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Abstract— The purpose of this paper is to broaden the scope
of integral-quadratic-constraint based structured robustness
analysis in a way that accommodates feedback interconnections
of unstable linear time-invariant systems. This is achieved by
exploring the use of Vinnicombe’s ν-gap metric as a measure
of distance. Various standard robustness analysis problems are
revisited within the context of the main result.

Index Terms— Feedback interconnections, robustness anal-
ysis, structured uncertainty, integral quadratic constraints
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NOTATION

The symbols R and C denote the real and complex

numbers, respectively. F
m×q denotes an m-row by q-column

matrix with entries in F (e.g. R or C). σ̄(X) and σ(X)
respectively denote the maximum and minimum singular

values of X ∈ F
m×q. A superscript T denotes matrix

transpose, whereas ∗ denotes complex conjugate transpose.

The determinant of a matrix X ∈ F
m×m is denoted det(X),

and when this is non-zero the inverse of X is denoted X−1.

Rm×q denotes the proper real rational transfer functions.

All systems in this paper are considered to be multiplication

operators with frequency domain symbols in R; these corre-

spond to linear shift-invariant systems in the time-domain.

Given an H ∈ Rm×q, the conjugate transfer function

H∼ ∈ Rq×m is defined by H∼(s) := H(−s)T (a.e.), so

that H∼(jω) = (H(jω))
∗

(a.e.). For notational convenience

the input-output dimensions may be suppressed, as below.

RL∞ is the space of transfer functions H ∈ R that satisfy

‖H‖∞ := supω∈R∪∞ σ̄(H(jω)) < ∞. RH∞ is the space

of transfer functions H ∈ RL∞ that are analytic (i.e. have

no poles) in the open right-half plane C+. For H ∈ RH∞,

‖H‖∞ = sups∈C+
σ̄(H(s)).

The frequency-domain signal space L2 denotes the col-

lection of functions f : jR → C
m (a.e.) for which ‖f‖2 :=

∫ ∞

−∞
f(jω)∗f(jω)dω < ∞. The corresponding inner prod-

uct is denoted 〈·, ·〉L2
. L2 is isometrically isomorphic (via

the Fourier transform) to the space of finite-energy signals

defined over the doubly-infinite time axis. The signal space

H2 is the collection of f ∈ L2 that can be continued

analytically into C+, with
∫ ∞

−∞
f(σ + jω)∗f(σ + jω)dω

bounded uniformly for σ > 0. The corresponding inner
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Fig. 1. Standard feedback interconnection

product is denoted 〈·, ·〉H2
. H2 is isometrically isomorphic

(via the Fourier transform) to the space of finite-energy

signals defined over only positive time.

I. INTRODUCTION

Consider the feedback interconnection shown in Figure 1,

where the two linear time-invariant systems involved have

frequency-domain transfer functions H,∆ ∈ R. The closed-

loop is said to be well-posed and stable if given any e =
(e1, e2) ∈ H2 × H2 there exists a unique u = (u1, u2) ∈
H2 ×H2 such that

u2 = −Hu1 + e1

u1 = −∆u2 + e2

(1)

and

‖u‖2 ≤ c‖e‖2, (2)

for some c > 0. Note that stability of the closed-loop is

equivalent to the condition

(

H I
I ∆

)−1

∈ RH∞,

which is in turn equivalent to the condition

[H,∆] :=

(

H
I

)

(I − ∆H)−1
(

−∆ I
)

∈ RH∞. (3)

A condition for stability of the feedback interconnection

of a given H ∈ R and any transfer function ∆ in a given

uncertainty set ∆ ⊂ R, is developed below. This is achieved

in a way that permits exploitation of known structure on H
and ∆, which does not appear to be immediately possible

with the well-known gap-metric robustness results of [1], [2],

while still accommodating unstable components in the feed-

back interconnection, by contrast with the standard integral

quadratic constraint (IQC) analysis framework of [3], from
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where many key ingredients are taken. In short, the main

purpose of this paper is to enrich the scope of IQC based

structured robustness analysis for feedback interconnections

of unstable systems by exploring the use of Vinnicombe’s

ν-gap metric as a distance measure [2]. The IQC and

gap frameworks have previously been combined in general

settings [4], [5], using general forms of the gap metric. Here

the discussion is restricted to the simplest setting which

allows easy use of the more convenient ν-gap. Several key

ideas in robustness analysis, see e.g. [6], [7], [8], [9], [10],

are revisited in this context.

