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Abstract— Combustion engine control design depends
strongly on the availability and the quality of the measurement
of quantities involving in the controller construction. In general,
not all quantities are available through direct measurement,
and therefore an observer is often necessary to realize the
controller. In this paper, a discrete-time partial state observer
design for a combustion engine test bench is proposed. The
observer is used to estimate the torque and the torsion angle
of the engine, based on the measurement of the engine and
the dynamometer speeds. The convergence of the observer is
shown, and separation principle is also proved. The observer
is used for constructing an output feedback controller for set
point tracking of the test bench. Some numerical simulations are
performed, showing the performance of the observer and also
comparing the performance of the output feedback controller
with the state feedback controller. A discussion, comparing a so
called ”static observer” and a ”dynamic observer” which are
possible to construct using the same approach, is also presented.

Keywords: Combustion engine test bench control; Controller
redesign; Discrete-time systems; Extended Hammerstein sys-
tems; Setpoint tracking; Static and dynamic observers.

I. INTRODUCTION

When designing a controller for a dynamical system, it
is commonly assumed that all states are available from
measurement, and a state feedback controller is feasible
for design. However, this assumption is often unrealistic in
practice. In many applications not all states can be measured,
hence control using output feedback or dynamic feedback be-
comes necessary. While design tools mainly aim at designing
a state feedback controller, designing an observer is a useful
solution to provide the estimates of the unmeasured states
to be used for constructing an output feedback controller.
In other cases even when the states may be available from
measurement, observer is still playing an important role in
reducing the number of sensors applied to the plant, and
hence reducing the data acquisition complexity and the cost
when the required sensors are complicated and expensive.

In this work, we study an output feedback control design
problem for a combustion engine testbench. As combustion
engines are widely used in automotive as well as industrial
applications, the topic has attracted a lot of researchers to
study the control problems of the engine as well as the engine
test bench (see for instance [1]–[3] and references therein).

The issue of the partially available state measurement is
addressed. To handle the problem of unmeasured signals, a
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discrete-time observer design is proposed in this paper. The
observer is applied in a sampled-data setting, where the pro-
posed discrete-time partial state nonlinear observer is used
to estimate the unmeasured states or the continuous-time
model of the testbench. Although it is possible to construct
the discrete-time observer by emulation, namely discretizing
the continuous-time observer by sampling, this approach
often results in performance degradation. Therefore, direct
discrete-time design is favorable in many situation (see for
instance [4]–[6]). This paper can be seen as the discrete-time
counterpart of [7], where a continuous-time observer design
for the same system was proposed.

In this paper, we prove the convergence of the observer
by showing the convergence of the observation error. We
also prove that separation principle holds in our construction.
This is very important as we will use the observer to build
an output feedback controller for setpoint tracking of the
speed and the torque of the test bench. While the proof of
the separation principle is not presented in [7], the proof
presented in this paper serves to complete the results of [7].

The application of the main results to the output feedback
control design of the combustion engine testbench is pre-
sented and some simulation results to test the performance
of the proposed observer and output feedback design are also
provided. A comparison between the so called ”static ob-
server” and ”dynamic observer” constructed using a similar
approach is also provided to complete the discussion.

II. NOTATION AND DEFINITIONS

The set of real and natural numbers (including 0) are
denoted respectively by R and N. A function γ : R≥0 → R≥0

is of class K if it is continuous, strictly increasing and
zero at zero. It is of class K∞ if it is of class K and
unbounded. Functions of class K∞ are invertible. A function
β : R≥0×R≥0 → R≥0 is of class KL if β(·, t) is of class K
for each t ≥ 0 and β(s, ·) is decreasing to zero for each s > 0
[8]. Note that we often drop the arguments of a function
whenever they are clear from the context.

