
Construction of Lyapunov-Krasovskii functional for time-varying delay

systems

Yassine Ariba* and Frédéric Gouaisbaut*

Abstract— This paper provides some new techniques to
construct a Lyapunov-Krasovskii functional for time varying
delay systems. The construction is based on a partitioning
scheme of the time-varying delay leading to a new type of
Lyapunov-Krasovskii functional. This functional is depending
on an augmented state and also on an integral quadratic
constraint added to reduce the conservatism of the proposed
methodology. This approach is then extended to the robust case.
Finally, some examples support our approach.

I. INTRODUCTION

Delay systems and especially its asymptotic stability have

been thoroughly studied since several decades [1], [2], [3]

and references therein. The study of the delay phenomenon

is motivated by its applied aspect. Indeed, many processes

include dead-time phenomena in their dynamics such as bi-

ology, chemistry, economics, as well as population dynamics

[2]. Moreover, processing time and propagation time in ac-

tuators and sensors generally induce such delays, especially

if some devices are faraway from each other. That is the

challenge of the stability of networked controlled systems

[4] as well as networks control [5] [6].

In the case of constant delay, many different techniques

lead to efficient algorithms (mainly based on LMIs) to test

the stability of time delay system. It includes the robust

approach (method based on the use of IQCs, separation

approach or small gain like theorems [3]) and Lyapunov

approach. In this last approach, we aim at finding a Lyapunov

functional depending on the whole state of the system xt(θ)
which is not an easy task even for a linear time delay system

with one delay. Indeed, for a linear time delay system, some

general functional can be found [3] but is very difficult

to handle. That is the reason why more simple and thus

more conservative Lyapunov-Krasovskii functional (LKF)

have been proposed. Generally, all these approach have to

deal with two main difficulties (see [7] and [3]). The first

one is the choice of the model transformation. The second

problem lies on the bound of some cross terms which appear

in the derivative of the Lyapunov functional. Mainly, two

techniques have been proved to be efficient to reduce the

conservatism. The first one adopt a discretizing scheme of

the L.K. matrices [3]. At a price of an increasing number

of variables to be optimized, the result tends to become a

necessary and sufficient condition. Another interesting ap-

proach, developed in a Lyapunov and robust frameworks use

an augmented state vector formulation to construct some new
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L.K.F. for the original system. Hence, in [8], a partitioning

delay scheme is developed in order to construct a L.K.F

which depends on a discretizing version of the whole state

xt(θ).

In the case of time varying delay, the results are much

more scarce and the proposed methodologies are often con-

servative. In this paper, we aim at developing new type of

LKF by fractionning the delay in order to take into account

the whole state of the system. Even if this idea is not so

new in the constant delay case it is much more complicated

to elaborate if the delay is time varying. Indeed, due to the

time varying nature of the delay, partitioning the delay and

introducing an augmented state variable do not generally

induce a good description of the original system. More

particularly, it is not proved that using the state augmentation,

we recover the original delayed state. That’s the reason why,

in the literature we can find the use of some slack variables to

artificially construct linear relations between the augmented

state formulation and the original state of the system. Here,

we propose to cope with this problem by adding an integral

quadratic constraint which take into account the relationship

between the augmented delay state and the original delayed

state.

Notations: For two symmetric matrices, A and B, A >
(≥) B means that A − B is (semi-) positive definite. AT

denotes the transpose of A. 1n and 0m×n denote respectively

the identity matrix of size n and null matrix of size m × n.

If the context allows it, the dimensions of these matrices

are often omitted. For a given matrix B ∈ R
m×n such that

rank(B) = r, we define B⊥ ∈ R
n×(n−r) the right orthogonal

complement of B by BB⊥ = 0. ‖x(t)‖ corresponds to

the Euclidean norm of x(t). We denote by L2 the space of

R
n valued functions of finite energy: ‖f‖2

L2
=

∞
∫

0

|f(t)|2dt.