It is instructive to first review some well-known char-

acterisations of closed-loop stability in terms of coprime

factorisations and graph symbols. Recall that any real rational

transfer function admits normalised right and left coprime

factorisations over RH∞. In particular, given H ∈ R,

there exist (by construction – see [6]) transfer functions

N,M, M̃, Ñ ,X, X̃, Y, Ỹ ∈ RH∞ such that
(

X̃ Ỹ

−M̃ Ñ

)(

N −X
M Y

)

= I,

M∼M + N∼N = I , M̃M̃∼ + ÑÑ∼ = I and

H = NM−1 = M̃−1Ñ .

Letting

G :=

(

N
M

)

∈ RH∞ and G̃ :=
(

−M̃ Ñ
)

∈ RH∞,

it follows that [11]: G∼G = I; G̃G̃∼ = I; and

gr(H) = GH2 = {w ∈ H2 : G̃w = 0},

where the H2-graph of multiplication by H is defined by

gr(H) :=

{(

y1

u1

)

: u1 ∈ H2, y1 = Hu1 ∈ H2

}

.

The stable transfer functions G and G̃ are correspondingly

called normalised right and left graph symbols for H . Now

given normalised right and left coprime factorisations of a

∆ = UV −1 = Ṽ −1Ũ ∈ R, let

Γ :=

(

V
U

)

and Γ̃ :=
(

Ũ −Ṽ
)

,

which are correspondingly normalised right and left (inverse)

graph symbols for multiplication by ∆ on H2.

Lemma 1: Given the notation just introduced the follow-

ing are equivalent [11]:

1) The feedback interconnection of H and ∆ is stable;

2) [H,∆] ∈ RH∞;

3) (G̃Γ)−1 ∈ RH∞;

4) (Γ̃G)−1 ∈ RH∞.

Note that condition 3) can be expressed σ(G̃Γ)(jω) 6=
0 ∀ ω ∈ R ∪ ∞ and ind(G̃Γ) = 0, where the index of a

transfer function X,X−1 ∈ RL∞ is defined by

ind(X) := wno(det(X))

and the winding-number wno(x) denotes the the net increase

in the argument of the scalar transfer function x(jω), as ω

decreases from +∞ to −∞, choosing a continuous branch

of the argument enclosing the open right-half plane of C.

Similarly, condition 4) can be expressed as σ(Γ̃G)(jω) 6=
0 ∀ ω ∈ R ∪∞ and ind(Γ̃G) = 0.

II. GAP-METRIC BASED ROBUSTNESS ANALYSIS

In the well-known gap-metric based robustness analysis

of [1], [2], the uncertainty set ∆ is effectively taken to be a

ball in R defined in terms of the gap or ν-gap metric, with

there being no obvious way of exploiting any structure the

systems H and ∆ might have. In particular, the following is

known to hold for the ν-gap metric, which is defined by

δν(∆0,∆1) :=























‖Γ̃0Γ1‖∞ if σ(Γ∼
0 Γ1)(jω) 6= 0

∀ω ∈ R ∪∞
and ind(Γ∼

0 Γ1) = 0

1 otherwise

,

where in keeping with the notation introduced above Γi and

Γ̃i are normalised right and left (inverse) graph symbols for

∆i ∈ R, i = 0, 1 [2]:

Proposition 2: Given H,∆0 ∈ R, with [H,∆0] ∈ RH∞,

let b(H,∆0) := 1/‖[H,∆0]‖∞ (see (3) above). Then the

following are equivalent:

1) b(H,∆0) > (≥)β;

2) [H,∆1] ∈ RH∞ for all ∆1 ∈ R satisfying

δν(∆0,∆1) ≤ (<)β.

It is interesting to note that, under certain conditions, the

conditions b(H,∆0) > β and δν(∆0,∆1) ≤ β are related to

complementary IQCs. Specifically (see [4], [12] for details):

• when [H,∆0] ∈ RL∞ ⊃ RH∞, the condition

b(H,∆0) = inf
ω∈R

σ(Γ̃0G)(jω) > (≥)β

is equivalent to the existence of an ǫ > (≥) 0 such

〈w,Ψw〉L2
:=

∫ ∞

−∞

w(jω)∗Ψ(jω)w(jω) dω

≤ ǫ〈w,w〉L2

(4)

for all w ∈ GL2 (i.e. the L2-graph of multiplication by

H), where

Ψ = Ψ∼ :=
(

βI Γ̃∼
0

)

