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Abstract— Understanding information transfer and represen-
tation in the brain is one of the most challenging scientific
endeavors since neuroscientists are still far from converging
to a solution with exact description. The main challenge in
deciphering the neural code is the probabilistic nature of the
neural codebook which maps stimuli to neural responses and
vice versa. With the advent of recording techniques from
single and multiple cells, it is becoming plausible to obtain
large amount of experimental data against which theoretical
models can be tested. In this respect, information theory
can potentially provide a powerful framework for analyzing
information content and representation in neuronal network
activity. In this paper, we develop a simplified neuronal firing
model which is mathematically complete and scalable. The
model makes use of Poisson processes’ properties and queuing
theory. We also derive theoretical tools to measure, quantify,
and set upper limits on information coded by the proposed
model based on information theory. The designed measures
take into account a general coding scheme in each neuron that
combines temporal and rate coding of spike train responses
of neurons. The proposed model along with the tools are
generalized to quantify information in a population of neurons
where correlation among neurons is modeled. The model also
incorporates a spatial component which allows studying the
amount of information gained from the spatial pattern of
responses in a neuron population. Accordingly, the developed
model and tools aim at providing a unified view of measuring
information quantities and hence giving a better understanding
of the neural coding.

I. INTRODUCTION

The mammalian brain is subject to a wide range of

sensory stimuli ranging from simple to complex correlated

stimuli. These stimuli are processed by a vast network of

interconnecting neurons and are subsequently transformed

into meaningful memories, decisions, and motor activities in

relation to the outside world. The basic language by which

neurons can communicate is composed of elementary alpha-

bets known as spikes or action potentials -identical short

discrete voltage pulses propagating among neurons over large

distances without attenuation. Accordingly, neurons produce

different spiking patterns which signify varying perceptions

and give meaning to perceived stimuli. At a single neuron

level, information about stimuli can be encoded by the

number of spikes and their arrival times [1]. At a neural

population level, stimuli could also be encoded in the spiking

activity of many neurons with heterogenous properties and

connectivity and hence distributed representation or spatial

encoding becomes important.
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In trying to develop a general mathematical tool that

describes the occurrence of spiking events in time and the

nature of information transferred, noisy and random nature

of neural coding quickly renders solutions incomplete. In

fact, there is often a lack of one-to-one mapping between

incoming stimuli and neural spiking, which necessitates

developing probability dictionaries that map responses to

stimuli and quantify the underlying randomness [2]. Discrete

time processes such as Poisson models have been adopted

in many studies as they have been considered relatively

accurate in many scenarios and more importantly they are

analytically tractable. It is plausible that several forms of

coding actually coexist in varying proportions in different

sensory systems. The different forms of neural codes often

described by neuroscientists are either the time average of

spiking or the firing rate (called rate coding), or the timing of

individual spikes on a discretized time axis or spike-timing

(called temporal coding) [3], or a combination of both.

With the advent of single and multiple microelectrodes

recording techniques as well as new brain imaging methods,

it is becoming increasingly plausible to observe neural re-

sponses in awake animals. This data availability can subse-

quently allow for developing and testing various statistical

and information-theoretic approaches that aim at under-

standing the neural code. Statistical approaches are widely

used in literature to solve the neural encoding/decoding

problem (relating stimuli to responses and vice versa) as in

the stimulus-response curves or tuning curves [4], [5], [6],

spike-triggered average stimulus, and response-conditional

ensembles [7]. Additionally, system identification techniques

may be used to find the optimal estimator or decoding

algorithm [7]. Information-theoretic approaches aim on the

other hand at understanding the information content and

transfer among neurons. While most commonly encountered

in communication engineering, information theory [8] also

provides a general framework for information analysis in

many other fields [9].

In computational neuroscience, information theory allows

to set limits on information transfer, quantify the amount

of information carried and neuronal capacity, as well as

estimate the neural code reliability and efficiency. Several

examples in the literature use information theoretic measures

and associated concepts, such as entropy, mutual information

and capacity to (i) compare information content between rate

and temporal coding [7], (ii) to set upper and lower bounds

in estimating information between responses and stimuli in

encoding/decoding neural problems [7], [10], and (iii) to

study the effect of correlations among neurons in estimation
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problems [11].

