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Abstract— In optimal control theory, it is well known that
the costate arc and the associated maximized Hamiltonian
function can be interpreted in terms of gradients of the value
function, evaluated along the optimal state trajectory. Such
relations have been referred to as ‘sensitivity relations’ in the
literature. In this paper, we announce new sensitivity relations
for state constrained optimal control problems. For the class
of optimal control problems considered there is no guarantee
that the co-state arc is unique; a key feature of the results is
that they assert ‘some’ choice of co-state arc can be made, for
which the sensitivity relations are valid. The proof technique
is to introduce a new optimal control problem that possesses
a richer set of control variables than the original problem.
The introduction of the additional control variables in effect
enlarges the class of variations with respect to which the
state trajectory under consideration is a minimizer; the extra
information obtained is precisely the desired set of sensitivity
relations.

I. INTRODUCTION

We consider the following optimal control problem with
state constraints:

(PS,x0)



Minimize g(x(T ))
over arcs x(.) ∈ W 1,1([S, T ];Rn)
and measurable functions u(.) : [S, T ] → Rm s.t.
ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [S, T ]
u(t) ∈ U(t) a.e. t ∈ [S, T ]
x(t) ∈ A(t) for all t ∈ [S, T ]
x(S) = x0 .

The data for this problem comprise: an interval [S, T ],
integers n and m, functions g : Rn → R and f : R ×
Rn × Rm → Rn, a vector x0 ∈ Rn and multifunctions
U : [S, T ]  Rm and A : [S, T ]  Rn. It is assumed
that the time-dependent ‘state constraint’ set A(t) has the
functional inequality representation

A(t) = {x |h(t, x) ≤ 0} , (1)

for some integer r and some function h : R×Rn → R. Let
(x̄, ū) be a minimizer for (PS,x0).

Given any (t, x) ∈ [S, T ] × Rn, we denote by (Pt,x)
the modification of (PS,x0) in which the ‘initial data’
(t, x) replaces (S, x0). We refer to a measurable function
u : [t, T ] → Rm that satisfies u(s) ∈ U(s), a.e. as a
control function on [t, T ]. A pair (x(.), u(.)) comprising an
absolutely continuous Rn valued function x(.) and a control
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function u(.) on [t, T ] that satisfy ẋ(s) = f(s, x(s), u(s))
a.e. is called a process on [t, T ]. The first component of a
process is called a state trajectory. A process on [t, T ] that
satisfies the constraints of problem (Pt,x) is said to be an
admissible (or feasible) process for (Pt,x). A minimizer is
an admissible process that achieves the infimum value of
the cost over all admissible processes. A process (x̄(.), ū(.))
is said to be a strong local minimizer if it is a minimizer
under the additional constraint ||x(.) − x̄(.)||L∞ < ε on
admissible processes (x(.), u(.)).

The value function V : [S, T ] × Rn → R ∪ {+∞} is the
function

V (t, x) = inf (Pt,x) ,

where the right hand side is interpreted as the infimum cost
in the case that admissible processes for (Pt,x) exist and as
+∞ otherwise. (In particular, the value function takes the
value +∞ at points (t, x) such that x /∈ A(t).)
Denote by H : [S, T ]×Rn×Rn×Rm → R the Hamiltonian
function

H(t, x, p, u) = p · f(t, x, u)

and by H : [S, T ] × Rn × Rn → R the maximized
Hamiltonian

H(t, x, p) = sup
u∈U(t)

H(t, x, p, u) .

When the state constraint is absent (A(t) = Rn), f and g
are continuously differentiable, f(t, x, u) has at most linear
growth w.r.t. the x variable (uniformly over t ∈ [S, T ], u ∈
U(t), when V is continuously differentiable on (S, T )×Rn

and when ū is piecewise continuous, it is well-known that V
is related to the costate arc, p(.) appearing in the Maximum
Principle, and the maximized Hamiltonian evaluated along
x̄(.) and p(.) according to:

(−H(t, x̄(t), p(t)), p(t)) = ∇V (t, x̄(t)) a.e. t ∈ [S, T ] .

These relations follow, formally at least, from the
Hamilton Jacobi equation (smooth form) when we identify
t → Vx(t, x̄(t)) with the co-state arc p(.). They date from
the early days of optimal control theory and have been
described as providing a ‘sensitivity’ interpretation of the
Maximum Principle Lagrange ‘multipliers’. (See, e.g., [2]).
They are of interest because they tell us that the Pontryagin
Maximum Principle can be used, not only to solve optimal
control problems, but to supply first order information about
how the minimum cost is affected by perturbations to the
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problem data.