(

I 0
0 −I

)(

βI

Γ̃0

)

∈ RL∞;

(5)

• and when σ(Γ∼
0 Γ1)(jω) 6= 0∀ω ∈ R ∪ ∞ and

ind(Γ∼
0 Γ1) = 0, the condition

δν(∆0,∆1) = sup
ω∈R

σ̄(Γ̃0Γ1)(jω) ≤ (<)β

is equivalent to the existence of an ǫ ≥ (>) 0 such that

〈v,Ψv〉L2
≥ ǫ〈v, v〉L2

(6)

for all v ∈ Γ1L2 (i.e. the (inverse) L2-graph of multi-

plication by ∆1).

Observe that the conditions (4) and (6) are complementary

IQCs; that is, the quadratic forms on the left and right-hand
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sides are identical and the inequality constraints are comple-

mentary. While, under the restriction that the components of

the feedback interconnection are stable, it is known how to

exploit structure within the IQC framework of [3], it is not

clear that use of the quadratic form with the particular Ψ
in (5) would always be sufficiently flexible to achieve this.

In Section III, an IQC based robust stability result, which is

similar to Proposition 2 in that it also accommodates unstable

components in the closed-loop, is established in a way that

permits exploitation of known structure.

III. IQC BASED ROBUSTNESS ANALYSIS

In this section an IQC robustness analysis result is pre-

sented for feedback interconnections that may involve un-

stable components, followed by a brief discussion of how

structure can be exploited.

Definition 1 (Integral Quadratic Constraints): Let Ψ =
Ψ∼ ∈ L∞. Given an ∆ ∈ R, it is said that ∆ ∈ IQC(Ψ) if

σΨ(v) := 〈v,Ψv〉L2
≥ 0 ∀ v ∈ ΓH2,

where Γ is a (not necessarily normalised) right (inverse)

graph symbol for ∆. The IQC is said to be strict (denoted

∆ ∈ SIQC(Ψ)) if there exists an ǫ > 0 such that

σΨ(v) ≥ ǫ‖v‖2
2 ∀ v ∈ ΓH2.

Likewise, given a H ∈ R, the complementary condition H ∈
IQCc(Ψ) is said to hold if σΨ(w) ≤ 0∀w ∈ GH2, where

G is a (not necessarily normalised) right graph symbol for

H , and hold strictly if σΨ(w) ≤ −ǫ‖w‖2
2 ∀w ∈ GH2.

The following uncertainty set will be considered.

Definition 2 (Uncertainty Set): Let ∆ denote a subset of

R that is connected in the topology induced by the ν-gap

metric (i.e. the graph topology) in the sense that for any

η ∈ (0, 1) and ∆a,∆b ∈ ∆, there exists ∆k ∈ ∆, for

k = 0, . . . , N and some integer N > 0, such that ∆0 = ∆a,

∆N = ∆b and δ(∆k,∆k+1) ≤ η ∀ k = 0, . . . , N − 1.

Proposition 3 (Main Result): Given H ∈ R, suppose

there exists a ∆0 ∈ ∆ such that the feedback interconnection

[H,∆0] ∈ RH∞ (i.e. it is stable). If there exists a Ψ = Ψ∼ ∈
L∞ such that

(i) H ∈ IQCc(Ψ), and

(ii) ∆ ∈ SIQC(Ψ)∀∆ ∈ ∆,

then the closed-loop [H,∆] ∈ RH∞ (i.e. it is stable) for all

∆ ∈ ∆.

Proof: A proof is provided in Section VII

Remark 1: One may replace (i) and (ii) in Proposition 3

by the alternative conditions

(I) H ∈ SIQCc(Ψ), and

(II) ∆ ∈ IQC(Ψ)∀∆ ∈ ∆,

It is important to observe that if ∆ ∈ SIQC(Ψi), i =
1, · · · , n, then ∆ ∈ SIQC(x1Ψ1 + · · · + xnΨn) for any

scalar xi ≥ 0, i = 1, · · · , n. Furthermore, when ∆ is

diagonally structured; i.e., ∆ = diag(∆1, · · · ,∆n), and

∆i ∈ SIQC(Υi), i = 1, · · · , n, then an IQC for ∆ can

be easily obtained by composing Υi appropriately. More

specifically, if we introduce a block partition consistent with

the input output dimensions of ∆i as

Υi =

[

Υi,(11) Υi,(12)

Υ∼
i,(12) Υi,(22)