Le
2 the space of R

n valued functions of finite energy on

finite interval. Defining an operator,a mapping from a normed

space to another D : x → D[x], Dn[x] means that the

operator D is applied n times to x. For instance, D2[x]
corresponds to D [D[x]]. A causal operator H from Le

2 to Le
2

is said to be bounded if ‖H‖ = supf∈L2

‖Hf‖
‖f‖ is bounded.

xt(.) is the function such that θ → xt(θ) = x(t + θ) and

refers to the time delay system state. Finally, we denote by

Pt the truncation operator Pt[f ](u) = f(u) if u < t and 0

otherwise.
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II. A FIRST STEP TO A DISCRETIZATION SCHEME

Consider the following linear time delay system
{

ẋ(t) = Ax(t) + Adx(t − h(t)), ∀t ≥ 0,
x(t) = φ(t), ∀t ∈ [−hm, 0],

(1)

where x(t) ∈ R
n is the state vector, A, Ad ∈ R

n×n are known

constant matrices and φ is the initial condition. The delay,

h(t), is assumed to be a time-varying continuous function

that satisfies

0 ≤ h(t) ≤ hm (2)

where hm > 0 may be infinite if delay independent con-

ditions are looked for. Furthermore, we also assume that a

bound on the derivative of ḣ(t) is provided :

|ḣ(t)| ≤ d ≤ 1 (3)

with d a positive scalar.

Previous works on the stability analysis of time delay

system with time-invariant delay have been proposed in [9]

and in a quadratic separation [10] and Lyapunov-Krasovskii

[3] frameworks, respectively. In these studies, the key idea to

derive an efficient stability analysis criterion consists in delay

fractioning. Indeed, it is shown that introducing redundant

equations shifted in time by fractions of the delay reduce

the conservatism of the stability condition.

The feature of this present contribution is to extend these

previous results to the stability analysis of time-varying

delay systems. Of course, the time-varying nature of the

delay makes the task more complicated to deal with. Indeed,

consider a time-invariant delay system,

ẋ(t) = Ax(t) + Adx(t − h) (4)

with h a positive constant scalar.

Applying the constant delay operator, Dh/N : x(t) →
x(t − h/N) to the state vector of (4) N times, the delayed

state vector x(t − h) of (4) is recovered. Then, a suitable

choice of a Lyapunov-Krasovskii functional as explained in

[9] leads to an efficient stability condition. This functional

depends explicitly on a discretizing version of the whole

state [x(t), x(t − h/2), . . . , x(t − (N − 1)h/N), x(t − h)]′.
Considering a time-varying delay system (1), the fundamen-

tal difference is that applying time-varying delay operator,

Dh(t)/N : x(t) → x(t − h(t)/N) do not lead to a

appropriate description of the state. For example, in the case

of N = 2, the fractioning scheme lead to the augmented state

vector [x(t), x(t− h(t)
2 ), x(t− h(t)

2 − h(t−h(t)/2)
2 )]′. The last

component is deduced when the operator Dh(t)/2 is applied

two times to x(t) (D2
h(t)/2[x(t)]) and is hardly suitable to

describe the delayed instantaneous state x(t−h). In order to

describe properly the proposed methodology, the following

is devoted to the case where the delay is partionned into two

parts. Consider the following signals:

x0(t) =x(t −
h(t)

2
), (5)

x1(t) =x(t −
h(t)

2
−

h(t − h(t)/2)

2
). (6)

Given the signal x1(t), there is no apparent relationship with

the delayed instantaneous state x(t − h(t)) and in order to

clarify the relations between the two signals, we introduce

an additional operator from L2 to L2,

∇ : x(t) →

∫ t−
h(t)
2 −

h(t−h(t)/2
2

t−h(t)

x(u)du (7)

that highlights the link between signals x1(t) and x(t−h(t).
Remarks that for a constant delay, ∇ is reduced to the null

operator. Then, we can prove that the L2 induced norm of

the operator ∇ is bounded by hmd
4

√

(

1
1−d

)

. Indeed, the L2-

norm of the operator ∇ is defined by

‖∇(x)‖2
L2

=

∫ ∞

0







t−
h(t)
2 −

h(t−h(t)/2
2

∫

t−h(t)

x(u)du







2

dt

=

∫ ∞

0







t−h(t)+ 1
2 δ(t)