In this paper, we develop a scalable model to represent

firing responses of neurons and subsequently use informa-

tion theory, specifically an entropy measure, to quantify

the amount of information conveyed by the response of a

neuronal population. This developed measure incorporates

the aforementioned forms of neural coding: rate, temporal,

and spatial. It can therefore be used as a benchmark to

evaluate how close a neural system or subsystem come to

the performance limits specified by the theory under each

or combination of the coding schemes. We develop the

theoretical tools that can help understand the underlying

properties of neurons and measure the amount of infor-

mation which can be processed in the brain in a unified

view starting from a single neuron and generalizing to a

population of neurons. For single neurons, we model the

spike train sequence as a homogeneous Poisson process

thus combining the rate coding and temporal coding into

one general scheme. For populations of neurons, we come

up with a correlation model that can describe dependence

among neurons in a population and induce this quantity

in the entropy information measure of neuron population.

We also incorporate an original concept of adding a spatial

component when dealing with neuronal populations that is

believed to induce additional information different from that

induced by correlations.

II. BACKGROUND

A. Spike Generation

For simplicity , we will think of neurons as three parts:

synapses which the input ports along the dendritic tree and

cell body and allow for spike-to-current conversion (D/A

conversion), the soma and intracellular channels which accu-

mulate current (conductances, capacitance) and thus preform

computations in the analog domain, and the axonal initial

segment which generates stereotypical pulses when mem-

brane potential reaches a critical threshold (A/D conversion).

A single neuron interconnects with others via thousands of

input ports (synapses). An arriving spike to a synapse creates

a Post Synaptic Potential (PSP) which changes in the mem-

brane potential, either by positive current injection towards

spike threshold (called excitatory or EPSP) or negatively

away from threshold (called inhibitory or IPSP). Note that

EPSPs can summate spatially or temporally to generate an

action potential whereas even if the number of EPSPs is

sufficient to generate a spike, IPSP can prevent the generation

as depicted in Fig. 1.

B. Information Theory Definitions

The basic element in information theory is the concept

of entropy whose properties agree with the intuitive notion

of information measure. The entropy of a discrete random

variable X with realizations x is defined as

H(X) = −
∑

x

p(x) log p(x), (1)

Fig. 1. Action Potential Generation [12]. Neurons A and B have excitatory
synapses with the neuron whereas C has an inhibitory synapse. In part
I, the occurrence of two spikes from neuron A is not sufficient to raise
the membrane potential beyond the spiking threshold since they are far
temporally from each other. In part II, the difference in time is sufficient to
generate a spike. In part III, spikes from neurons A and B add up spatially
to induce a spike. In par IV, the spike from neuron C inhibits the generation
of spikes in the neuron.

where p(.) is the Probability Mass Function (PMF) of X .

Entropy measures the uncertainty or ”surprise” of a random

variable and hence quantifies the inherent information in a

random variable.

The entropy of a random variable X taking n possible

values may be lower and upper bounded by

0 ≤ H(X) ≤ log(n). (2)

The left-hand side inequality is satisfied with equality if

and only if X is deterministic (p = 1 for some event and 0
for others), while the right-hand side is satisfied with equality

if and only if X has uniform distribution, i.e. all outcomes

are equiprobable. This is intuitively consistent as there is

maximum uncertainty and knowing any outcome provides

us with maximum amount of information.

When a random variable with only two realizations is

defined with probabilities λ and 1−λ, the entropy is referred

to as binary entropy and denoted as

H(X) = −λ log λ − (1 − λ) log(1 − λ)
def
= H(λ). (3)

For a continuous random variable Y , a similar measure is

defined known as differential entropy expressed as

h(Y ) = −

∫

S

f(y) log f(y)dy, (4)

where f(.) is the probability density function (pdf) of Y and

S is its support.

Differential entropy may also be used as an information

measure by comparing the gain of information for one

continuous random variable relative to another, and hence

can be negative.