]

and let the diagonal augmentation operator Υ be defined as

daug(Υ1, · · · ,Υn) =
[

diag(Υ1,(11), · · · ,Υn,(11)) diag(Υ1,(12), · · · ,Υn,(12))

diag(Υ∼
1,(12), · · · ,Υ∼

n,(12)) diag(Υ1,(22), · · · ,Υn,(22))

]

then ∆ ∈ SIQC(Υ). These features of IQC based analysis

allows one to breakdown the task of characterizing ∆ into

smaller (and often easier) tasks of characterizing the elemen-

tary building blocks of ∆, which provides great flexibility

in exploiting the structure of ∆ for stability analysis. Once

the IQCs for these building blocks are available, stability

analysis for the interconnected system is then a rather

straightforward matter of finding a single aggregate Ψ such

that condition H ∈ IQCc(Ψ) holds.

IV. VERIFICATION OF THE STABILITY CONDITION

Suppose a structural characterisation of the uncertainty set

∆ is obtained in terms of a set Ψ∆, i.e. each Ψ ∈ Ψ∆

has the property that ∆ ∈ IQC(Ψ), ∀∆ ∈ ∆. Then by

Proposition 3, the interconnection [H,∆] is robustly stable

if there exists a Ψ ∈ Ψ∆ such that H ∈ SIQCc(Ψ).
There are several equivalent ways to verify H ∈

SIQCc(Ψ) (H ∈ IQCc(Ψ)): ∃ǫ > 0 (∃ǫ ≥ 0) such that

(a) G(jω)∗Ψ(jω)G(jω) ≤ −ǫI, ∀ω ∈ R

(b)

(

(I + H∼H)−
1
2

[

H
I

]∼

Ψ

[

H
I

]

(I + H∼H)−
1
2

)

(jω)

≤ −ǫI, ∀ω ∈ R

(c) If H ∈ RL∞ then (b) simplifies to
[

H(jω)
I

]∗

Ψ(jω)

[

H(jω)
I

]

≤ −ǫ′I, ∀ω ∈ R

where ǫ′ = ǫ supω∈R σ̄(I + H(jω)∗H(jω)). The case

with a H ∈ R with poles on the imaginary axis requires

some care.

The condition ∆ ∈ IQC(Ψ) can be verified analogously.

The next result is a version of the dualization lemma

in [8], [13]. The two complementary IQCs in Proposition 3

imply that the L2 graphs of H and ∆ provide a direct sum

decomposition of the signal space of the system in Figure 1.

This in turn implies that the orthognal complements of the

two L2 graphs satisfy a corresponding pair of complementary

IQCs defined by the inverse multiplier. This can be beneficial

in terms of verifying the IQC conditions.

Proposition 4: Suppose Ψ = Ψ∼ ∈ L∞ is invertible.

Then the following are equivalent conditions. There exists

ǫ > 0 such that for all ω ∈ R.

(a) (G∗ΨG)(jω) ≤ −ǫI and (Γ∗ΨΓ)(jω) ≥ 0,

(b) (G̃Ψ−1G̃∗)(jω) ≥ 0 and (Γ̃Ψ−1Γ̃∗)(jω) ≤ −ǫI

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA11.6

353



V. EXAMPLES

Example 1: Consider the case where ∆ is a block-

diagonal rational transfer function in

∆(µ) = {diag(∆1, . . . ,∆m) : δν(∆k,0,∆k) ≤ µ, ∀k}

where ∆0 = diag(∆1,0, . . . ,∆m,0) is the nominal dynamics

and [H,∆0] is known to be stable. This set is obviously

connected in the ν-gap topology in the sense of Definition 2.

The robust stability analysis problem is to find a bound on

µ for which [H,∆] is stable (with uniform norm bound)

for all ∆ ∈ ∆. By proceeding along the lines of the

previous discussion we know that each uncertainty satisfies

∆k ∈ IQC(Ψk) with Ψk = µI − Γ̃∼
k,0Γ̃k,0. Combining these

would in general lead to conservative analysis. Instead, we

use scaling multipliers and define

Ψ∆k
(µ) =

{

x(µI − Γ̃∼
k,0Γ̃k,0) : x = x∼ ≥ 0

}

⊂ RL∞

Then every ∆ ∈ ∆ satisfies ∆ ∈ IQC(Ψ), ∀Ψ ∈ Ψ∆(µ),
where

Ψ∆(µ) = {daug(Ψ1, . . . ,Ψm) : Ψk ∈ Ψ∆k
(µ)} .