∫

t−h(t)

x(u)du







2

dt

with δ(t) = h(t) − h(t − h(t)
2 ) which can be bounded by

δ(t) =

∫ t

t−
h(t)
2

ḣ(u)du ≤

∫ t

t−
h(t)
2

d du ≤
hmd

2

for all t ∈ R
+. Then, the Cauchy-Schwarz inequality states

that

‖∇(x)‖2
L2

≤

∫ ∞

0

hmd

4

t−h(t)+ 1
2 δ(t)

∫

t−h(t)

‖x(u)‖2dudt

≤

∫ ∞

0

hmd

4

hmd/4
∫

0

‖x(u + t − h(t))‖2dudt.

Performing the substitution s = u + t − h(t), we obtain

‖∇(x)‖2
L2

≤
hmd

4

1

1 − d

hmd/4
∫

0

∫ ∞

0

‖x(s)‖2dsdu

≤

(

hmd

4

)2
1

1 − d
‖x‖2

L2
.

(8)

This last inequality concludes the proof.

Remark 1 In order to use this inequality, we shall remark

that d is supposed to be less than one. This technic is then

not suitable for large variations of delay derivative, i.e. fast

varying delay systems.

Theorem 1 Given scalars hm > 0 and 0 ≤ d ≤ 1, system

(1) is asymptotically stable for any time-varying delay h(t)
satisfying (2) and (3) if there exists n × n positive definite

matrices P , Q0, Q2, R0, R1 and a 2n× 2n matrix Q1 > 0

such that the following LMI holds:

S⊥T

ΓS⊥ < 0 (9)
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where

S =
[

−1 A 0n 0n Ad

]

and (10)

Γ =

























U P 0 0 0

P V 2
hm

R1 0
1

hm
R0

0
2

hm
R1 − 2

hm
R1 0 0

0 0 0 −Q2 Q2

0
1

hm
R0 0 Q2 W

























+





0 0n×2n 0n×2n

02n×n Q1 02n×2n

02n×n 02n×2n 02n×2n





+





02n×2n 02n×2n 02n×n

02n×2n −(1 − d/2)Q1 02n×n

0n×2n 0n×2n 0





(11)

with

U =
(

hmd
4

)2 1
1−dQ2 + hm

2 R1 + hmR0,

V = Q0 − 2
hm

R1 − 1
hm

R0,

W = −(1 − d)Q0 − Q2 − 1
hm

R0.

S⊥ is an right orthogonal complement of S.

Proof: The proof is based on the Lyapunov-Krasovskii

approach. The LKF considered is composed of the traditional

terms used in the litterature (V1, V3 and V5, see [11] [9]

and references therein), some terms that take into account

the delay partitionning (V2 and V4, see [8] for invariant

delay case) and an integral quadratic constraint (Π(t, xt)).
Similarly as the input-output stability approach in time

domain, adopted in [3], the IQC is constructed with the help

of the L2-norm of an operator. Let us define the following

Lyapunov-Krasovskii functional candidate:

V (x) = V1(x) + V2(x) + V3(x) + V4(x) + V5(x) (12)

where

V1(x) =xT (t)Px(t), (13)

V2(x) =

t
∫

t−
h(t)
2

[

x(s)

x(s − h(s)
2 )

]T

Q1

[

x(s)

x(s − h(s)
2 )

]

ds,

(14)

V3(x) =

t
∫

t−h(t)

xT (s)Q0x(s)ds, (15)

V4(x) =

t
∫

t−hm
2

t
∫

s

ẋT (u)R1ẋ(u)duds, (16)

V5(x) =

t
∫

t−hm

t
∫

s

ẋT (u)R0ẋ(u)duds, (17)

and the IQC

Π(t, xt) =
t
∫

0

(

hmd
4

)2 1
1−d ẋT (s)Q2ẋ(s)

−∇[ẋ(s)]T Q2∇[ẋ(s)]ds.