The conditional entropy of a random variable X given

another random variable Y is

H(X|Y ) = −
∑

x

∑

y

p(x, y) log p(x|y). (5)

The chain rule of entropy is defined as

H(X1, · · · ,Xn) = H(X1) + H(X2|X1) + · · ·

+ H(Xn|Xn−1 · · · , X1). (6)
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If X1 · · ·Xn are independent, this implies that

H(X1,X2 · · ·Xn) = H(X1) + · · · + H(Xn). (7)

Random variables X, Y, Z are said to form a Markov chain

in that order denoted as X → Y → Z if X and Z are

conditionally independent given Y . Then,

H(Z, X|Y ) = H(Z|Y ) + H(X|Y )

H(Z|X, Y ) = H(Z|Y ). (8)

Another important concept in information theory is the

mutual information between two random variables X and

Y expressed as:

I(X;Y ) = H(X) − H(X|Y ). (9)

Mutual information quantifies the amount of information X
tells about Y and viceversa and hence it is a measure of

strength of dependence between random variables having a

zero value when the latter are independent.

A more exhaustive treatment of information theory con-

cepts, definitions and proofs can be found in [9].

C. Information Theory and Neural coding

Information theory has the advantage of taking into ac-

count exact probability distributions with various complexi-

ties, it allows us to compute maximum rate of information

transfer (capacity), and it can deal with nonlinear models

[2]. It also results in a meaningful measure of information

because it is dimensionless, and thus enables the comparison

of the performance of the neural code across neurons,

stimulus modalities, sensory systems, and species [13]. In

this paper, we will focus on computing the entropy based on

the developed Poisson model, so that available information

can be quantified, and that reliability and efficiency can be

investigated.

Mutual information is widely used in the literature on

encoding/ decoding problems since it reveals the dependence

between stimulus and response. Although we are not cur-

rently seeking to solve such problems, calculating the entropy

of neuron responses is a key element in mutual information

estimation since it limits the amount of information revealed

by the response about the stimulus (mutual information is

upper bounded by the entropy as shown in (9). Accordingly,

coming up with a model that describes neuron spiking along

with computing its inherent entropy is the first step towards

solving neural coding problems and information transfer

among neurons.

III. NEURON MODELING

A. Individual Neuron Model

Based on the neurophysiology of neural spiking in mam-

malian brain, a description of the firing response in a single

neuron should take into account two main properties: (i) The

occurrence times of any number of events or spikes, and (ii)

The stochastic nature of the response.

The most appropriate mathematical tool that can charac-

terize the response taking into account these two properties

is the point process theory where the neuron response

spike train can be fully represented by a discrete stochas-

tic point process characterized by a specific Conditional

Intensity Function (CIF). The type of the point process

model, is chosen to match experimental data collected on

neural response variability. We will here approximate the

neuron’s spike train response by a Poisson process∗ as

is observed experimentally by several workers in different

sensory systems (see for example [10], [6] and references

therein). In particular, recordings in the brain from regu-

larly spiking neurons (non-bursting neurons) in the medial

temporal (MT) area of the extrastriate cortex, a region that

plays an important role in processing motion information, of

trained monkeys while performing direction discrimination

tasks often show an interspike interval distribution similar

to the exponential distribution [14], [15], [16], which is a

characteristic of a Poisson process. In addition, recordings

from neurons in other regions of the brain such as the

primary visual cortex (Vl) of trained monkeys in response to

bars and textured stimuli [17] also show similar distribution.

Some studies adopted inhomogeneous (i.e., variable firing

rate) processes and noisy models [18], [19], other studies

assumed inhomogeneous model under natural conditions or

stimuli [20]. Even though they establish that inhomogeneous

Poisson models are richer in terms of information and may

be more appropriate, we limit ourselves to homogeneous

model in this paper. Also note that neurons with bursting

behavior and those whose responses in general deviate from

the Poisson description are excluded from our study.

Quantifying the amount of information in a neuron is

achieved by computing the entropy of the spike train. As-

suming a homogeneous process with fixed rate ρ, we need to

calculate the entropy h(P ) where the response P is described

by a Poisson process [21], [22]. If t is the length of a window

under consideration, the number of spikes n in t follows a

Poisson distribution denoted as

p(n, t) = Pr(N(t) = n) =
(ρt)ne−ρt

n!
, for n ≥ 0 (10)

where N(t) is the number of arrivals from 0 to t sec.

