

]

H0

−

[

1

2

k

∑
j=0

νT
j S−1

j ν j

]

H1,cos

−

[

1

2

k

∑
j=0

νT
j S−1

j ν j

]

H1,sin







. (52)

In summary, for each ith mode, τ Gold Code phase, and fc carrier

frequency, the locally most powerful test statistic in Equation (52)

requires the evaluation of:

1) A KF under hypothesis H0 that assumes no perturbation sig-

nature is present, asig = 0.

2) A KF under the hypothesis, H1,cos, that there is a perturbation

signature present, with an in-phase carrier, cos(·), that has the

form tr
z

(

z
i,τ, fc
cos

)

.

3) A KF under the hypothesis, H1,cos, that there is a perturbation

signature present, with a quadrature carrier, sin(·), that has the

form tr
z

(

z
i,τ, fc

sin

)

.

The values of i, τ, and fc which maximize Equation (52) are declared

under the LMP test as the detected parameters.

IV. NUMERICAL EXAMPLES

The mode detection method based on the Neyman-Pearson locally

most powerful statistic is numerically evaluated in this section using

a linear system with linear output equations and a 2D linear model

with nonlinear radar-like output equations. Because of its optimality

for linear systems with Gaussian noise and well known equations,

the discrete time KF [12] is used for state estimation in the linear

example while the SPF is used for the nonlinear example [13].

A. Two State Linear Model with a Linear Output Equation

The dynamics of motion in one dimension are modeled using a

linear point mass model to describe the motion in an inertial plane,

resulting in:

xk+1 =

[

1 T

0 1

]

xk +

[

0

T

]

uk +wk, (53)

where the state, xk = [xk, ẋk] ∈ R
2, contains the position and velocity

of the vehicle in the x direction, wk is zero-mean Gaussian process

noise with covariance Q, and T is the sampling time. The controller

in Equation (5) is a full state feedback controller, given as uk =
K (−xk + rk), is used for tracking the reference rk.
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TABLE I
OPERATING MODES AND CORRESPONDING MODE SIGNATURES WITH

nρ = 31.

Mode Behavior Signature

1 A [1100001010111001011011000011011]

2 B [1100100001011101110111001110100]

3 C [1010110110110010111101110101010]
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Fig. 2. The response of the two state linear model to the combined position
reference.

The position trajectory of the simplified vehicle motion, is de-

scribed by three operating modes: 1) behavior A, 2) behavior B, and

3) behavior C. These modes are defined with the signatures (Gold

Codes) shown in Table I and implemented using BPSK [10]. Since the

mode perturbation signature is embedded in the position reference,

its derivative must be embedded in the tracking reference. Therefore,

the function which maps from the scalar mode perturbation signature

zi
sig to the perturbation reference ri

sig has the following form:

ri
sig,k = asig

[

zi
sig,k

d
dt zi

sig,k

]

. (54)

The closed-loop response of the linear system to a combined position

reference is shown in Figure 2.

The output equation is scalar with the form:

yk = Cxk + vk =
[

1 0
]

xk + vk. (55)

where vk is zero-mean Gaussian noise with covariance Rk.

1) Kalman Filter Setup and Tuning: In the LMP, the KF uses repli-

cas of the perturbation signatures as known inputs and estimates the

system’s nominal reference, r̂k, and perturbation signature amplitude,

âsig. An augmented state vector is defined composed of the x, r, and

asig. The system has a full-state linear feedback controller gain, K.

The carrier frequency of the carrier fc is known and therefore dropped

from the notation, while the frequency offset fd is not considered here

as its uncertainty is small for the system in this example.

The output equation of the system is linear and has the position

as the sole measurement with Gaussian noise vk with covariance Rk.

Tuning the elements of the diagonal process covariance matrix,

Qk, is important for the optimal performance of the KF. The process

noise covariance matrices found to result in the best estimates for the

KFs corresponding to the hypotheses that no signal is present, Q
H0

k ,

and a mode perturbation signature is present, Q
H1

k are:

Q
H0

k = diag
([

10−3
, 10+2

, 10−1
, 10+1

])

. (56)

Q
H1

k = diag
([

10−3
, 10+2

, 10−1
, 10+1

, 100
])

. (57)

cr = 1 cr = 102
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(a) ANR = 94.3 (b) ANR = 94.3
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(c) ANR = 48.3 (d) ANR = 48.3

Fig. 3. Each row depicts the evaluation of the LMP test statistic for the two
ANRs in decibels: 1) 94.3, and 2) 48.3 (from the top). The columns correspond
to the LMP evaluation in which the KF measurement noise covariance is
multiplied by cr =

[

1,102
]

.

