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Abstract— The paper investigates the problem of tracking

a desired plasma glucose evolution by means of intra-venous

insulin administration. A model-based approach is followed,

according to a recent model of the glucose/insulin regulatory

system which consists of a discrete-delay nonlinear differential

equation model. A disturbance is added to the insulin kinet-

ics in order to model uncertainties concerning both the insulin

delivery rate and the mechanism actuating the insulin pump.

A feedback control law which yields input-to-state stability of

the closed loop error system with respect to such a distur-

bance is provided, which depends on the glucose and insulin

measurements at the present and at a delayed time. In silico

simulations validate the theoretical results.

Index Terms—Glucose-Insulin System, Glucose Control,

Delay Differential Equations, Input-to-State Stability, Feed-

back Linearization.

I. INTRODUCTION

The design of insulin infusion devices able to control
plasma glucose concentration is of great importance
when attempting to gain control of decompensated hy-
perglycemia in selected clinical situations (e.g. periop-
erative control of glycemia in a decompensated, acutely
ill diabetic patient undergoing emergency surgery).
From an applicative point of view, di®erent therapeutic
schemes can be considered, according to the accuracy
of the glucose-insulin model adopted and to the tech-
nology available in actuating the designed control law.
Glucose control strategies are mainly actuated by sub-
cutaneous or intravenous injections or infusions. Other
drug delivery methods are still under investigation, even
if recently the Food and Drug Administration (FDA) has
approved a device for the delivery of a powder form of
insulin by inhalation, as an alternative to subcutaneous
injections, [17]. Control of glycemia by means of sub-
cutaneous insulin injections, with the dose adjusted on
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the basis of capillary plasma glucose concentration mea-
surements, is by far more widespread than control by
means of intravenous insulin, since the dose is adminis-
tered by the patients themselves (see [2] and references
therein). However, only open loop or semiclosed loop
control strategies can be used, mainly due to the prob-
lem of modeling accurately the absorption from the sub-
cutaneous depot in the plasma circulation (see [18] for a
critical review of subcutaneous absorption models and
[6] for a model of intra/inter subject variability of the
absorption of subcutaneous insulin preparations). On
the other hand, the use of intravenous insulin adminis-
tration, delivered by automatic, variable speed pumps
under the direct supervision of a physician, provides a
wider range of possible strategies and ensures a rapid
delivery with negligible delays (see [26] and references
therein for a survey of the intravenous route to plasma
glucose control).

In this paper, a model-based closed loop control
scheme is proposed. The advantages of a model-based
approach (with respect to an empirical approach) are
evident, since by using a glucose/insulin model the con-
trol problem may be treated mathematically and opti-
mal strategies may be determined. Clearly, the more
accurate the model, the more appropriate and e®ective
will the control law be. Model-based glucose control lit-
erature has been mainly developed for the Ackerman's
linear model [1] (e.g. optimal control [32, 10], adap-
tive control [20], H1 control [14]); more recently, di®er-
ent approaches have been proposed, based on nonlinear
models (on linearization of nonlinear models, actually),
such as the Minimal Model [3, 33] or more complex [7,
31] (e.g. Model Predictive Control [27], Neural Pre-
dictive Control [34], non-standard H1 control [4, 28],
feedback linearization [22, 21]). An excellent review of
the available models presently adopted for blood glucose
regulation as well as the closed loop control methodolo-
gies and technical devices (blood glucose sensors and in-
sulin pumps) may be found in [5] and references therein.

Compared with existing model-based approaches,
the one presented here relies directly on a nonlinear dis-
crete delay di®erential equation (DDE) model of the
glucose/insulin system [23, 25]. Since [8], where quali-
tative properties of the solutions of the Minimal Model
were shown to be incompatible with accepted physiol-
ogy, several DDE models have been published, mainly
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devoted to better represent pancreatic Insulin Deliv-
ery Rate (IDR) [15, 16]. It has to be stressed that
when attempting to design a closed loop glucose con-
trol, the works published so far have concentrated on
Type 1 diabetic patients (who have essentially no en-
dogenous insulin production), avoiding in this way the
need to take IDR into account. In the present work
we may take into account spontaneous pancreatic IDR,
thereby treating healthy, Type 2 diabetic and Type 1
diabetic patients, because the glucose/insulin model we
use to represent the natural dynamics of the system [25]
has been shown to exhibit a number of desirable char-
acteristics, which previous models were lacking. This
model conforms to established physiological concepts
(e.g. pancreatic insulin secretion rate is limited), ex-
hibits satisfactory properties of the solutions [23] (e.g.
positivity and boundedness of solutions, local attractiv-
ity of a single positive equilibrium), is statistically ro-
bust, in that its parameters are statistically identi¯able
with very good precision by means of standard pertur-
bation experiments, such as the Intra-Venous Glucose
Tolerance Test (IVGTT) [25].