Consider a general input affine nonlinear system

ẋ = f(x) + g(x)u , y = h(x) , (1)

where x ∈ R
n is the state, u ∈ R

m is the control input and
y ∈ R

p is the output. The functions f , g and h are smooth
and f is zero at zero. The family of discrete-time model of
the system can be written as

xk+1 = FT (xk, uk) , yk = h(xk) , (2)
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with the parameter T > 0 is the sampling period. If the
control input is a state feedback controller uk = uk(xk), we
write the closed loop system of (1) as

xk+1 = FT (xk) (3)

We use the following definitions throughout the paper.
Definition 2.1: (Semiglobal practical asymptotic (SPA)

stability) A discrete-time system (3) is SPA stable in a
Lyapunov sense if there exists a continuously differentiable
function VT : R

n → R such that there exist class K∞

functions α, α, α such that for any compact and invariant
set Ox ⊆ R

n and a sufficiently small real number ν > 0
there exists T ∗ > 0 such that for all T ∈ (0, T ∗) and for all
x ∈ Ox the following holds.

α(|x|) ≤ VT (x) ≤ α(|x|) (4)
VT (FT (x)) − VT (x) ≤ −Tα(|x|) + Tν , (5)

and VT is called a SPA stability Lyapunov function. �

Definition 2.2: (SPA stabilizability) A discrete-time sys-
tem (2) is SPA stabilizable by means of state feedback if
there exists a state feedback control law uk = uk(xk) s.t. the
closed-loop system (2) with the control uk is SPA stable. �

Consider now another discrete-time system

zk+1=ΓT (zk, yk, uk); x̂k=γ(zk, yk, uk); zk∈R
l. (6)

Definition 2.3: (SPA stable observer) The system (6) is a
(SPA) stable observer for (2) if for any compact and invariant
sets Ox ⊆ R

n, Oz ⊆ R
l, Ou ⊆ R

m and a sufficiently small
number ν > 0, there exists T ∗ > 0 s.t. the following hold.

1) For all x0 ∈ Ox, uk ∈ Ou and T ∈ (0, T ∗], there
exists z0 ∈ Oz such that ‖x̂k − xk‖ ≤ Tν , ∀k ≥ 1.

2) For all x0 ∈ Ox, uk ∈ Ou, z0 ∈ Oz and all T ∈
(0, T ∗], limk→∞ ‖x̂k − xk‖ → Tν.

If x̂k = zk, the system (6) is called an identity observer, and
if the convergence of x̂ to x is exponential, then (6) is called
an exponential observer. �

Remark 2.1: The property in Definition 2.3 holds globally
if Ox = R

n, Oz = R
l, Ou = R

m and ν = 0. Note that
the parameter ν which takes nonnegative value, defines the
practical property. On the other hands, it holds locally if
Ox ⊂ R

n, Oz ⊂ R
l, Ou ⊂ R

m. It is called quasilocal
[9] if given Ox ⊂ R

n, Ou ⊂ R
m for the state and control

respectively, for every initial condition x0 ∈ Ox there exists
an open subset Oz(x0) ⊂ R

l such that conditions 1) and 2)
of Definition 2.3 holds z0 ∈ Oz(x0) ⊂ R

l for all k ≥ 0. �

The following property is a direct implication of the
existence of a SPA observer for a system.

Definition 2.4: (SPA observability) A discrete-time sys-
tem (2) is SPA observable if there exists a SPA observer
for the system. �

III. MAIN RESULT

A. Engine test bench model
A simple diagram of the combustion engine test bench is

illustrated in Figure 1. The main parts of such a dynamical
engine test bench are the dynamometer, the connection shaft

and the combustion engine itself. One of the control design
objectives for a dynamical engine test bench control is to
stabilize the engine torque and the engine speed.

Fig. 1. The combustion engine test bench system

Considering the torque of the combustion engine and the
air gap torque of the dynamometer as the inputs to the
mechanical part of the test bench, the dynamical model of
the engine can be represented by a two mass oscillator

ψ̇∆ = ωE − ωD (7)

ω̇E =
1

θE

(TE − cψ∆ − d(ωE − ωD)) (8)

ω̇D =
1

θD

(cψ∆ + d(ωE − ωD) − TDSet) , (9)

where ψ∆ is the torsion angle, ωE and ωD are respectively
the engine and the dynamometer angular velocity, TE is
the engine’s torque, TDSet is the air gap torque of the
dynamometer, θE and θD are the inertia of the engine and
the dynamometer, respectively. The parameters c and d are
the damping constant and stiffness of the shaft, respectively.
The dynamical model of the combustion engine test bench
is approximated by the class of the extended Hammerstein
systems (see [10] for more details)

ṪE = −(c0 + c1ωE + c2ω
2
E)TE +m(ωE , TE , α) . (10)

with c0, c1 and c2 are some positive coefficients and
m(ωE , TE , α) is a continuous nonlinear function. From the
continuity of m, without lose of generality, we assume that
it is locally Lipschitz with respect to TE .