(18)

∇[.] is an operator defined as (7). Since P , R0, R1, Qi for

i = {0, 1, 2} are positive definite matrices, the functional

V1(x) + V2(x) + V3(x) + V4(x) + V5(x) is also positive

∀x ∈ R
n. Let us prove that Π(t, xt) is also a positive

function. For this purpose, following a similar approach as

for input-output stability analysis method in [12], let remark

that
t
∫

0

∇[ẋ(s)]T Q2∇[ẋ(s)]ds = ‖Pt[∇[Q
1/2
2 ẋ(t)]]‖2 and

as the operator ∇ is causal, this last expression can be

expressed as Pt[∇[Q
1/2
2 ẋ(t)]]‖2 = ‖Pt[∇[Pt[Q

1/2
2 ẋ(t)]]]‖2

using standard arguments [13] [12],

‖Pt[∇[Pt[Q
1/2
2 ẋ(t)]]]‖2 ≤ ‖Pt‖

2‖∇‖2‖Pt[Q
1/2
2 ẋ(t)]‖2.

with ‖Pt‖
2 < 1, ‖∇‖2 ≤

(

hmd
4

)2 1
1−d and

‖Pt[Q
1/2
2 ẋ(t)]‖2 =

t
∫

0

ẋT (s)Q2ẋ(s)ds. Regrouping all

the terms proves that Π(t, xt) is positive definite. The

derivative of the functional (12) along the trajectories of (1)

leads to

V̇ (x) = V̇1(x) + V̇2(x) + V̇3(x) + V̇4(x) + V̇5(x) (19)

where

V̇1(x) =ẋT (t)Px(t) + xT (t)Pẋ(t),

V̇2(x) =

[

x(t)
x0(t)

]T

Q1

[

x(t)
x0(t)

]

− (1 −
d

2
)

[

x0(t)
x1(t)

]T

Q1

[

x0(t)
x1(t)

]

,

V̇3(x) =xT (t)Q0x(t) − (1 − d)xT (t − h(t))Q0x(t − h(t)).
(20)

with x0(t) and x1(t) defined as (5) and (6), respectively.

Invoking the Jensen’s inequality [3], terms V̇4 and V̇5 can be

bounded by

V̇4(x) ≤
hm

2
ẋT (t)R1ẋ(t) −

2

h(t)
wT (t)R1w(t)

≤
hm

2
ẋT (t)R1ẋ(t) −

2

hm
wT (t)R1w(t)

V̇5(x) ≤hmẋT (t)R0ẋ(t) −
1

h(t)
vT (t)R0v(t)

≤hmẋT (t)R0ẋ(t) −
1

hm
vT (t)R0v(t)

(21)

with w(t) = x(t)−x(t− h(t)
2 ) and v(t) = x(t)−x(t−h(t)).

Invoking now the scaled small gain theorem presented in [3,

p287] and considering the proposed IQC (18), the stability

of (1) will be proved if the functional

W (t, xt) = V̇ (t, xt) +
(

hmd
4

)2 1
1−d ẋT (t)Q2ẋ(t)

−∇(ẋ)T Q2∇(ẋ)
(22)
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is negative. In addition, this latter quantity can be expressed

as W (t, xt) < ξT (t)Γξ(t) (gathering (20), (21) and (22))

with Γ defined as (11) and

ξ(t) =













ẋ(t)
x(t)

x(t − h(t)
2 )

x(t − h(t)
2 − h(t−h(t)/2)

2 )
x(t − h(t))













=













ẋ(t)
x(t)
x0(t)
x1(t)

x(t − h(t))













.

(23)

Furthermore, using the extended variable ξ(t) (23), sys-

tem (1) can be rewritten as Sξ = 0 with S defined as (10).

The original system (1) is asymptotically stable if for all ξ
such that Sξ = 0, the inequality ξT Γξ < 0 holds. Using

Finsler lemma [14], this is equivalent to S⊥T

ΓS⊥ < 0,

where S⊥ is a right orthogonal complement of S, which

concludes the proof.

III. MAIN RESULT
In the previous section a new condition for the time-

varying delay systems analysis is obtained by means of

extension of the state variables introducing a half delay. This

methodology is now generalized by partitioning the interval

[t − h(t), t] into N parts.