The operator daug is defined in Section III. Given this

IQC characterization the maximum robustness margin is then

obtained as

max {µ : (G∼ΨG)(jω) ≤ −ǫI : Ψ ∈ Ψ∆(µ), ǫ > 0} .

Example 2: Consider a set of transfer functions ∆ ⊂
R. Suppose that a ∆0 from ∆ can be stabilized by a

proportional feedback of constant gain κ which belongs to

the interval [α, β], α < β < 0. That is, [H,∆0] ∈ RH∞,

where H := κI . Furthermore, suppose that, for any ∆ ∈ ∆,

ind(I + ∆∼∆0) + η(∆0) − η̄(∆) = 0, (7)

where η(∆0) is the number of open right half plane poles

of ∆0 and η̄(∆) is the number of closed right half plane

poles of ∆. This means that the contour evaluation of ∆∼∆0

will encircle the critical −1 point η̄(∆)−η(∆0) times in the

positive direction. Condition (7) ensures that ∆ is connected

in the ν-gap metric, provided det(I + ∆∼∆0)(jω) 6= 0∀ω.

That κ belongs to [α, β] implies that H ∈ IQCc(Ψ) for

any Ψ from Ψκ, where

Ψκ := {Ψ = Ψ∼ ∈ L∞ : Ψ(jω) has the form
[

2X −(α + β)X + Y
−(α + β)X + Y ∗ 2αβX

]

;

X = X∗ ≥ 0; Y + Y ∗ = 0} .

Following Proposition 3, we can conclude that H stabilizes

every ∆ ∈ ∆ if we can find Ψ ∈ Ψκ such that ∆ ∈
SIQC(Ψ) for all ∆ ∈ ∆. Convex duality theory can be

used to show that such Ψ exists if and only if each ∆ ∈ ∆

satisfies

eig(∆(jω)) 6∈

[

1

β
,
1

α

]

, ∀ω ∈ R ∪∞ (8)

where eig(·) denotes the eigenvalues of a matrix. The proof

of this follows as in Example 2 of [14]. Condition (8)

gives rise to a simple and low-complexity graphical test for

stability of feedback interconnection of H and any ∆ in ∆.

The stability is robust for any constant κ in the interval [α, β].

VI. ROBUST PERFORMANCE ANALYSIS

The purpose of this section is to briefly review the basic

ideas of robust performance analysis within the framework

developed in the previous sections. Such analysis generally

involves three different quadratic forms:

1) a performance constraint of the form

σp(y, e) = 〈(y, e),Ψp(y, e)〉L2
≤ 0, ∀e ∈ E , ∆ ∈ ∆

where y := (y1, y2) = (e1−u2, e2−u1) is the closed-

loop response of the system (1) for a given H ∈ R
and E ⊂ L2 is a set of disturbance/noise signals;

2) a noise characterisation in the form of a convex cone

ΨE such that

σn(e) = 〈e,Ψne〉L2
≥ 0, ∀e ∈ E , Ψn ∈ ΨE ;

3) an uncertainty characterisation in the form of a convex

cone Ψ∆ such that ∆ ∈ IQC(Ψ∆), ∀∆ ∈ ∆, Ψ∆ ∈
Ψ∆.

Characterisations 2) and 3) are denoted by E ∈ IQC(ΨE)
and ∆ ∈ IQC(Ψ∆), respectively, in the rest of this section.

A typical example of a performance constraint is the

weighted induced gain constraint defined using

Ψp(jω) =

[

W (jω) 0
0 −γ2I

]

,

where W = W∼ ∈ RL∞ is positive semi-definite. An

example of a signal set is the set of scalar signals that have

white spectrum over the frequency range −b ≤ ω ≤ b; i.e.

|ê(jω)|2 =

{π

b
‖e‖2

2, ω ∈ [−b, b]

0, |ω| > b
.

This set can be exactly characterized using the set of multi-

pliers

ΨE =

{

Ψn = Ψ∼
n ∈ RL∞ :

∫ b

−b

tr(Ψn(jω))dω ≥ 0

}

This and more general signal classes are discussed in [15].

Definition 3 (Robust performance): Given H ∈ R, the

feedback interconnection (1) exhibits robust performance if

(a) the closed-loop [H,∆] is stable ∀∆ ∈ ∆ and

(b) the closed-loop performance constraint σp(y, e) ≤ 0
holds for all input-output pairs (y, e) (where y = (e1 −
u2, e2 − u1)) whenever e ∈ E and ∆ ∈ ∆.