The proposed control aims to track a lower desired
glucose reference level by means of intravenous insulin
infusion, according to a given smooth glucose trajec-
tory. A disturbance a®ecting the insulin kinetics is also
assumed. The followed approach is based on the theory
of the input-output feedback linearization with delay
cancellation [11, 19], and on the theory of the input-to-
state stabilization with respect to disturbances adding
to the control law [29]. The proposed feedback control
law depends on glucose and insulin measurements at the
present and at a delayed time, and yields input-to-state
stability of the closed loop error system with respect to
the disturbance.

The paper is organized as follows. Immediately be-
low a brief notation Section is reported to clarify the
mathematical tools required by the proposed control
law. Section II deals with the proposed discrete-delay
di®erential equations model, detailing its properties.
The control law is designed in Section III. Simulations
are ¯nally reported in Section IV, employing sets of pa-
rameters derived from real data. Conclusions follow.

Basic De¯nitions and Notations

Given a function v : IR+ ! IRm, the essential supre-
mum norm is de¯ned as kvk1 = ess supt¸0 kv(t)k; if
it is ¯nite, function v is said to be essentially bounded.
For given times 0 · T1 < T2, we indicate with v[T1;T2) :
IR+ ! IRm the function given by v[T1;T2)(t) = v(t) for
all t 2 [T1; T2) and = 0 elsewhere. An input v is said to
be locally essentially bounded if, for any T > 0, v[0;T ) is
essentially bounded. A function ± : IR+ ! IR+ is posi-
tive de¯nite if it is continuous, zero at zero and ±(s) > 0
for all s > 0; it is of class G if it is continuous, zero at

zero, and nondecreasing; it is of class K if it is of class G
and strictly increasing; it is of class K1 if it is of class
K and it is unbounded; it is of class L if it monotoni-
cally decreases to zero as its argument tends to +1. A
function ¯ : IR+ £ IR+ ! IR+ is of class KL if ¯(¢; t) is
of class K for each t ¸ 0 and ¯(s; ¢) is of class L for each
s ¸ 0.

II. THE DDE GLUCOSE-INSULIN MODEL

The glucose-insulin model considered here belongs to
the family of DDE models described in [23], which has
been proven to provide persistent positive bounded so-
lutions for any admissible initial condition and a unique
locally/globally asymptotically stable equilibrium point,
according to necessary and su±cient conditions; the case
of local stability is usually satis¯ed according to a very
wide range of model parameters (in fact, the whole ad-
missible parameter space).

Denote G(t), [mM], I(t), [pM], plasma glycemia and
insulinemia, respectively. The model considered con-
sists of a single discrete-delay di®erential equation sys-
tem:

dG

dt
= ¡KxgiG(t)I(t) +

Tgh

VG
;

dI

dt
= ¡KxiI(t) +

TiGmax

VI
f
¡
G(t¡ ¿g)

¢
;

(1)

where the nonlinear function f(¢) models the Insulin
Delivery Rate as:

f
¡
G(t¡ ¿g)

¢
=

³
G(t¡¿g)
G¤

´°

1 +
³
G(t¡¿g)
G¤

´° : (2)

A detailed description of all the physical parameters
may be found in [25].

It has to be stressed that the DDE model (1) repre-
sents equally well healthy subjects and insulin-resistant
or severe diabetic patients, changing the parameter val-
ues as appropriate. Moreover, it does belong to the
class of \minimal models", in the sense that accord-
ing to a \minimal" set of independent parameters, it
allows to very well resemble the physiology of the glu-
cose/insulin kinetics, and is perfectly identi¯able from
data according to standard perturbation experiments
(IVGTT), [25].