Theorem 2 Given scalars hm > 0, 0 ≤ d ≤ 1 and an

integer N > 0, system (1) is asymptotically stable for any

time-varying delay h(t) satisfying (2) and (3) if there exists

n × n positive definite matrices P , Q0, Q2, R0, R1 and a

Nn×Nn matrix Q1 > 0 such that the following LMI holds:

S⊥T

ΓS⊥ < 0 (24)

where S =
[

−1 A 0n×Nn Ad

]

and (25)

Γ =

















U P 0

P V N
hm

R1

0
N
hm

R1 − N
hm

R1

0n×Nn

0
1

hm

R0

0n×Nn

0Nn×n

0

1
hm

R0

0Nn×n X

















+





0 0n×Nn 0n×2n

0Nn×n Q1 0Nn×2n

02n×n 02n×Nn 02n×2n





+





02n×2n 02n×Nn 02n×n

0Nn×2n −(1 − d/N)Q1 0Nn×n

0n×2n 0n×Nn 0





(26)

with

U =
(

hmd(N−1)
2N

)2
1

1−dQ2 + hm

N R1 + hmR0,

V = Q0 − N
hm

R1 − 1
hm

R0,

X =





0n(N−2)×n(N−2) 0n(N−2)×n 0n(N−2)×n

0n×n(N−2) −Q2 Q2

0n×n(N−2) Q2 W



 ,

W = −(1 − d)Q0 − Q2 − 1
hm

R0.

S⊥ is an right orthogonal complement of S.

Proof: Define the following Lyapunov-Krasovskii func-

tional candidate:

V (x) = V1(x) + V3(x) + V5(x) + V7(x) + V8(x) (27)

where V1(x), V3(x), V5(x) are defined as (13), (15), (17)

and

V7(x) =

t
∫

t−
h(t)
N















x(s)

x(s − h(s)
N )

x1(t)
...

xN−2(t)















T

Q1















x(s)

x(s − h(s)
N )

x1(t)
...

xN−2(t)















ds,

(28)

V8(x) =

t
∫

t−hm
N

t
∫

s

ẋT (u)Rẋ(u)duds (29)

as well as the IQC

ΠN (t, xt) =
t
∫

0

(

hmd(N−1)
2N

)2
1

1−d ẋT (s)Q2ẋ(s)

−∇[ẋ(s)]T Q2∇[ẋ(s)]ds

(30)

with xi(t) and ∇[.] are defined as (31) and (35), respectively.

As it has been stated in section I, the idea is to provide a

LK functional that takes into account the state between t
and t−h(t). Thus, a discretization-like method is employed

considering the state vector shifted by a fraction
h(t)
N of

the delay. The discretized extended state is constructed with

signals:

xi(t) = D
(i+1)
h(t)/N [x(t)]. (31)

Note that these latter variables can be rewritten as xi(t) =
x(ti) where

ti = D
(i+1)
h(t)/N [t] = t − a0(i + 1)h(t) + a1(i + 1)δ(t)

+ a2(i + 1)δ(t + h1(t)) + . . . + ai(i + 1)δ(t + hi−2(t))
(32)

with

h1(t) = −
h(t)

N
, hi(t) = D

(i−1)
h(t)/N [−

h(t)

N
], (33)

δ(t) = h(t) − h(t −
h(t)

N
), aj(i) =

{

i−j
N , if i − j > 0

0, otherwise.

(34)

Then, in order to emphasize the relationship between

xN−1(t) and x(t − h(t)), we redefine the operator ∇[.] as

∇ : x(t) →

∫ tN−1

t−h(t)

x(u)du. (35)

Seeing that

tN−1 − (t − h(t)) = a1(N)δ(t) + a2(N)δ(t + h1(t))

+ . . . + a(N−1)(N)δ(t + hN−3(t)),

≤ [a1(N) + . . . + a(N−1)(N)]
hmd

N
,

≤
hmd(N − 1)

2N
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since δ(t) =
∫ t

t−
h(t)
N

ḣ(s)ds ≤ hmd
N and by the same way as

(8), the following inequality is derived

‖∇[x]‖2
L2

≤

(

(N − 1)hmd

2N

)2 (

1

1 − d

)