The vector of spike arrival times is denoted by the random

vector s = {s1, s2, · · · , sn} where si is the arrival time of the

ith spike in t or is also known as the ith epoch. The joint

distribution of the arrival epochs conditional on a specific

number of spikes N(t) = n follows an ordered uniform

distribution described as

f{(s1, · · · , sn)|N(t) = n} = kn(s, t) =
n!

tn
,

for 0 < s1 < · · · < sn < t (11)

Using (1) and (4), h(P ) is calculated using the product of

∗The conditional Intensity function of a Poisson process is independent
of history. In other words, a Poisson process is a point process whose inter-
event arrival times are Independent and Identically Distributed (IID) and
follow an exponential distribution. It is also noted that the number of events
in a specified window of time follows a Poisson distribution.
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the two probability distributions (10) and (11) as:

h(P ) = −
∞
∑

n=0

∫

s1,s2,··· ,sn

ds1 · · · dsn p(n, t).kn(s, t).

ln[p(n, t).kn(s, t)]

= ρt(1 − ln ρ). (12)

The entropy of a Poisson process computed in (12) is

a general information measure that combines the entropy

measures of spike count and temporal coding which are

usually computed separately in literature [23], [7], [3]. It is

advantageous to compute the entropy of the whole process

rather than computing two components separately since the

latter method overestimates the amount of information. On

the other hand, combining both coding schemes is more

realistic since the number and arrival times of the spikes

are related by the assumed underlying point process.

Since the entropy calculated in (12) is a differential

entropy, it can be negative and does not reveal information

on absolute scale, hence it should always be measured in

relative to another quantity as discussed in section II-B. In

our subsequent work, we use the discrete entropy rather than

the differential entropy for several purposes. First, it can

represent information on an absolute scale. Second, in the

model we propose in section III-B, we compute the entropy

of some discrete random variables that follow a Bernoulli

distribution to describe the connection between neurons, and

for the objective of consistency, we consider solely discrete

entropies.

To find the discrete version of kn(s, t) denoted as k′
n(s, t),

the window t under consideration is binned with resolution

δ into t/δ bins and hence

k′
n(s, t) =

n! · δn

tn
. (13)

Now the discrete entropy to be used in our modeling is

calculated by substituting k′
n(s, t) in (12)

H(P ) = ρt(1 − ln(ρδ)). (14)

Note here that the “discretization” is biologically justified.

The resolution δ can be thought of as the absolutely refrac-

tory period† and based on our approximation, the probability

of having more than one spike in this period is to the first

order zero.

The developed measure is mathematically complete and may

be readily calculated.

B. Neuron Pair Modeling

In this section, we model a neuron pair P1 and P2 and

quantify the amount of information available in the pair by

computing the joint entropy H(P1, P2). Fig. 2 shows a pair

of connected neurons and is translated to the block diagram

shown in Fig. 3.

†Absolutely refractory period is the time interval following a generated
spike through which a second stimulus, no matter how strong it is, cannot
initiate a second action potential. The absolutely refractory period lasts for
about 1ms limiting the firing rates to a maximum of 1000Hz [3].

Neuron 2

Neuron 1

Inputs from 

neurons other 

than neuron 1

Dendrites

Axon

Synapse with 

neuron1

P1

P2

Cellbody

Fig. 2. Neuron Pair Model: the axon of neuron 1 terminates at the dendrites
of neuron 2; the output of neuron 2 is affected by the output of neuron 1.

��λ
�� ���ρλ�

�� �� ρ� �� �� ρ�

�� ����� ρλρ −�

Fig. 3. Neuron Pair block diagram: M(µ) notation refers to a Poisson
process M with rate µ. Parameter λ represents the synaptic connection.