III. THE CONTROL LAW

The aim of control is to reduce a high basal plasma
glucose concentration to a lower level, according to a
reference glucose trajectory, by means of intra-venous
insulin administration. Basal glycemia/insulinemia will
be referred in the following as Gb and Ib, respectively.
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To do so, a control input u(t) is added as well as
a disturbance d(t) (due to often unavoidable actuator
errors) to the insulin kinetics, so that the insulin kinetics
in (1) may be rewritten as:

dI(t)

dt
= ¡KxiI(t) +

TiGmax

VI
f
¡
G(t¡ ¿g)

¢
+ u(t) + d(t):

(3)
The disturbance d(t) is assumed measurable and locally
essentially bounded.

Note that by applying the theory of input-output
feedback linearization with delay cancellation, with re-
spect to the output y(t) = G(t) and the input u(t), the
system (1-3) has full (equal to 2) relative degree of type
III (see e.g. [11, Def.2.4] and [19]). Indeed, by ready
computation, it is:

_y(t) = _G(t) = ¡KxgiG(t)I(t) +
Tgh

VG
;

Äy(t) = ÄG(t)

= S
¡
G(t); I(t); G(t¡ ¿g)

¢
¡KxgiG(t)

¡
u(t) + d(t)

¢
;

(4)
with:

S
¡
G(t); I(t); G(t¡ ¿g)

¢

= ¡KxgiI(t)

µ
¡KxgiI(t)G(t) +

Tgh

VG

¶

¡KxgiG(t)

µ
¡KxiI(t) +

TiGmax

VI
f
¡
G(t¡ ¿g)

¢¶
:

(5)
Let us consider

Z(t) =

·
z1(t)
z2(t)

¸
=

·
G(t)

¡KxgiG(t)I(t) +
Tgh
VG

¸
: (6)

The aim is that the output y(t) = z1(t) tracks a desired
smooth reference glycemia, named Gref(t). By setting
the error

e(t) =

·
e1(t)
e2(t)

¸
= Z(t)¡ Zref(t); (7)

with Zref(t) = [Gref(t) _Gref(t)]
T , the following equation

holds for the error dynamics:

_e(t) =

·
0 1
0 0

¸
e(t) +

·
0
1

¸ ³
S
¡
G(t); I(t); G(t¡ ¿g)

¢

¡KxgiG(t)
¡
u(t) + d(t)

¢
¡ ÄGref(t)

´
:

(8)
By designing the control law u(t) as:

u(t) =
S
¡
G(t); I(t); G(t¡ ¿g)

¢
¡ v(t)

KxgiG(t)
; (9)

where v(t) is a new input which will be chosen in the

following, the error dynamics becomes:

_e(t) =

·
0 1
0 0

¸
e(t) +

·
0
1

¸
v(t)

¡
·
0
1

¸
ÄGref(t)¡

·
0
1

¸
KxgiG(t)d(t):

(10)

Remark 1: From a theoretical point of view, the con-
trol law (9) may always be computed because, following
the same reasoning of [23, Th.1] the glucose evolution is
strictly positive for any admissible initial condition. ²

Then, set:

v(t) = ÄGref(t) +Ke(t); (11)

with the gain K 2 IR1£2 such that the matrix:

H =

·
0 1
0 0

¸
+

·
0
1

¸
K is Hurwitz:

With the choice of the input u(t) given by (9),(11), the
error dynamics becomes:

_e(t) = He(t)¡
·
0
1

¸
Kxgi(e1(t) +Gref(t))d(t) (12)

According to the case of a continuous and bounded
reference Gref(t), as it is reasonable and desirable, a
new disturbance w(t) is de¯ned, with the same char-
acteristics of d(t) (measurable and locally essentially
bounded), as follows:

w(t) =

·
w1(t)
w2(t)

¸
=

·
d(t)

Gref(t)d(t)

¸
: (13)

Then, the error dynamics is described by the following
equation:

_e(t) = He(t) +

·
0

¡Kxgi

¸
e1(t)w1(t) +

·
0

¡Kxgi

¸
w2(t):

(14)
If the disturbance is zero, then the error decays expo-
nentially to zero. If the disturbance is not zero, system
(14) is a bilinear system and, by a well known result in
[30], it is integral input-to-state stable with respect to
the disturbance w(t), that is, there exist a K1 function
Â, a KL function ® and a K function ± such that the
following inequality holds for all t ¸ 0:

Â(ke(t)k) · ®(ke(0)k; t) +
Z t

0

±(w(¿ ))d¿: (15)