‖x‖2
L2

. (36)

Using the same idea developed in the proof of Theorem

1, it can be easily proved that V (x) (27) and the IQC (30)

are positive functions for all x ∈ R
n and we have

V̇ (x) = V̇1(x) + V̇3(x) + V̇5(x) + V̇7(x) + V̇8(x) (37)

where V̇1(x), V̇3(x), V̇5(x) are defined as (20) (21) and

V̇7(x) =







x(t)
...

xN−2(t)







T

Q1







x(t)
...

xN−2(t)







− (1 −
d

2
)







x(t − h(s)
N )

...

xN−1(t)







T

Q1







x(t − h(s)
N )

...

xN−1(t)






,

V̇8(x) ≤
hm

N
ẋT (t)R1ẋ(t) −

N

hm
mT (t)R1m(t)

(38)

with m(t) = x(t) − x(t − h(t)
N ). Invoking, as previously,

the scaled small gain theorem presented in [3, p287] and

considering the proposed IQC (30), the stability of (1) will

be proved if the functional

W (t, xt) = V̇ (t, xt) +
(

hmd(N−1)
2N

)2
1

1−d ẋT (t)Q2ẋ(t)

−∇[ẋ]T Q2∇[ẋ]
(39)

is negative. In addition, this latter quantity can be expressed

as W (t, xt) < ξT (t)Γξ(t) with Γ defined as (26) and

ξ(t) =



















ẋ(t)
x(t)

x(t − h(t)
N )

...

xN−1(t)
x(t − h(t))



















. (40)

Then, using the extended variable ξ(t) (40), system (1)

can be rewritten as Sξ = 0 with S defined as (25). As it has

been stated in the proof of Theorem 1, the original system

(1) is asymptotically stable if for all ξ such that Sξ = 0, the

inequality ξT Γξ < 0 holds. Using Finsler lemma [14], this

is equivalent to S⊥T

ΓS⊥ < 0, which concludes the proof.

It is worthy to note that considering the LKF (12)

with Q1, Q2 and R1 set to 0, the classical results of

the litterature [11] [15] [16] are recovered (related to the

traditional LKF). Moreover, adding to this latter LKF the

term
t
∫

t−hm

xT (s)Q3x(s)ds and performing the separation

of the integral to V5(x) (17) i.e. estimating the derivative

of V5(x) as hmẋT (t)R0ẋ(t) −
∫ t

t−h(t)
ẋT (u)R0ẋ(u)du −

∫ t−h(t)

t−hm
ẋT (u)R0ẋ(u)du rather than omitting the last term,

lead to the results of [17]. Consequently, criteria provided

in this paper are necessarily less pessimistic in the sense

that results obtained are at least equivalent to the traditional

stability conditions.

IV. ROBUSTNESS ISSUES

The proposed approach in Section III can be easily ex-

tended to the robust case. Indeed, while affine polytopic

uncertain models are considered, the following system is

defined:

ẋ(t) = A(α)x(t) + Ad(α)x(t − h(t)), (41)

with h(t) satisfying conditions (2) (3) and
[

A(α) Ad(α)
]

=
∑η

i=1 αi

[

A[i] A
[i]
d

]

where α =
(

α1 . . . αη

)

belongs to the set

Ξ = {αi ≥,
∑η

i=1 αi = 1}. Note that the matrix S
(25) is linear with respect to the model parameters A[i] and

A
[i]
d . Thus, we denote the parameter dependent matrix

S(α) =

η
∑

i=1

αiS
[i] =

η
∑

i=1

αi

[

−1 A[i]
0n×Nn A

[i]
d

]

.

(42)

Theorem 3 Given scalars hm > 0, 0 ≤ d ≤ 1 and

an integer N > 0, system (41) is asymptotically robustly

stable for any time-varying delay h(t) satisfying (2) and (3)

if there exists n × n positive definite matrices P [i], Q
[i]
0 ,

Q
[i]
2 , R

[i]
0 , R

[i]
1 and Nn × Nn matrices Q

[i]
1 > 0 and a

(N + 3)n × n matrix Y such that the following LMI hold

for i = {1, 2 . . . η}:

Γ[i] + YS[i] + S[i]T YT < 0

where S[i] are defined as in (42) and Γ[i] are structered as

(26) with the according matrices P [i], Q
[i]
0 , Q

[i]
2 , R

[i]
0 , R

[i]
1

and Q
[i]
1 .