Let

M1 :=

[

I 0
0 −I

]

, M2 :=

[

0 0
0 I

]

and for given Ψp, Ψ∆ ∈ Ψ∆, and Ψn ∈ ΨE , define

Ψ :=

[

M1G M2

0 I

]∼

Ψp

[

M1G M2

0 I

]

+

[

G∼Ψ∆G −G∼Ψ∆

−Ψ∆G Ψ∆ + Ψn

]

,
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where G is a normalised right graph symbol for H .

Proposition 5: Given H ∈ R and ∆0 ∈ ∆ ⊂ R, suppose

that [H,∆0] ∈ RH∞, E ∈ IQC(ΨE) and ∆ ∈ IQC(Ψ∆).
If there exists an ǫ > 0, Ψ∆ ∈ Ψ∆ and Ψn ∈ ΨE such that

(i)

Ψ(jω) +

[

ǫI 0
0 0

]

≤ 0, ∀ω ∈ R and

(ii)
[

M1G(jω)
0

]∗

Ψp(jω)

[

M1G(jω)
0

]

≥ 0, ∀ω ∈ R,

then the feedback interconnection (1) satisfies the robust

performance specification in Definition 3.

Proof: Condition (a) in Definition 3 holds if

σp(M1w + M2e, e) ≤ 0, ∀w ∈ GL2, e ∈ L2

s.t.

{

σΨ∆
(e − w) ≥ 0

σΨn
(e) ≥ 0

By S-procedure relaxation (see [16]), this is equivalent to the

existence of τ1, τ2 ≥ 0 such that

σp(M1Gν + M2e, e) + τ1σΨ∆
(e − Gν) + τ2σΨn

(e) ≤ 0

for all ν, e ∈ L2. Since Ψ∆ and ΨE are cones we can without

loss of generality assume τ1 = τ2 = 1. This inequality is

implied by condition (i) in the statement of the proposition.

Condition (ii) implies that (G∼Ψ∆G)(jω) ≤ −ǫI , ∀ω ∈ R,

which in turn implies robust stability according to Proposi-

tion 3.

VII. PROOFS OF PROPOSITIONS 3 AND 4

Proofs of Propositions 3 and 4 are developed in the

following subsections. In particular, Section VII-A gathers

some useful identities. Given these and using ideas from [2]

and [3], proofs are then presented for Propositions 3 and 4

in Sections VII-B and VII-C, respectively.

A. Useful identities

This section introduces some additional notation and gath-

ers a few preliminary useful properties of normalised graph

symbols and winding-numbers. The first property derives

from normalisation. Given normalised right and left (inverse)

graph symbols Γ ∈ RH∞ and Γ̃ ∈ RH∞, respectively, of

a transfer function matrix ∆ ∈ R, the following identities

hold by virtue of Γ̃Γ = 0, Γ̃Γ̃∼ = I and Γ∼Γ = I:
(

Γ̃
Γ∼

)

(

Γ̃∼ Γ
)

=

(

I 0
0 I

)

and Γ̃∼Γ̃ + ΓΓ∼ = I. (9)

Like in [2], the identity (9) is used at various points in

the proof of the main result. In particular, given normalised

right and left (inverse) graph symbols Γk ∈ RH∞ and

Γ̃k ∈ RH∞, respectively, for ∆k ∈ R and k = 0, . . . , N ,

it follows that Γ∼
k+1Γ̃

∼
k Γ̃kΓk+1 + Γ∼

k+1ΓkΓ∼
k Γk+1 = I , by

which

γ(Γ∼
k Γk+1) =

√

1 − γ̄(Γ̃kΓk+1)2, (10)

where

γ(X) := inf
ω∈R∪∞

σ(X)(jω) and γ̄(X) := sup
ω∈R∪∞

σ̄(X)(jω).

Before proceeding to the proof of Proposition 3, it is

also instructive to recall the following winding-number/index

identities:

Lemma 6 (See pg. 16 of [11]): For X,X−1, Y ∈ RL∞

(i) ind(XY ) = ind(X) + ind(Y ),
(ii) ind(X∗) = −ind(X),

(iii) ind(X−1) = −ind(X) and

(iv) if γ(X) > γ̄(Y ), then ind(X + Y ) = ind(X).