A further signi¯cant improvement can be achieved
by the result in [29] on the input-to-state stabilization
of nonlinear systems. According to the main theorem
in [29], consider for system (1-3) the following feedback
control law:

u(t) = u1(t) + u2(t); where (16)
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u1(t) =
S
¡
G(t); I(t); G(t¡ ¿g)

¢
¡ ÄGref(t)¡Ke(t)

KxgiG(t)
;

(17)
is the previous designed control law (9),(11), and u2(t)
is given by:

u2(t) = ¡eT (t)Pe(t)eT (t)Q
·

0
¡Kxgi

¸
G(t); (18)

P is any symmetric positive-de¯nite matrix, and Q is
the symmetric positive-de¯nite matrix solution of the
Liapunov equation: HTQ+QH = ¡P . When the feed-
back control law (16) is chosen, the closed loop error
dynamics is described by the equations

_e(t) =He(t)¡
·
0
1

¸
Kxgi(e1(t) +Gref(t))¢

eT (t)Pe(t)eT (t)Q

·
0
1

¸
Kxgi

¡
e1(t) + Gref(t)

¢

¡
·
0
1

¸
Kxgi

¡
e1(t) +Gref(t)

¢
d(t)

(19)
System (19) is not time-invariant because of the pres-
ence of the time function Gref(t). Nevertheless, here
the results in [29], which concern with time-invariant
systems, can be applied as well, since it can be easily
proven by using Theorem 4.19, p.176 in [13], dealing
with time-varying systems, that the control law (16-18)
yields input-to-state stability of system (19). The time-
invariant function V (e) = eTQe can be used as an ISS-
Liapunov function for system (19). In this case, the
functions ®1, ®2, ½ in the above mentioned Theorem
4.19 are given by:

®1(s) = ¸min(Q)s2; ®2(s) = ¸max(Q)s2;

½(s) =

s
1

¸max(P )

p
s

(20)

with ¸min(¢) and ¸max(¢) the minimum and maximum
eigenvalues of a symmetric, positive-de¯nite matrix.
Then, according to the given feedback control law (16-
18), it results that the following ISS inequality holds for
the error e(t):

ke(t)k · ®(ke(0)k; t) + ±(kd[0;t)k1); t ¸ 0 (21)

where ® is a KL function and ± is a K function. The
function ± is very important since it describes some at-
tenuation or ampli¯cation of the disturbance e®ect. In
this case, by the above Theorem 4.19:

±(s) = ®¡11 ± ®2 ± ½(s) =
s

¸max(Q)

¸min(Q)¸max(P )

p
s (22)

Note that P and H depend on the choice of the con-
trol designer. With the choice of H as in the following
section, we have seen that, if P = pI is chosen, with p

positive real, I the indentity matrix, then the larger p

is, the more little the term
q

¸max(Q)
¸min(Q)¸max(P )

is.

Remark 2: In this paper we have not considered, from
a theoretical point of view, saturation problems for the
control law. Actually, the control input cannot be neg-
ative. We have taken into account this fact in simu-
lations, where, whenever the projected control law is
negative, a zero control input is given to the system.
Saturation problems will be studied also from a theo-
retical point of view in forthcoming work. ²

V. SIMULATION RESULTS

Simulations have been performed in order to test in sil-
ico the proposed methodology. Parameter values are
those of an obese, insulin-resistant subject, identi¯ed by
means of Generalized Linear Square ¯tting of an IVGTT
perturbation experiment [24]. For system (1), some pa-
rameters are directly measured, such as Gb and Ib; oth-
ers are known and kept constant, such as VI and G?;
others are estimated, such as Kxgi, ¿g, Kxi, VG, °; oth-
ers are computed according to the algebraic steady-state
conditions, such as TiGmax and Tgh.

Case 1. The following parameters have been used
(refer to [25] for the unit measurements): Gb = 5:611,
° = 3:205, VG = 0:187, VI = 0:25, Ib = 93:669, G? = 9,
Kxi = 1:211 ¢ 10¡2, Kxgi = 3:11 ¢ 10¡5, TiGmax = 1:573,
¿g = 24, Tgh = 0:003. In the present simulation case,
all parameters used were those actually estimated from
the IVGTT test conducted on an obese patient (Body
Mass Index ' 50) [24]: they show high-normal glycemia
(Gb = 5:61) a substantial degree of insulin resistance
(Kxgi ¿ 10¡4) and a sub-normal Insulin Delivery Rate.
This picture (moderate hyperglycemia, obesity, insulin
resistance, low IDR) is consistent with the picture of
a pre-diabetic patient, whose long-standing obesity has
induced such a state of insulin resistance for such a long
time that pancreatic glucose toxicity is apparent and
insulin delivery (which should be above normal to com-
pensate for increased insulin resistance) is progressively
failing. This subject would be expected to develop frank
Type 2 Diabetes Mellitus within a relatively short time,
unless therapeutic maneuvers (¯rst of all weight loss)
are not vigorously employed.