For many optimal control problems of interest, the value
function fails to be continuously differentiable. Under broad,
unrestrictive conditions however the value function can
be shown to be a (possibly discontinuous) lower semi-
continuous function. So, if the sensitivity relations are to
be validated in conditions of any generality, they must
be couched in terms of ‘nonsmooth’ subdifferentials, for
example

(H(t, x̄(t), p(t)),−p(t)) ∈ co ∂ V (t, x̄(t)) a.e. t ∈ [S, T ] .
(2)

(∂V denotes the subdifferential of V ; see below.) If we no
longer suppose that f and g are continuously differentiable
in the x variable, then the co-state inclusion may have
multiple solutions satisfying the maximization of the
Hamiltonian condition and the transversality condition. In
these circumstances it is natural to ask whether there exists
some co-state arc that satisfies (2).

In the absence of state constraints, the validity of the partial
sensitivity relation (sensitivity only w.r.t. to the x variable)

−p(t) ∈ co ∂x V (t, x̄(t)) a.e. t ∈ [S, T ] . (3)

was proved by Clarke and Vinter [8]. The full sensitivity
relation (2) was proved by Vinter in [17].

Examples are available (see [16]) showing that, in some
cases, there are a number of possible choices of co-state arcs
associated with (PS,x0), but some of them fail to satisfy (3).

In this paper we investigate the validity of sensitivity
relations for optimal control problems with state constraints.
The costate arc p(.) involved in these relations, associated
with the minimizing process (x̄, ū) of interest, is that which
arises in the following version of the Maximum Principle
for state constrained optimal control problems:

State Constrained Maximum Principle : There exists a func-
tion of bounded variation p(.) : [S, T ] → Rn and a Radon
measure µ on the (Borel subsets of) [S, T ] such that

−dp(t) ∈ co ∂xH(t, x̄(t), p(t), ū(t))dt

−∇xh(t, x̄(t))µ(dt) on t ∈ [S, T ] (4)
H(t, x̄(t), p(t), ū(t)) = H(t, x̄(t), p(t)) (5)
supp {µ} ⊂ {t |h(t, x̄(t)) = 0} (6)
−p(T ) ∈ ∂g(x̄(T )) . (7)

Here (4) is interpreted as an integral equation: there exists
an integrable function ξ : [S, T ] → Rn such that

ξ(t) ∈ co ∂xH(t, x̄(t), p(t), ū(t)) a.e. t ∈ [S, T ]

−p(t) = −p(S) +
∫

[S,t]

ξ(s)ds

−
∫

[S,t]

∇xh(s, x̄(s))µ(ds) ∀t ∈ (S, T ] .

The form of the above optimality conditions is that earlier
employed (in the smooth case) by Ioffe and Tihomirov [11].
We refer to the function p as the true co-state arc. The
optimality condition is more frequently expressed in terms
of an absolutely continuous ‘pseudo co-state’ arc q satisfying
q(S) = p(S) and

q(t) := p(t)−
∫

[S,t]

∇xh(s, x̄(s))µ(ds) if t ∈ (S, T ] ,

because q is absolutely continuous and satisfies a simple
differential inclusion, namely

−q̇(t) ∈ co ∂xH
(
t, x̄(t), q(t)

+
∫

[S,t]

∇xh(s, x̄(s))µ(ds)
)

a.e. t ∈ [S, T ] .

Maximum Principles expressed in terms of the true
co-state p(.) or the pseudo co-state arc q(.) convey the
same information about optimal controls. However, the
true co-state should be the subject of sensitivity analysis
because, according to formal calculations, it can, unlike q,
be interpreted as the Lagrange multiplier associated with
the dynamic constraint ẋ = f(t, x, u) in (Pt,x0). (See the
discussion in ([16], p. 321 et seq.))

The main result of the paper is the validity of the sensitivity
relations (2) and (3), under precisely stated, unrestrictive
conditions, for the existence of some co-state arc p(.) in
the state constrained Maximum Principle which satisfies the
full nonsmooth sensitivity relations (2).

Cernea and Frankowska [6] have earlier investigated sensitiv-
ity relations for state constrained optimal control problems,
as part of a broad study which addresses also the question
of when the state constrainted Maximum Principle is valid
in normal form. Different hypotheses are imposed on the
state constraint sets A(t) and different kinds of subgradients
are employed to those of this paper. However the principal
differences are as follows:
(a): In [6] it is shown that, for each t ∈ [S, T ], a sensitivity

relation of the form

−p′(t; t) ∈ co ∂x V (t, x̄(t)) for all t ∈ [S, T ] . (8)

where p′(s; t), t ≤ s ≤ T , is a co-state arc associated
with the restriction of (x̄, ū) to [t, T ], regarded as a
minimizing process for (Pt,x̄(t)). Only in special cases
(smooth data and no state constraints, for example) we
can guarantee that the left endpoints of these costate
arcs define a costate arc for the problem interest (PS,x0).
This paper imposes no such conditions.