In this investigation, the amplitude-to-noise ratio (ANR) is defined

as:

ANR =
a2

sig

2Rmax
, (58)

where Rmax is maximum element of the measurement noise covari-

ance matrix, or Rmax = maxR(l, l), for l = 1, . . . ,ny. The relationship

between the ANR and the signal-to-noise ratio (SNR) commonly

used in detection is: SNR = ANR× kmax, where kmax is the number

of measurement samples considered or estimation horizon [9]. The

ANR was defined independent of the estimation horizon in order to

isolate its influence on the performance of the algorithm.

The measurement noise covariance matrix can be tuned to reduce

the effects of measurement noise and increase the detection parameter

separation in the LMP. In this one dimensional example, increasing

the KF measurement noise covariance leads to the estimator which

behaves as a low-pass filter by reducing the Kalman Gain [14].

Figure 3 shows the evaluation of the LMP test statistic when the

KF measurement noise covariance is R = cr ·R0 where cr =
[

1,102
]

and R0 is the covariance matrix for each ANR value (the frequency of

the position reference is 0.10 Hz). The figures shows that decreasing

the bandwidth of the estimator reduces the value of the LMP test

statistic for signals with the incorrect parameters. For the figures with

ANR of 48.3, it can be seen that if the measurement noise covariance

is not multiplied by a factor detection is difficult. An ANR ≤ 48.3

requires that the KF measurement covariance is increased by a factor

of cr = 102 for robust detection parameter separation. Increasing the

measurement noise covariance allows the detector to perform better

by reducing the test statistic value for the incorrect parameters. For

this example, the best tradeoff is found when KF measurement noise

covariance is multiplied by a factor of 102 as shown in Figure 3 as

a larger multiplication factor reduces the bandwidth of the estimator

excessively compromising performance.

2) Monte Carlo Simulations: This section compares the results for

the optimal detection method using Monte Carlo methods. Simula-

tions were repeated for a total of 50 trials with Gaussian process and
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Fig. 4. Correct mode detection percentage for the LMP detector with a
signature amplitude of asig = 0.5 tracking a reference frequency of 0.01 Hz.

measurement noise in order to obtain meaningful simulation statistics.

In order to incorporate realistic maneuvers, the system tracked

sinusoidal references with amplitude ar = 10 at frequencies, fr: 1)

0.01 Hz, 2) 0.10 Hz, and 3) 1.00 Hz. Four ANRs in decibels were also

considered: 1) 2.2, 2) 25.3, 3) 48.3, and 4) 94.3. The performance

of the detector was measured by considering the percentage of times

the correct parameter (i and τ) were detected.

Figure 4 shows the performance of the LMP detector, Equation

(52), with the system tracking a reference of 0.01 Hz. As would be

expected, the performance of the detector improves as the estimation

horizon and ANR increase. It can be seen that even for ANR = 2.23

acceptable performance of about 80% can be achieved if the esti-

mation horizon is extended beyond 40 seconds. Figure 5 shows how

increasing the frequency of the tracking reference to 0.10 Hz affects

detection. The percentage performance is primarily not effected by

this increase in the reference frequency in areas of large estimation

horizon (> 40 seconds) and ANR (> 48.3). Most of the degradation

in performance occurs for low ANRs. However, a tracking reference

with frequency of 1.00 Hz deteriorates the performance of the

detector. This effect is evident when Figure 6 is compared to Figures

4 and 5. For this condition, the nominal reference and the mode

signature share the same frequency ( fc = fr = 1.0 Hz) decreasing the

performance of the LMP detector. However, as Figure 6 shows that a

detection rate higher than 90% is attainable if the estimation horizon

is large (> 60 seconds) and the ANR is large (≥ 94.3). Figures 4, 5,

and 6 have sufficient information to select an estimation horizon and

ANR and predict a rate of correct parameter detection.

B. Four State Linear Model with Nonlinear Radar-Like Equations

Motion in two dimensions is described by the following linear

discrete time model:

xk+1 =









1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1









xk +









0 0

T 0

0 0

0 T









ui
k +wk, (59)

where the state, xk is composed of the position and velocity along

the x-axis and the position and its derivative along the y-axis, or xk =
[xk ẋk yk ẏk]

T ∈R
4. The control input has components for each axis,

ui
k =

[

u
x,i
k u

y,i
k

]T
∈R

2, and is calculated using full-state feedback (see

94.3348
48.2831

25.2573
2.231440

20

40

60

80

0

20

40

60

80

100

 

ANR (dB)
Estimation Horizon (sec)

 

C
o

rr
e

c
t 

D
e

te
c
ti
o

n
 %

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fig. 5. Correct mode detection percentage for the LMP detector with a
signature amplitude of asig = 0.5 tracking a reference frequency of 0.10 Hz.
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Fig. 6. Correct mode detection percentage for the LMP detector with a
signature amplitude of asig = 0.5 tracking a reference frequency of 1.00 Hz.

Equation(5)).