B. Discrete-time observer design
From Subsection III-A we have obtained the dynamic

model (7)-(10) of the testbench. In practice, from the four
state variables of the system, only the engine angular velocity
ωE and the dynamometer angular velocity ωD are available
through measurement. Hence, we can write the output equa-
tion for the system as

y1 = ωE y2 = ωD . (11)

As the control problem of the testbench usually involves the
torque control, in order to design a feedback controller the
knowledge of the torque TE is necessary. Hence, an observer
is required to estimate the unmeasured states TE and ψ∆.

In [7] a continuous-time observer design has been pro-
posed. However, this observer needs to be implemented
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digitally in the real application. Although as have been shown
in [7] that the observer works very well in continuous-time
simulation, sampling inevitably degrades the performance. It
is known from numerous experiences that direct discrete-time
design yields in improved performance [6], [11]. Therefore,
in this paper we design a discrete-time observer based on the
discrete-time model of the test bench. Suppose the family of
the exact model of the test bench (7)-(10) is

xe
1,k+1 = F e

1T (xe
1k, x

e
2k, uk)

xe
2,k+1 = F e

2T (xe
1k, x

e
2k, uk)

(12)

where x1 is the measured state and x2 is the unmeasured
state. The output is then ye

k = xe
1k. The exact model (12)

is obtained by integrating the initial value problem of (7)-
(10) over the sampling interval [kT, (k + 1)T ] with initial
condition x(0) = x◦ := [x1◦, x2◦] and a constant input
uk. However, since the explicit solution of the nonlinear
initial value problem is in general impossible to compute, the
exact discrete-time model (12) is not available. Therefore an
approximate discrete-time model is used. We use the Euler
approximate model of the dynamic of the unmeasured states

TE,k+1=TEk+T
ˆ

m(ωE , TE , α)−(c0+c1ωE+c2ω
2
E)TE

˜

ψ∆,k+1=ψ∆k+T (ωE−ωD) ,
(13)

as the base of the observer structure. The following theorem
provide the observer construction. To simplify notation, we
denote the state vector x = [TE , ψ∆, ωE , ωD]>, and we drop
the argument k whenever it is clear from the context.

Theorem 3.1: Given the exact discrete-time model (12) of
a continuous-time model of an engine testbench (7)-(10) with
the measured output (11). For any compact and invariant set
D ⊂ R4, there exist T ∗ > 0, so that the following reduced
order observer

T̂E,k+1=T̂Ek+T
h

m(ωE , T̂E , α)−(c0+c1ωE+c2ω
2
E)T̂E + L1e1

i

ψ̂∆,k+1=ψ̂∆k+T (ωE−ωD + L2e2) , (14)

with L1 > 0, L2 > 0 sufficiently large and

e1 = θEω̊E + θDω̊D + TDSet − T̂E

e2 =
1

c
(θDω̊D − d(ωE − ωD) + TDSet − cψ̂∆)

ω̊E :=
ωEk − ωE(k−1)

T
, ω̊D :=

ωDk − ωD(k−1)

T
,

(15)

is a SPA stable observer for the exact discrete-time model
(12) for all x ∈ D and T ∈ (0, T ∗]. �

Remark 3.1: Note that in practice the signals ω̇E and ω̇D

are not measured. Although theoretically it is possible to
use a differentiator to obtain these signals from the output
ωE and ωD, it is not practical as a differentiator needs two
input signals. The common practice is by approximating the
derivatives as follows

ω̇E ≈
ωE(t) − ωE(t− T )

T
, ω̇D ≈

ωD(t) − ωD(t− T )