(b): [6] provides a version of the partial sensitivity relation
(involving partial subgradients of V w.r.t. the x vari-
able). The main theorem of the paper asserts a full
sensitivity relation (involving subgradients of V w.r.t.
both t and x variables).

Finally some definition and points of notation. In Euclidean
space, the length of a vector x is denoted by |x|, and
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the closed unit ball {x | |x| ≤ 1} by B. The graph of a
multifunction U(.) : [S, T ] Rm is denoted by Graph U(.).
Given a set D ⊂ Rk, co D denotes the convex hull of D.

Take an open set O ⊂ Rk, a lower semicontinuous function
f : O → R ∪ {+∞} and a point x̄ ∈ O such that x̄ ∈
dom f := {x |, f(x) < +∞}. The subdifferential of f at x̄
is

∂f(x̄) =
{

ξ | ∃ ξi → ξ and xi
dom f−→ x̄ such that,

lim supx→xi

ξi · (x− xi)− f(x) + f(xi)
|x− xi|

≤ 0 ∀i
}

.

For background on nonsmooth analysis and subdifferentials,
see, e.g. [1], [7], [12] or [16].

II. SENSITIVITY RELATIONS

In this section we state the main results of the paper,
interpreting co-state arcs for the state constrained Maximum
Principle as subgradients of the value function. The following
notation will be also required:

h+(t, x) = max{h(t, x); 0}.

We shall invoke the following hypotheses:
H1: For each (x, u) ∈ Rn×Rm f(., x, u) is measurable, and

for each t ∈ [S, T ] f(t, ., .) is continuous. The multi-
function t  U(t) has values closed sets and is Borel
measurable. g is locally Lipschitz continuous. h(., .) is
of class C1+ (i.e. everywhere Frechet differentiable with
locally Lipschitz continuous derivatives).

H2: There exist c > 0 and kf (.) ∈ L1([S, T ];R) such that
for all t ∈ [S, T ], x, x′ ∈ Rn and u ∈ U(t) we have

|f(t, x, u)| ≤ c(1 + |x|)
|f(t, x, u)− f(t, x′, u)| ≤ kf (t)|x− x′|.

H3: For any r > 0 there exist γ, ρ > 0 such that for all
(t, x) ∈ [S, T ]× rB at which |h(t, x)| ≤ ρ we have

min
u∈U(t)

∇h(t, x) · (1, f(t, x, u)) ≤ −γ.

Theorem 2.1: Let (x̄, ū) be a minimizer for problem
(PS,x0). Assume (H1)-(H3). Then there exists a function of
bounded variation p(.) : [S, T ] → R, right continuous on
(S, T ), and a Radon measure µ on the (Borel subsets of)
[S, T ] such that
(i): the conditions (4)- (7) of the state constrained Maximum

Principle are satisfied
(ii): (H(t, x̄(t), p(t)), −p(t)) ∈ co ∂V (t, x̄(t))

a.e. t ∈ [S, T ]
(iii): p(S) ∈ ∂x (−V )+(S, x̄(S))
in which (−V )+(., .) is the extended valued function on R×
Rn

(−V )+(t, x) :=
{
−V (t, x) if t ∈ [S, T ] and x ∈ A(t)
+∞ otherwise .

Theorem 2.2: The assertions of Thm. 2.1 remain valid
(though with a possibly different co-state arc p(.)) when
condition (ii) is replaced by

(ii)
′
: −p(t) ∈ co ∂xV (t, x̄(t)) a.e. t ∈ [S, T ] .

III. PROOFS OF THMS. 2.1 AND 2.2

The proof technique used for both theorems is to associate
with the minimizing process (x̄, ū) for the original problem
a minimizing process for a new optimal control problem
involving an enriched collection of control variables. By
applying the standard Maximum Principle to the new
problem, we recover the customary necessary conditions
of optimality. Examining the effects of the new control
variables we are able also to deduce the desired sensitivity
relations. Full details are supplied in a forthcoming paper
[5].