Due to space limitation the proof is omitted. Nevertheless,

this latter is very similar to the one presented in [18] for

linear systems.

V. EXAMPLES

Consider the following system,

ẋ(t) =

[

−2 0
0 −0.9

]

x(t) +

[

−1 0
−1 −1

]

x(t − h(t)).

(43)

For this academic example, many results were obtained

in the literature. For various d, the maximal allowable delay,

hm, is computed. To demonstrate the effectiveness of our

criterion, results are compared against those obtained in [11],

[1], [15], [17], [19] and [16]. All these papers, except the last

one, use the Lyapunov theory in order to derive some stability

analysis criteria for time delay systems. In [16], the stability

problem is solved by a classical robust control approach: the

IQC framework. Finally, [20] provides a stability criterion

based on a new modelling of time delay systems considering

an augmented state composed of the original state and its
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TABLE I

THE MAXIMAL ALLOWABLE DELAYS hm FOR SYSTEM (43)

d 0 0.1 0.2 0.5 0.8
Nb of
var.

[11] 4.472 3.604 3.033 2.008 1.364 35

[1] 1.632 1.632 1.632 1.632 1.632 32

[15] 4.472 3.604 3.033 2.008 1.364 27

[16] 4.472 3.604 3.033 2.008 1.364 6

[17] 4.472 3.605 3.039 2.043 1.492 42

[19] 4.472 3.605 3.039 2.043 1.492 146

[20] 5,120 4,081 3,448 2,528 2,152 313

Theo 2
N = 2

5,717 4,286 3,366 2,008 1,364 22

Theo 2
N = 4

5,967 4,375 3,349 2,008 1,364 48

Theo 2
N = 6

6,120 4,396 3,321 2,008 1,364 90

TABLE II

THE MAXIMAL ALLOWABLE DELAYS hm FOR SYSTEM (44)

d 0 0.05 0.1 0.2 0.3 0.5

[11] ∞ 8.330 5.459 3.255 2.176 0.999

[1] 1.082 1.082 1.082 1.082 1.082 1.082

[15] ∞ 8.330 5.459 3.255 2.176 0.999

[17] ∞ 8.331 5.461 3.264 2.195 1.082

Theo 2 ∞ 10.311 6.095 3.295 2.176 0.999

derivative. Then, a suitable new type of LKF is derived which

reduce the conservatism of the stability condition. The results

are shown in Table I.

Then, considering the augmented state vector (40) by delay

fractioning, Theorem 2 improves the maximal allowable

delays for slow time-varying delays. Indeed, conservatism

is reduced thanks to the discretization scheme. As expected,

this operation provides more information on the system and

thus improves the stability analysis criterion. Consider now

the following system,

ẋ(t) =

[

0 1
−1 −2

]

x(t) +

[

0 0
−1 1

]

x(t − h(t)). (44)

The delay dependent stability analysis of system (44) has

been studied and results are shown in table (II). System

(44) is IOD stable (independent of delay) when the delay

is constant. Once again, it is observed that Theorem 2 (with

N = 2) improves the maximal bound on the delay which

preserves the stability of (44) in the case of slow time-varying

delays.

VI. CONCLUSION

In this paper, a new condition for the stability analysis of

time-varying delay systems is proposed in the Lyapunov-

Krasovskii framework. This latter criterion is formulated

in terms of LMI which can be solved efficiently. Inherent

conservatism of the Lyapunov-Krasovskii approach is re-

duced with the use of the delay fractioning methodology.

Then, additional terms for the Lyapunov functional are

required in order to describe as well as possible the system

making the links between the different considered signals.

Finally, a numerical example shows that this method reduced

conservatism and improved the maximal allowable delay for

slow time-varying delays.
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