As far as the control law, we choose K such that the

matrix H has eigenvalues ¡0:1, ¡0:2, P = 103
·
1 0
0 1

¸
,

Gref(t) = 4:7 + (5:61 ¡ 4:7) ¢ exp(¡0:01t). The refer-
ence signal is chosen such to obtain the plasma glycemia
decreasing exponentially from the value of 5:61 to the
new value 4:7. We choose the disturbance as d(t) =
0:1sin(0:05t). Fig. 1 is obtained when the control law
is designed as in (16-18). With this choice of H and P ,
the function ± in (21) is given by ±(s) = 0:2335

p
s; thus

ensuring a good attenuation of the disturbances e®ects.

Case 2. In this case we are considering the same pa-
tient as in case 1, but with an acute increase in insulin
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resistance, such as may be due to infection or surgery:
in this case the infectious process and the accompanying
hormonal changes (such as increased plasma concentra-
tions of cortisol and catecholamines) contrast the action
of insulin at the periphery and the Kxgi falls. This pro-
duces a consequent hyperglycemia, to which the pan-
creas responds by increasing (to the extent possible) in-
sulin secretion and insulinemia. Therefore, the following
parameters are changed, keeping unchanged the others
of case 1: Kxgi = 10¡5, Gb = 7:856, Ib = 204:11.

We choose K such that the matrix H has eigenvalues

¡0:2, ¡0:3, P = 104
·
1 0
0 1

¸
, Gref(t) = 4:7 + (7:344 ¡

4:7) ¢ exp(¡0:005t). The reference signal is chosen such
to obtain the plasma glycemia decreasing exponentially
from the value of 7:344: to the new value 4:7. We choose
the disturbance as d(t) = 0:1sin(0:05t). The plot 2 is
obtained when the control law is designed as in (16-
18). With this choice of H and P , the function ± in
(21) is given by ±(s) = 0:0457

p
s, thus ensuring a good

attenuation of the disturbances e®ects.

Fig.1: Plasma glycemia (true and reference ones)

Fig.2: Plasma glycemia (true and reference ones)

Case 3. In this case we again consider the same
patient as in Case 1, but allow for a certain length of
time (one or two years, say) to have passed without
any e®ective therapy having been followed. In this case,
the natural progression of disease has determined the
failure of pancreatic insulin secretion and, in the face of
unchanged insulin resistance, a dropping insulin concen-
tration. This in turn determines the emergence of severe
hyperglycemia and the establishment of a state of frank

Type 2 Diabetes Mellitus. Therefore, the following pa-
rameters are changed, keeping unchanged the others of
case 1: TiGmax = 0:242, Gb = 10:37, Ib = 48:95.

We chooseK such that the matrix H has eigenvalues

¡0:1, ¡0:2, P = 103
·
1 0
0 1

¸
, Gref(t) = 4:7 + (10:37 ¡

4:7) ¢ exp(¡0:005t). The reference signal is chosen such
to obtain the plasma glycemia decreasing exponentially
from the value of 10:37: to the new value 4:7. We choose
the disturbance as d(t) = 0:1sin(0:05t). The plot 3 is
obtained when the control law is designed as in (16).
With this choice of H and P , the function ± in (21) is
given by ±(s) = 0:2335

p
s, thus ensuring a good atten-

uation of the disturbances e®ects.

Fig.3: Plasma glycemia (true and reference ones)

VI. CONCLUSIONS

The control problem of tracking a desired plasma glu-
cose evolution by means of insulin administration has
been investigated. A feedback control law which yields
input-to-state stability of the closed loop error system
with respect to a disturbance adding to the control law
is provided. The feedback control law depends on the
glucose and insulin measurements at the present and
at a delayed time. Performed simulations validate the
theoretical results. Future developments will concern
the construction of a feedback control law by means of
the measurement of plasma glucose only, which is the
more common situation. To this end, a nonlinear ob-
server will have to be built for the system (1-3): some
important results have already been achieved in [9, 12].
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