B. Proof of Proposition 3

Suppose that a Ψ = Ψ∼ ∈ RL∞ exists such that H ∈
IQCc(Ψ) and ∆ ∈ SIQC(Ψ) for all ∆ ∈ ∆. With Ψ̂ :=
2Ψ − ǫI for an appropriate ǫ > 0, these two conditions

become

1) 〈w, Ψ̂w〉L2
≤ −ǫ‖w‖2

2 ∀w ∈ GH2

2) For each ∆ ∈ ∆, 〈v, Ψ̂v〉L2
≥ ǫ‖v‖2

2 ∀ v ∈ ΓH2,

where G ∈ RH∞ and Γ ∈ RH∞ denote normalised

right graph symbols for H and ∆, respectively. Using this

notation, for any (w, v) ∈ GH2 × ΓH2 and any ∆ ∈ ∆, it

follows that

ǫ(‖v‖2
2 + ‖w‖2

2)

≤ 〈v, Ψ̂v〉L2
− 〈w, Ψ̂w〉L2

= 〈w + v, Ψ̂(w + v)〉L2
− 2Re〈w, Ψ̂(w + v)〉L2

≤ ‖Ψ̂‖∞‖w + v‖2
2 + 2‖Ψ̂‖∞‖w‖2‖w + v‖2

≤ ‖Ψ̂‖∞‖w + v‖2
2 +

2‖Ψ̂‖2
∞‖w + v‖2

2

ǫ
+

ǫ

2
‖w‖2

2

where the last inequality holds because 2xy ≤ x2 + y2 for

any real numbers x and y. This inequality then implies

(1 +
2

ǫ
‖Ψ‖∞)‖Ψ‖∞‖w + v‖2

2 ≥
ǫ

2
(‖v‖2

2 + ‖w‖2
2).

Correspondingly, for all (w, v) ∈ GH2 × ΓH2,

‖w + v‖2
2 ≥ δ(ǫ)2(‖v‖2

2 + ‖w‖2
2) (11)

with δ(ǫ) :=
√

ǫ2

2‖Ψ̂‖∞(ǫ+2‖Ψ̂‖∞)
. Since (w, v) ∈ GH2 ×

ΓH2, this in turn implies

σ(q) := ‖Gq1 + Γq2‖
2
2 =

〈

q,

(

G∼

Γ∼

)

(

G Γ
)

q

〉

L2

≥ δ(ǫ)2〈q, q〉H2

(12)

for all q = (q1, q2) ∈ H2 × H2. Note that the quadratic

forms involved here are ‘shift-invariant’ on L2. As such, (12)

implies
〈

q,

(

G∼

Γ∼

)

(

G Γ
)

q

〉

L2

≥ δ(ǫ)2〈q, q〉L2
(13)

for all q = (q1, q2) ∈ L2×L2, since σ(e−sτq) = σ(q)∀ τ <
0, q ∈ H2 ×H2, ∪τ>−∞e−sτH2 is dense in L2 and σ(·) is

continuous on L2.
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Now from (13) it follows that, for all q = (q1, q2) ∈
L2 × L2 satisfying ‖q1‖2 = ‖q2‖2 = 1,

2 + 2Re〈q1, G
∼Γq2〉 ≥ 2δ(ǫ)2

⇔ 1 − sup
‖q2‖2=1

‖G∼Γq2‖
2
2 ≥ δ(ǫ)2

⇔ inf
‖q2‖2=1

‖G̃Γq2‖
2
2 ≥ δ(ǫ)2,

where the equivalence of the first and second expressions

holds because q1 = −G∼Γq2 minimises 〈q1, G
∼Γq2〉 over

the unit vectors in L2, and the final equivalence holds in a

similar way to (10), using the fact that

Γ∼Γ = Γ∼(GG∼ + G̃∼G̃)Γ = I.

Note that the following uniform bound has been obtained:

γ(G̃Γ) = inf
‖q2‖2=1

‖G̃Γq2‖2 ≥ δ(ǫ) 6= 0∀∆ ∈ ∆. (14)

In view of the remarks following Lemma 1 it only remains

to show that ind(G̃Γ) = 0, since then (G̃Γ)−1 ∈ RH∞, and

thus, [H,∆] ∈ RH∞ for all ∆ ∈ ∆. The remainder of this

section is dedicated to establishing this fact by exploiting

the hypothesis that the uncertainty set ∆ is connected in the

graph topology.