T
,

with T > 0 sufficiently small. This approach is also applied
in this paper. �

Proof of Theorem 3.1: Given the exact discrete-time model
system (12) of the system (7)-(10), with measured output

(11) and the observer (14). To prove Theorem 3.1, we first
show that the observer (14) is a SPA stable observer for the
Euler approximate discrete-time model (13). We define the
estimation errors as e1 := TE − T̂E and e2 := ψ∆ − ψ̂∆.
First, we will show that the error terms satisfy (15). It is
straight forward that from (9) we can obtain

ψ∆ =
1

c

(

θDω̇D − d(ωE − ωD) + TDSet

)

. (16)

Moreover, from (8) and (16) we have
TE = θEω̇E + cψ∆ + d(ωE − ωD)

= θEω̇E + θDω̇D + TDSet .
(17)

Therefore using (17) we obtain

e1 = TE − T̂E = θEω̇E + θDω̇D + TDSet − T̂E , (18)

and using (16), we obtain

e2=ψ∆−ψ̂∆=
1

c

[

θDω̇D−d(ωE−ωD)+TDSet−cψ̂∆

]

. (19)

Following Remark 3.1, we replace ω̇E and ω̇D with ω̊E and
ω̊D respectively to arrive at (15). Now, considering the Euler
model of the testbench we can write the error dynamics
e1,k+1 = TE,k+1 − T̂E,k+1

= e1 + T
[

−(c0 + c1ωE + c2ω
2
E)e1

+m(ωE , TE , α) −m(ωE , T̂E , α) − L1e1

]

,

(20)

and e2,k+1 = ψ∆,k+1 − ψ̂∆,k+1 = e2 − TL2e2 (21)

To show the asymptotic stability of the error system, we use
choose VT = 1

2e
>e as the Lyapunov function. The Lyapunov

difference ∆VT is

∆VT =
1

2

[

e>1,k+1e1,k+1+e
>
2,k+1e2,k+1−e

>
1,ke1,k−e

>
2,ke2,k

]

.

From the local Lipschitzity of m with respect to TE , there
exist Lm > 0 such that for all x ∈ D

m(ωE , TE , α) −m(ωE , T̂E , α) ≤ Lm(TE − T̂E) = Lme1 .

Following very similar steps as in [7], after some standard
calculation (see for instance [12]), for all x ∈ D and T ∈
(0, T ∗] we can obtain
∆VT < T

[

−(c0 + c1ωE + c2ω
2
E)e21

+Lme
2
1 − L1e

2
1 − L2e

2
2

]

+ Tν

< T
[

−
(

C(ωE) + L1 − Lm

)

e21 − L2e
2
2

]

+ Tν

< T
[

−Le21 − L2e
2
2

]

+ Tν ,

(22)

with ν > 0 sufficiently small. The existence of L > 0 is
guaranteed by choosing L1 large enough so that C(ωE) +
L1 > Lm for all ωE . Therefore the Lyapunov difference is
negative definite with a small offset Tν. Hence, the observer
(14) is a SPA stable observer for the Euler model (13).

Moreover, since the Euler model (13) is one step consistent
with the exact model (12) we have

|F e
2T − FEuler

2T | < Tρ(T ) . (23)
It is then obvious that the observer (14) is also a SPA stable
observer for the exact model (12) with an offset ν̃ > ν. �
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C. Separation Principle
Separation principle needs to hold if an observer is used

for designing an output feedback controller. For the separa-
tion principle to hold, asymptotic stabilizability and uniform
observability of the system w.r.t the observer is required.

In nonlinear sampled-data stabilization problems, we are
interested in stabilizing a nonlinear continuous-time system
using a discrete-time controller. However, under certain
conditions the stability analysis for sampled-data systems
can be derived from the stability analysis of its closed-loop
exact discrete-time model, or further from its closed-loop
approximate discrete-time model [13], [14].

In this section, while we are interested in the stabilization
and separation principle for the continuous-time system (7)-
(10) and observer (14), we study the properties for the
exact discrete-time model (12) and observer (14) and use the
results from [13], [14] to derive conclusions for the sampled-
data system (7)-(10) and (14).