1) Model Description: Neurons 1 and 2 are two Poisson

processes denoted by P1 and P2 described by their rates

ρ1 and ρ2 respectively. The spike train of P2 is divided

into two components. (i) One component is the result of the

input/s from neuron 1 that synapse with neuron 2. Neuron 1
affects neuron 2 in the following manner; given that neuron

1 generates a spike at some time t0, neuron 2 generates a

spike with probability λ12 resulting in V which is a Poisson

process with rate λ12ρ1
‡ [21]. (ii) The other component

is the result of some exogenous contribution from neurons

that synapse with neuron 2 dendrites and cell body other

than neuron 1. All these inputs are lumped and modeled

as a Poisson process E2 with rate ρE2
. Since V and E2

are independent Poisson processes, P2 is a Poisson process

with rate equals to the summation of the input rates (ρ2 =

ρV + ρE2) [21]. Hence, the rate ρE2 is equal to ρ2 − λ12ρ1

(see Fig. 3). The parameter λ12 is a parameter that depends

on the strength of correlation between the two neurons as

well as the state of neuron 2 in terms of how close its

membrane potential is to the critical threshold of spiking.

Two extreme cases are identified:

(i) If λ12 = 0 , this means that the generation of a spike

in neuron 2 is independent of neuron 1. This can be

due to a very low membrane potential relative to the

threshold such that spikes from neuron 1 are insufficient

to provoke a spike in neuron 2. Another interpretation

could be the lack of common synapses between the the

two neurons.

(ii) If λ12 = 1 , this means that every spike in neuron

1 generates a spike in neuron 2. This can be due to

either a strong connection between the two neurons

(axon synapses with multiple dendrites) or a very high

‡This is a property of subdividing a Poisson process used in queuing
applications.
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membrane potential relative to the threshold that a

single spike can trigger a spike in the other neuron.

Depending on the scenario under study, the parameter λ
could include many factors such as the number of common

synapses, physical distance between neurons, activity of

neurons, degree of synchrony, or other factors that might

contribute to correlations among neurons.

2) Joint entropy: The information content in the described

neuron pair scheme is quantified by calculating H(P1, P2)
as follows, using (6)

H(P1, P2) = H(P1) + H(P2|P1). (15)

In order to find H(P2|P1), we note that

H(P2|P1) = H(P2|V, P1)−H(V |P1, P2)+H(V |P1). (16)

Computing the first term of (16) is based on the fact that

P1 → V → P2 form a Markov chain. By (8)

H(P2|V, P1) = H(P2|V ) = H(E2 + V |V )

= H(E2|V ) = H(E2), (17)

since E2 and V are independent processes. Next, note that

the second term of (16)

H(V |P2, P1) = 0, (18)

since given the spike sequences of P1 and P2, V can be

perfectly identified. This is true under the assumption that

given a spike at a some time t0 in P1, the probability of

having a spike in P2 at t0 as a result of E2 is zero to the

first order, hence the spike is the result of V (see Fig. 4).

To find the last term of (16) H(V |P1), we define a random

vector Zn, where given the occurrence of the ith spike in

P1, Zi = 1 if a spike occurs in V and Zi = 0 otherwise.

The length of Zn is n1 such that the total number of spikes

in P1, N1 = n1. Using (6), we have

H(V,Zn|P1) = H(V |P1, Z
n) + H(Zn|P1)

= H(V |P1) + H(Zn|V, P1)

H(Zn|V, P1) = H(V |P1, Z
n) = 0,

since if V and P1 are known, Zn can be identified, and given

Zn and P1, V can also be identified uniquely. Therefore,

H(V |P1) = H(Zn|N1), (19)

�

�

�

Fig. 4. Example of spiking patterns of the processes in the neuron pair
model. V is the result of P1, P2 is the sum of E2 and V .

Since Z1, · · · , Zn are independent and identically distributed

random variables,

H(Zn|N1 = n1) = n1H(Z1) = n1H(λ),

where H(λ) is the binary entropy defined in (3). Averaging

H(Zn|N1 = n1) over n1, we get

H(V |P1) = H(Zn|N1) = ρ1tH(λ). (20)

Substituting (17), (18), and (20) in (16), we get

H(P2|P1) = H(E2) + ρ1tH(λ) (21)

Substituting (21) in (15) and using (14), the total amount

of information quantified in the modeled neuron pair is

H(P1, P2) = ρ1t(1 − ln(ρ1δ))

+ (ρ2 − λ12ρ1)t[(1 − ln((ρ2 − λ12ρ1)δ)]

+ ρ1tH(λ12). (22)

If λ12 = 0, H(P1, P2) = H(P1) + H(P2), and the neurons’

responses are independent. If λ12 = 1, H(P1, P2) =
H(P1) + H(E2).