Define, for each ε > 0 the multifunction Gε : [S, T ] →
R1+n:

Gε(t) := {(α, β) ∈ R1+n | (α, β) ∈ co ∂V (s, y)
for some (s, y) ∈ ((t, x̄) + εB) ∩ ((S, T )×Rn)

such that h(s, y) < 0}

and, for t ∈ [S, T ], v ∈ Rn, w ∈ R,

σε(t, v, w) := sup(α,β)∈Gε(t)
(α, β) · (w,−(1 + w)v) .

We see that the set Gε(t) captures information about con-
vexified sub-differentials of V at points in a neighbourbood
of (t, x̄(t)) on which the state constraint is inactive. The
function σε(t, v, w) provides a dual description of the closed
convex hull of this set. The goal will be to show that, for
each ε > 0,

(H(t, x̄(t), p(t)),−p(t)) ∈ co Gε(t) a.e. (9)

The desired sensitivity relation is recovered in the limit as
ε → 0.

A key role in establishing the preceding inclusion is played
by analytical techniques for constructing a feasible state
trajectory x(.) which lies ‘close’ to a state trajectory x̂(.)
that violates the state constraint, and for which x(S) = x̂(S).
Closeness is understood in the sense that the deviation of x(.)
is estimated by a measure of the degree constraint violation.
Specifically, there exists a constant K, independent of x̂(.),
such that

||x(.)− x̂(.)||L∞ ≤ K max
t∈[S,T ]

h+(t, x̂(t)) .

Such techniques, which have extensive application in
optimal control theory, have been widely studied. (See, e.g.
[3], [4], [9], [10], [13], [14] and the references therein).

The techniques can be employed, in the present context, to
establish the following facts about the optimal control: by
including an extra integral term in the cost function of the
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original optimal control problem (PS,x0) and replacing the
state constraint by an additive penalty term

K max
t∈[S,T ]

h+(t, x(t))

we can arrange that the optimal state trajectory is a minimizer
with respect a modified set of dynamic constraints. To be
precise we have:

Take any r0 > ||x̄||L∞ . Then, there exists K > 0 and
ε̄ ∈ (0, 1) with the following property: for any ε ∈ (0, ε̄),
(x̄,(ū, v ≡ 0, w ≡ 0)) is a strong local minimizer for

Minimize g(x(T )) +
∫ T

S
σε(t, v(t), w(t))dt

+K maxt∈[S,T ] h
+(t, x(t))− V (S, x(S))

subject to
ẋ(t) = (1 + w(t))

(
f(t, x(t), u(t)) + v(t)

)
(u(t), v(t), w(t)) ∈ (U(t)× εB × [−ε, ε])
x(S) ∈ A(S), ||x− x̄||L∞ < ε, ||x||L∞ < r0 .

Now apply the state constrained Maximum Principle
to this problem and denote the resulting costate arc p(.).
Freezing the new control variables (v(.), w(.)) ≡ (0, 0), we
recover all the assertions of the standard state constrained
Maximum Principle for the original problem. (Furthermore,
these optimality conditions are in ‘normal’ form, i.e. the
cost multiplier can be set to unity.) But now allowing v(.)
and w(.) to vary, we recover extra information from the
‘maximization of the Hamiltonian’ condition. It is

pT (t)f(t, x̄(t), ū(t)) =
max(u,v,w)∈U(t)×εB×[−ε,ε](1 + w)pT (t)(f(t, x̄(t), u) + v)

−σε(t, v, w).

Let us examine in detail the implications of this condition.
Setting (v, w) = (0, 0), maximization over u yields

H(t, x̄(t), p(t), ū(t)) = H(t, x̄(t), p(t)) a.e.

On the other hand fixing u = ū(t), we deduce that, for
all v, w such that |w| ≤ ε and |v| ≤ ε and almost every
t ∈ [S, T ] we have

w

1 + w
H+ (−p(t))T (−v)

≤ sup(α,β)∈Gε(t)
(α, β) · ( w

1 + w
,−v) .

Write w′ = w/(1 + w), v′ = −v. We note that, for some
ε̃ > 0

|w| ≤ ε, |v| ≤ ε implies |w′| ≤ ε̃, |v| ≤ ε̃ .

It follows that, for almost every t and all w′, v′ such that
|v′| ≤ ε̃, |w′| ≤ ε̃

w′H+ (−p(t))T v′ ≤ sup(α,β)∈Gε(t)
(α, β) · (w′, v′) .

It follows that

(H(t, x̄(t), p(t)),−p(t)) ∈ co Gε(t) a.e. t ∈ [S, T ] .

This is (9), the ε version of the desired full sensitivity
relation in Thm. 2.1. the partial sensitivty relation of Thm.
2.2. is proved by the same methods, except that a modified
version Gε and of the integrand σε is employed.
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