Given a state feedback control uk for the system (7)-
(10). To guarantee that the estimated state T̂E and ψ̂∆

can be used to replace the unmeasured state TE and ψ∆

in a feedback control construction, the separation principle
must hold. The separation principle required to solve the
stabilization problem is stated in the following result.

Proposition 3.2: (Separation Principle) Consider the ex-
act discrete-time model of the engine test bench (12). Sup-
pose there exists a controller uk = uk(TE , ψ∆, ωE , ωD) :=
uk(x) that SPA stabilizes the system. Assume that uk is con-
tinuous, and zero at zero. The SPA stabilization for the sys-
tem using an output feedback uk = ûk(T̂E , ψ̂∆, ωE , ωD) :=
uk(x̂k) from the observer (14) is solvable if the closed-loop
system is uniformly observable. �

Proof of Proposition 3.2: The origin is a SPA stable
equilibrium point of the system (7)-(10) with the controller
uk = uk(x). Hence using the Lyapunov converse theorem
we can claim that there exists a continuous and differentiable
function VT : Rn → R and positive constants ∆1 and ν such
that for all |x| ≤ ∆1 there exists T ∗ > 0 such that for all
T ∈ (0, T ∗) we have

α(|x|) ≤ VT (x) ≤ α(|x|) (24)
VT (FT (x, uk(x))) − VT (x) ≤ −Tα(|x|) + Tν (25)

where α, α, α are class K functions.
Applying ûk = uk(x̂k) to the system (12) yields the

closed-loop exact discrete-time model

xk+1 = F e
T (xk, uk(x̂k)

x̂2(k+1) = x̂2k + T ẋ2 + TLe ,
(26)

with L some positive constant. Since the system is SPA
observable, Definition 2.3 follows. Moreover, we can write
the Lyapunov difference for the closed-loop system as

∆VT =VT (F e
T (x, ûk))−VT (x)

≤−Tα(|x|)+Tν+VT (F e
T (x, ûk))−VT (F e

T (x, uk)).

Although F e
T (·) is not known explicitly, since the Euler

approximate model F a
T (·) that we use is one step consistent

[15], we have that

F e
T (x, uk) − F a

T (x, uk) ≤ Tρ(T ) . (27)

From the continuity of VT , we can then write

∆VT ≤ −Tα(|x|) + Tν + Lv(Tρ(T ))

+ VT (F a
T (x, ûk)) − VT (F a

T (x, uk))

≤ −Tα(|x|) + Tν + Lv(Tρ(T ))

+ Lv(F a
T (x, ûk) − F a

T (x, uk))

≤ −Tα(|x|) + Tν + Lv(Tρ(T ))

+ TLv(f(x, ûk) − f(x, uk))

(28)

Once more, due to the continuity of f(·), we have that

f(x, ûk) − f(x, uk) ≤ Lf (ûk − uk) , (29)

and without lose of generality we assume the continuity of
uk so that we have

ûk − uk = uk(x̂) − uk(x) ≤ Lu |e| . (30)

Hence we can write

∆VT ≤−Tα(|x|)+Tν+Lv(Tρ(T ))+TLvLfLu |e| . (31)

As it has been proved in Theorem 3.1 that the observer is
SPA stable, which means the first and second conditions of
Definition 2.3 hold. Moreover, we can pick a sufficiently
small ν̃ > ν such that there exists 0 < T ∗

1 < T ∗ such that
for all T ∈ (0, T ∗

1 ) we have

Tν + Lv(Tρ(T )) + TLvLfLu(e) ≤ T ν̃ , (32)

and hence ∆VT ≤ −Tα(|x|)+T ν̃, that completes the proof
of Proposition 3.2. �

Remark 3.2: We emphasize that the separation principle
stated in Proposition 3.2 is for the discrete-time observer
(14) and the exact discrete-time model of the testbench
(12). Indeed, in practice we are interested in the stability
of the sampled-data system that consists of the continuous-
time system (7)-(10) and the observer (14). To conclude
the SPA stability of the sampled-data system, we apply
[13, Theorem 2]. The theorem states that uniform global
asymptotic stability of the exact discrete-time model together
with the uniform global boundedness of the control signal
with respect to the time sampling T > 0 implies uniform
global asymptotic stability for the sampled-data system. This
result can be applied directly for the case of SPA stability
considered in Proposition 3.2, provided that the controllers
uk = uk(TE , ψ∆, ωE , ωD) and uk = ûk(T̂E , ψ̂∆, ωE , ωD)
are uniformly globally bounded for all T > 0. �

D. Comparison between ”static” and dynamic observer
It is obvious from (17) and (16) that the states TE and ψ∆

can be constructed by manipulating the measured states ωE

and ωD. Rewriting (17) and (16) respectively as

TE = θEω̇E + θDω̇D + TDSet

ψ∆ =
1

c

(

θDω̇D − d(ωE − ωD) + TDSet

)

,
(33)
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one may argue that (17) and (16) can also function as an
observer to estimate the states TE and ψ∆. Indeed, this is
true. A similar construction has been used in [12], in which
case the observer was shown to be a semiglobal observer to
the system being estimated. However, although (33) might
be used as an observer, it carries some limitations. First,
the initial condition of the state estimates cannot be set
independently from the initial condition of the two measured
states ωE and ωD. Second, we cannot set the speed of
convergence of the observer (33) as the convergence terms do
not exist in the formula. In this case, if the measured states do
not converge to a certain value, the estimation convergence
of the observer (33) is also not guaranteed.

Comparing the observer (14) and (33), we can say that
(33) is a static observer and (14) is a dynamic observer for
the system (10)-(9) with output (11). In Section IV-B we will
show a comparison between the observers (14) and (33) in
one simulation setting.

IV. SET POINT TRACKING USING OUTPUT FEEDBACK

A. Output feedback controller design
As separation principle is valid for the state feedback

controller and the observer, we can use the state estimate
to substitute the original state to construct an output feed-
back controller for the engine. In [16] we have designed a
controller that guarantee asymptotic stability for a setpoint
tracking problem of the engine. The controller is designed
via a model transformation approach as briefly describe in
the followings.

We define the state normalization as follows

x1 =
TE − TE0

∆TE

, x2 =
ψ∆ − ψ∆0

max(ψ∆)
,

x3 =
ωE − ωE0

∆ωE

, x4 =
ωD − ωD0

∆ωD

,

(34)

with TE0, ψ∆0, ωE0 and ωD0 defines the operating point and
∆TE , max(ψ∆), ∆ωE and ∆ωD the maximum expected
distance from the equilibrium point. With this scaling and
taking cmax(ψ∆) = ∆TE , the system (7)-(10) can now be
represented as an extended Hammerstein system as follows

ẋ1 = − (c̃0 + c̃1x3 + c̃2x
2
3)x1 − γ1x3 − γ2x

2
3 + u1

ẋ2 =b(x3 − x4)

ẋ3 =
1

θE

(c

b
x1 −

c

b
x2 − d(x3 − x4)

)

ẋ4 =
1

θD

(c

b
x2 + d(x3 − x4)

)

+ u2 ,

(35)

with the inputs

u1 =
m(x1, x3, α) −m(0, 0, α0)

∆TE

, u2 = −
TDSet − TD0

θD∆ωD

,

and c̃0, c̃1, c̃2, b, γ1, γ2 are positive constants.
In [16] a continuous-time controller has been constructed

to satisfy some robust optimal design criteria. The control
Lyapunov function used for designing the controller is

V (x1, x2, x3, x4)=k1x
2
1+k2x

2
2+k3x

2
3+k4x

2
4+k5x2x4, (36)

with ki ∈ R
+, i = 1 · · · 4 and k5 ∈ R − {0}. The positive

definiteness of V (·) is guaranteed for some k5 with |k5|
sufficiently small. The controller takes form

uk = −[R(x)g(x)]>
[

∂V (x)

∂x

]>

= −

[

2r1k1x1

r2(2k4x4 + k5x2)

]

(37)

with a positive matrix R = diag[r1, 0, 0, r2]. The controller
has been proved to SPA stabilize the system.