The neuron pair model described above is a simple model

where the connection is unidirectional, i.e. neuron 2 response

is affected by neuron 1 response and not vice versa. However,

we might have reciprocal connections between neurons, that

is the axon of neuron 1 might terminate at the input ports of

neuron 2 whose axon terminates at the input ports of neuron

1, hence forming a closed loop. This type of connection

is currently being studied especially that it introduces some

constraints on our mathematical model (the Poisson model)

which should be treated in a biologically justified way.

C. Neuron Population Modeling

The nervous system is a hierarchy of organized intercon-

nected structures starting from the neuron, the basic structure,

to networks, maps, systems, and central nervous system

(CNS). Interconnected neurons can show complex behavior

and lead to higher information processing capabilities not

present in a single neuron. One repeated stimulus, even

a highly specialized stimulus with a single feature, can

elicit responses in different neurons. In addition, a single

neuron responds in different ways to multiple features. These

two observations support distributed coding (population of

neurons) rather than localized coding (single neuron) [3].

Furthermore, in most tasks, behavioral decisions are done

during short times after stimulus presentation where only few

spikes are relevant, which supports the idea of population av-

eraging referred to as instantaneous rate [3], [7]. Population

coding also makes sense in terms of brain robustness against

loss of neurons which is a powerful advantage in information

processing [3]. Accordingly, and since neurons may convey

information collectively, quantifying the information present

in a neuron population as a whole rather than individually is

an important research question.

For a population of neurons of size N ≥ 2, the amount of

information can be quantified in a similar analysis to that per-

formed in section III-B and the joint entropy H(P1, · · · , PN )
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is quantified. For example, three neurons can be modeled as

shown in Fig. 5. The amount of information, H(P1, P2, P3)
is calculated to be

H(P1, P2, P3) = H(P2, P1) + H(P3|P2, P1)

= ρ1t(1 − ln(ρ1δ)) + ρ2t(1 − ln(ρ2δ))

+ [ρ3 − λ13ρ1 − λ23ρ2] t
[

1 − ln [(ρ3 − λ13ρ1 − λ23ρ2)δ]
]

+ ρ1tH(λ13) + ρ2tH(λ23).

If λ23 = 0, then H(P1, P2, P3) = H(P2) + H(P1, P3)
which is the joint entropy of neurons 1 and 3, in addition

to the information in the remaining neuron (neuron 2) in the

population under consideration.

Other topologies including closed loops among neurons

in addition to reciprocal connections are currently being

investigated. We seek to extend the model along with the

information theoretical measures, to a matrix of neurons with

all possible interconnections in between as depicted in Fig. 6

and its connectivity matrix:

C =





1 λ12 λ13

λ21 1 λ23

λ31 λ32 1





Other schemes can be studied by direct application of the

developed theoretical results. Depending on an experimental

paradigm with some given parameters, the amount of infor-

mation can be quantified and studied as a function of the

model variables, i.e. neurons’ rates, exogenous inputs, and

connection parameters. From the above discussed measures,

we notice that the application of the developed tools to

realistic models is computationally simple. Furthermore, the

tools can be easily scaled to larger neuronal networks.

�� �������� ρλρλρ −−�

�� ���� ρλ�

�� ���� ρλ�

��λ

��λ�� �� ρ�

�� �� ρ�

�� �� ρ�

Fig. 5. Three Neurons block diagram: Neurons 1 and 2 are independent.
M(µ) notation refers to a Poisson process M with rate µ

�

�

�

�� ��

��

��
λ

��
λ

��
λ

��
λ

��
λ

��
λ

Fig. 6. Triplet bidirectional model.