The nonlinear output equations are composed of radar-like mea-

surements: the range, κk, and an angle, χk, relative to the x-axis. The

nonlinear measurement equations are the following:

[

κk

χk

]

=





√

x2
k + y2

k

tan−1
(

yk

xk

)



+vk, (60)

where vk is zero-mean white Gaussian measurement noise with

covariance Rk.

1) Sigma Point Filter Setup and Tuning: In this example, the setup

of the SPF is similar to the one described for the KF in the linear

example, the only differences coming from the fact that motion in the

y-axis must be considered resulting in an augmented state with larger

dimensions. The nonlinear output equations used by the estimator are

the same as the ones shown in Equation (60).

Although there is not a single best way to tune the estimator, sim-

ulation studies showed that it is most effective to start by minimizing

the error in the velocity elements of the reference in both the x and

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC02.4

3217



101.266
55.2146

32.1888
9.162910

20

40

60

80

0

20

40

60

80

100

 

ANR (dB)
Estimation Horizon (sec)

 

C
o

rr
e

c
t 

D
e

te
c
ti
o

n
 %

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fig. 7. Correct mode detection percentage for the LMP detector for the
nonlinear example with asig = 0.5 and fr = 0.01 Hz.

y directions and then to continue with the other elements. Therefore,

the corresponding elements in the process covariance were tuned until

the accuracy of the reference velocity estimate was maximized. As

the elements in the covariance corresponding to the reference velocity

were tuned, the reference position elements were also adjusted. The

process covariance matrices found to produce the best estimates for

the SPF in terms of maximizing the value of the test statistic for the

correct parameters under hypothesis H0 were the following:

Q
H0

k = diag
([

10−1
,10−3

,10−1
,10−3

,10−1
,10+4

,10−1
,10+4

])

,

(61)

where Q
H0

k is the SPF process noise covariance for the hypothesis

that no signal is present, H0, and

Q
H1

k = diag
([

10−1
,10+2

,10−1
,10+1

,10−2
,

10+2
,10+2

,10+3
,10−1

,100
])

, (62)

where Q
H1

k is the SPF process noise covariance for the hypothesis

that a signal is present with either with a cosine or sine carrier.

2) Monte Carlo Simulations: In the simulations, the radar sensor

was located at the origin of an x− y coordinate system while the

motion of the vehicle started at the coordinates (70,−20) with

an initial speed of zero for both directions. The trajectory of the

vehicle tracking a reference with amplitude ar = 10 and frequency

of fr = 0.01 Hz and a amplitude of asig = 0.5. As with the linear

numerical example, the simulations were repeated 50 trials with

Gaussian process and measurement noise. The ANRs pairs in dBs for

the angle and range measurements respectively were: 1) 9.2, 37.1, 2)

32.2, 60.2, 3) 55.2, 83.2, and 4) 101.3, 129.2.

The Monte Carlo simulations results in Figure 7 show that the

performance of the LMP detector dropped off significantly for the

ANR pair of less than 101.3 and 129.2 dBs. Figure 7 shows the

simulation results, for an ANR= 101.3 the relationship between the

estimation horizon and the performance is similar to the one seen in

the simpler linear example (the ANR axis in the figure corresponds

to the angle). However, the performance degrades quickly when

the ANR is lowered to 55.2 and 83.2 dBs. Although not shown,

the performance of the LMP degrades as the frequency of the

reference increases. This nonlinear example is shown to demonstrate

the applicability of the LMP detector to a nonlinear system. A more

detailed analysis and simulations of the application of the LMP

detector to a nonlinear system can be found in [15].

V. SUMMARY

The problem of receiving information using movements instead

of direct radio communication was investigated. The motivation of

using a motion-based communication protocol was to establish a non-

traditional method of exchanging information for situations in which

radio communication is prohibited or faults have occurred. A hybrid

system model was formulated under the assumption that the behavior

can be described by a finite set of operating modes. Each mode

consists of a model that describes the vehicle’s dynamics as well

as a mode perturbation signature. The signatures were designed as

Gold codes since they are differentiable from noise and have favorable

correlation properties. A locally most powerful detector was derived

that uses principles from detection and estimation theory to derive

an optimal test statistic. The LMP test statistic is evaluated using

the KF innovations. Monte Carlo simulations of a one dimensional

linear model and a two dimensional model with nonlinear radar-like

measurements were presented.

Simulations showed the detection performance, defined as the per-

centage of times the correct mode perturbation signature parameters

are detected, is a function of the estimation horizon and the ANR. The

results also showed that as the frequency of the reference increases

and is near the frequency of the mode perturbation signature, the

performance of the detector degrades. In the linear example, it was

shown that the proper tuning of the measurement noise covariance

can significantly affect performance. The numerical example of a

system with nonlinear radar-like measurement equations showed the

applicability of the LMP detector to a nonlinear system.
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