By hypothesis there exists ∆0 ∈ ∆ such that [H,∆0] ∈
RH∞ and, for any η ∈ (0, 1) and ∆ ∈ ∆, there exists

an N > 0 and ∆k ∈ ∆, k = 1, . . . , N , such that

δν(∆k,∆k+1) ≤ η and ∆N = ∆. Let Γk and Γ̃k denote

normalised right and left (inverse) graph symbols for ∆k,

k = 0, . . . , N . The proof can proceed by induction, as

described below.

[H,∆0] ∈ RH∞ by hypothesis. Suppose [H,∆k] ∈
RH∞, by which γ(G̃Γk) > 0 (i.e. σ(G̃Γk)(jω) 6= 0∀ω ∈

R ∪∞) and ind(G̃Γk) = 0. Using (9) it follows that

G̃Γk+1 = G̃ΓkΓ∼
k Γk+1 + G̃Γ̃∼

k Γ̃kΓk+1. (15)

Consider the first term on the right-hand side (15). From (14)

and (10),

γ(G̃ΓkΓ∼
k Γk+1) ≥ γ(G̃Γk)γ(Γ∼

k Γk+1)

≥ δ(ǫ)

√

1 − γ(Γ̃kΓk+1)2

≥ δ(ǫ)
√

1 − δν(∆k,∆k+1)2,

where the last inequality holds by the definition of the ν-gap

metric and since η < 1, by which σ(Γ∼
k Γk+1)(jω) 6= 0∀ω ∈

R ∪ ∞, ind(Γ∼
k Γk+1) = 0, and hence, δν(∆k,∆k+1) =

γ(Γ̃kΓk+1). Moreover, using Lemma 6

ind(G̃ΓkΓ∼
k Γk+1) = ind(G̃Γk) + ind(Γ∼

k Γk+1) = 0. (16)

Now consider the second term on the right-hand side of (15).

Since the graph symbols are normalised, it follows that

γ(G̃Γ̃∼
k Γ̃kΓk+1) ≤ γ(Γ̃kΓk+1) = δν(∆k,∆k+1).

Thus, for η < δ(ǫ)
/

√

1 + δ(ǫ)2 the first term in (15)

dominates the second and so by Lemma 6

ind(G̃Γk+1) = ind(G̃ΓkΓ∼
k Γk+1) = 0,

where (16) has been used. This completes the proof.

C. Proof for Proposition 4

Let Ψ̂ = Ψ + νI , where 0 < ν < ǫ. Then the two condi-

tions in (a) can be stated as 〈w, Ψ̂w〉L2
≤ −ǫ1‖w‖2

2 ∀w ∈
GL2 and 〈v, Ψ̂v〉L2

≥ ǫ2‖v‖
2
2, ∀ v ∈ ΓL2, where ǫ1 = ǫ− ν

and ǫ2 = ν (the same conditions hold on H2). Using the

arguments in the proof of Proposition 3 it follows that (a)
implies (13) in Section VII. This in turn implies the direct

sum decomposition L2 × L2 = GL2 ⊕ ΓL2. The equiv-

alence (a) ⇔ (b) will follow since Ψ̂−1G̃∼L2 = ΓL2 and

Ψ̂−1Γ̃∼L2 = GL2, which will be proven next. The inclusion

Ψ̂−1G̃∼L2 ⊂ ΓL2 follows since if Ψ̂−1G̃∼L2 ∩ GL2 6= 0
then Ψ̂−1G̃∼v0 = Gw0 for some nonzero v0, w0 ∈ L2. This

would imply that

−ǫ1‖w0‖
2
2 ≥ 〈Gw0, Ψ̂Gw0〉L2

= 〈Ψ̂−1G̃∼v0, Ψ̂Gw0〉L2
= 0

which is a contradiction. The inclusion Ψ̂−1Γ̃∼L2 ⊂ GL2

is proven similarly. Notice further that (GL2)
⊥ = G̃∼L2

and (ΓL2)
⊥ = Γ̃∼L2, which implies that G̃∼L2 ⊕ Γ̃∼L2 =

L2 × L2. Hence, we have shown Ψ̂−1G̃∼L2 = ΓL2 and

Ψ̂−1Γ̃∼L2 = GL2. This implies G̃Ψ̂−1G̃∼ = Γ∼Ψ̂Γ ≥ ǫ2I
and Γ̃Ψ̂−1Γ̃∼ = G∼Ψ̂G ≤ −ǫ1I . As ν → 0 we get the

inequalities in (a) and (b).
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