D. Spatial Component

In the previous sections, we have quantified the amount of

information present in a population of neuron taking correla-

tions into account. We believe that even if a set of neurons in

a population are independent, the different patterns of their

activity spatially can induce additional information to that

obtained from their individual activity. Denote the spatial

component by an independent random variable Y . Now, the

total amount of information in a neuron population of size

N is

H(P1, · · · , PN , Y ) = H(P1, · · · , PN ) + H(Y ).

H(P1, · · · , PN ) can be computed as described above, so we

need to evaluate H(Y ). For N neurons, Y has a maximum of

N ! different arrangements. Using (2), the information content

of this arrangement assuming all states are identically and

independently distributed is

H(Y ) = ln(N !). (23)

Equation (23) is an upper limit or a maximum value since it

assumes that all responses are different and IID.

For example, in a pair of neurons, the spatial component

can add one bit of information to the total information.

Hence, the amount of information gained from the contribu-

tion of the spatial component in a neuron population could

be a significant amount.

Assume we have a population consisting of N independent

neurons, and we need to study the percentage gain induced

by the spatial component (23) to the total amount of infor-

mation present in the population as a function of N and

the firing rate. Using (7), (14) and (23), the total amount

of information present in a population of N independent

neurons each firing with rate ρ is

Htotal = H(P1(ρ)) + H(P2(ρ)) + · · ·

+ H(PN (ρ)) + ln(N !)

= N · ρt(1 − ln(ρδ)) + ln(N !). (24)

To study the effect of the spatial component, we plot the ratio

of ln(N !) to the total information (24) in Fig. 7. Note that

the resolution δ is set to 1msec and t which is the window

over which spike sequences are observed is set to 100 msec.

The value of t is chosen in accordance to a typical behavioral

decision time. For example in the primary visual cortex of

monkeys, texture discrimination can range from 50 to 100
msec [17]. Similar response time is found in comparable

cells in cats [24] and in ’place cells’ of rats [25]. We can

notice that for any fixed firing rate of the neurons, as N
increases, the contribution of the information induced by

the spatial component to the total amount of information

in the neuron population increases as well. However, at

high rates, there is no significant contribution of the spatial

component as the population size increases. Increasing the

population size N at high rates doesn’t increase the amount

of information. On the other hand, at relatively low rates,

i.e. up to 50 Hz, the contribution of the spatial component is

significant and can reach up to 30%. As the rate increases,
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Fig. 7. Spatial gain in percentage as a function of the number of neurons
N and the rate ρ.

increasing the population size becomes irrelevant in terms

of information representation. This observation is justified

from experimental evidence in neuroscience. It is observed

that most sensory and cognitive tasks which are general,

i.e. need general description such as viewing a picture as a

whole, stimulate large population of neurons that oscillate

at low rate to insure the spread of the message reliably

among neurons. Whereas specific tasks such as those that

describe fine details or delicate motor activities stimulate

specific individual neurons with relatively higher rates.

Another observation is that at some fixed relatively low

rates, the increase in the spatial gain is higher for lower

values of N . In other words, the slope is sharper for smaller

population sizes and flattens out for large populations. The

interpretation here is that there is some ”optimal” population

size involved in representing information beyond which the

information gain is not significant.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we modeled neuronal responses as Poisson

processes and developed a correlation model describing

multiple neurons. We quantified the amount of information

present in our model taking into account the inherent infor-

mation in an individual neuron, correlations among multiple

neurons, and information gained from spatial pattern of

activity. Combining all of these components in the presented

information measures enables getting a full picture of the

information content in neurons and hence setting more

realistic and meaningful limits on information with a minimal

number of assumptions as possible.

The importance of the developed model lies in the theoret-

ical analysis of the brain in a unified view taking into account

biological justifications. Moreover, the theoretical results are

scalable to larger neuronal networks and are computationally

simple. Another important aspect of the Poisson modeling

of neurons which takes into account the number and arrival

times of the spikes in one scheme is that it allows us to

set more realistic and meaningful information limits. This

is due to the fact that the two components describing the

spikes (number and arrival times) are related by the assumed

underlying process whereas thinking of the components as

separate entities can overestimate the amount of information.

Other complex schemes in terms of cyclic and reciprocal

connections among neurons are currently being investigated

with some induced constraints and assumptions that should

be mathematically and biologically justified.
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