Note that the controller (37) is designed to SPA stabilize
the normalized model (35) of the engine. As our main
objective is to apply the controller to the engine test bench,
we need to transform back the normalized model of the test
bench and test the stability of tracking of the original system.
From the state transformation (34), we have the relations
m(ωE , TE , α)=u1∆TE+TE0(c0+c1ωE0+c2ω

2
E0)

TDSet = −u2θD∆ωD + TD0 ,
(38)

where we have chosen ψ∆0 = TE0

c
, TD0 = TE0 and ωE0 =

ωD0. The setpoint tracking aims to follow the changing of
operating points (TE0, ωE0) of the engine.

Replacing the unmeasured states with their estimate value,
and applying the transformation (34), the output feedback
controller takes the form
m(ωE , T̂E , α)=−2r1k1(T̂E − TE0)

+ TE0(c0 + c1ωE0 + c2ω
2
E0)

TDSet = 2k4r2θD(ωD − ωD0)

+ k5r2θD∆ωD

cψ̂∆ − TE0

∆TE

+ TD0 .

(39)

B. Simulation results
In this subsection, by simulation we first show the conver-

gence of the observer in estimating the states TE and ψ∆.
Further, we will apply the output feedback controller (39) to
control the engine test bench (10), (7)-(9). The performance
of the output feedback controller (39) is compared to the state
feedback controller (37) for a setpoint tracking assignment.

In the simulation we have used the engine parameters
θE = 0.32 kgm2, θD = 0.28 kgm2, d = 3.5505 Nms/rad and
c = 1.7441 × 103 Nm/rad, which are based on a dynamic
test bench with a production BMW M47D diesel engine.
The controller parameters are k1 = 1.56860, k2 = 0.00174,
k3 = 0.88000, k4 = 1.05000 and k5 = −0.01450, and
the coefficients of the approximate dynamic model after
scaling are c̃0 = 6.3466, c̃1 = 3.2096, c̃2 = 2.7744,
b = 1.8264 × 103, γ1 = 4.8143 and γ2 = 4.1616. We
apply the controller for a setpoint tracking when changing
the operating point (TE , ωE) of the engine each following
a square wave reference signal. Moreover, we have chosen
R = diag[1, 0, 0, 2]. The initial condition of the engine
(50, 50/c, 3000, 3000), the initial condition of the observer
(100, 100/c), choosing L1 = 1, L2 = 1 and T = 0.01 sec.

In Figure 2, it is shown that the observer can estimate the
unmeasured states TE and ψ∆ very well as the discrete-time
observer converges very quickly to the engine test bench
system, even when the initial condition of the observer is
very different from the initial condition of the test bench.
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Fig. 2. Convergence test of the observer.
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Fig. 3. Tracking using output feedback controller.

The response of the system, comparing the discrete-time
observer with the emulation observer and the continuous-
time observer in the output feedback configuration is shown
in Figure 3. In the simulation we have used the parameters
T = 0.01 sec. It apprears that with the discrete-time
observer the closed-loop response of the system is closer to
the continuous-time system rather than with the emulation
observer. A clear comparison can be seen from the engine
speed response in Figure 3(b). On the other hand, the output
feedback control effort with the discrete-time observer is
lighter than the effort with the emulation observer, which
can be seen clearly in Figure 3(c).

To complete the comparison analysis, we also compare
the discrete-time observer (14) with the discrete-time static
observer (33). Figure 4 show the performance of the two
observers in an output feedback tracking. We have used
sampling time T = 0.1 sec in the simulation.

V. SUMMARY

We have presented a nonlinear discrete-time partial state
observer design for a combustion engine test bench system
and have tested the performance of an output feedback
controller constructed based on the observer. We have also
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Fig. 4. Tracking using output feedback with dynamic and static observers.

introduced the so called static and dynamic observer, and
present a comparison of these two type of observers showing
that dynamic observers give more flexibility than static
observers. As this study is done only based on simulation,
the next step will be to implement the observer and output
feedback controller design to a real engine test bench for
solving the setpoint tracking problem.
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