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Abstract— This paper presents a method for designing non-
linear state feedback laws for systems with input and state
constraints. The objective is to achieve practical stabilization
with large stability region and strong disturbance rejection. Two
invariant sets will be constructed within the state constraints:
the outer one for stabilization and the inner one for asymptotic
disturbance rejection. The nonlinear feedback law is designed
such that all trajectories starting from the outer invariant set
will enter the inner invariant set and stay there. Both invariant
sets will be constructed by using the convex hull function, a
recently introduced non-quadratic Lyapunov function. Since
the invariant sets are convex hull of ellipsoids, they are able
to incorporate the input and state constraints more effectively
than simple ellipsoids, thus promising larger stability region
within state constraint and stronger disturbance rejection
capability. Since the convex hull functions are constructed from
quadratic functions, the optimization problems can be treated
with LMI-based method. Numerical examples demonstrate the
effectiveness of the design methods.

Keywords: Constrained control, input saturation, practical
stabilization, Lyapunov functions.

I. Introduction

Consider the following linear system,

ẋ = Ax + Bu + Tw,

y = Cx,
(1)

where x ∈ R
n is the state, u ∈ R

m the control input, w ∈ R
p

the disturbance and y ∈ R
q the output. Let G be a r × n

matrix. Denote Gi as the ith row of G. Assume that the

system is subject to the following constraints:

Input constraints: |ui| ≤ 1 for i = 1, 2, · · · , m.

State constraints: |Gix| ≤ 1 for i = 1, 2, · · · , r.

Note that output constraints can be considered as a special

case of state constraints. Denote the state constraint set as

Xc = {x ∈ R
n : |Gix| ≤ 1, i = 1, 2, · · · , r.}. (2)

Assume that the disturbance is bounded by w(t)Tw(t) ≤ 1
for all t. This type of w is called unit peak disturbances [1].

Typical design objectives for the above system under

constraints include achieving large stability region within

Xc and strong disturbance rejection performance (see, e.g.,

[2], [6], [4], [5], [11], [23], [24]). In our previous works

[15], [16], [17], we considered various analysis and design

problems in the absence of state constraint, i.e., the case

where Xc = R
n. In [15], the null controllable region,
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the largest stability region that can be achieved, was char-

acterized; in [16], systems with two anti-stable open-loop

poles were considered and semi-global stabilization strategies

(which means that the stability region can be made to include

any prescribed compact set within the null controllable

region) were proposed; In [17], stability and disturbance

rejection problems were addressed for more general systems

by using Lyapunov functions. Since quadratic Lyapunov

functions were used for analysis, the original problems were

transformed into optimization problems with linear matrix

inequality (LMI) constraints, and the resulting feedback laws

were saturated linear, i,e., u = sat(Fx).
In practical systems, not only the control inputs are subject

to hard bound, many other physical quantities, such as the

voltage, the velocity, the displacement and the temperature,

must be kept within a strict limit during the operation of

a device. These quantities may represent certain output or

state and their limits can be generally imposed as the state

constraints, |Gix| ≤ 1 for i = 1, 2, · · · , r, by properly

scaling the matrix G.

Systems with both input and state constraints have been

extensively studied in the literature (see, e.g., [2], [8], [11],

[19], [23], [24] and the reference therein.) While some of

the works addressed the systems under the model predictive

control framework [19], [23], others attempted to design

feedback laws by using Lyapunov functions and invariant

sets [8], [10], [11]. In [10], quadratic Lyapunov functions

were used for constructing invariant ellipsoid within state

constraint set. In [11], some algorithms were proposed for

finding the maximal set within the state constraint that can

be made invariant by the constrained input, for discrete-time

systems. If the initial condition belongs to this maximal set,

the state constraint can be satisfied with the constrained input

for all time. Although theoretically this maximal set can be

approximated, its structure becomes more complicated as the

number of steps increases and the control algorithm becomes

harder, if not impossible, to implement.

In this paper, we would like to address some feedback

design problems for the continuous-time system (1) under

both input and state constraints, by using non-quadratic Lya-

punov functions. Design objectives include 1) Constructing

a large invariant set within the state constraint set so that

all trajectories starting from within this set will satisfy the

state constraint, for all possible disturbances. This invariant

set is called a practical stability region; 2) Achieving a small

asymptotic output bound in the presence of disturbances with
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a guaranteed practical stability region; and 3) Achieving a

large practical stability region with a guaranteed asymptotic

output bound.

The key point of the Lyapunov approach is to construct

invariant sets using level sets of Lyapunov functions. When

quadratic Lyapunov functions are used, the level sets are

ellipsoids and the design problems can be formulated into

optimization problems with LMI constraints by using the

procedures in [1]. Since the input and state constraints

usually take the form of polytopes, it seems natural to use

polytopic invariant set as in [11]. However, it is known that

the construction of polytopic invariant set can be very com-

plicated and time consuming. With the recent efforts in the

construction of nonquadratic Lyapunov functions, some nu-

merically tractable Lyapunov functions have been developed

(see e.g.,[3], [9], [14], [20]). Most of the Lyapunov functions

in these works pertain to or are composed from several

quadratic functions and thus lead to optimization problems

with matrix inequality constraints, generally a mixture of

LMIs and bilinear matrix inequalities (BMIs). Although the

optimization problems are generally non-convex, suboptimal

solutions can be obtained with LMI-based algorithms.

In this work, we would like to use the convex-hull (of

quadratics) function as in [9], [14]. Since the level sets of a

convex hull function is the convex hull of ellipsoids, it has

the potential for better incorporating the structure of input

and state constraints, thus leading to larger stability region

and smaller asymptotic output bound. It is shown in [13] that

the convex hull function will yield non-conservative bilinear

matrix inequality (BMI) conditions for stability/stabilization

of linear differential inclusions, and for constrained control

system, it will yield a stability region as close as possible to

the maximal achievable one.

This paper is organized as follows. Section II describes the

design problems and gives a brief review of the convex hull

function and some matrix conditions for set invariance under

persistent disturbance. Section III develops design methods

for enlarging practical stability region and for reducing

asymptotic output bound. Motivated by a numerical example,

this section also develops a method for achieving small

asymptotic output bound with a guaranteed practical stability

region. Section IV concludes the paper.

Notation

- For x ∈ R
n, |x|∞ := maxi |xi|, |x|2 := (xTx)

1

2 .

- I[k1, k2]: for integers k1 < k2, I[k1, k2] := {k1, k1 +
1, · · · , k2}.

- coS: The convex hull of a set S.

- E(P ): for P ∈ R
n×n, E(P ) := {x ∈ R

n : xTPx ≤ 1}.
- LV : 1-level set of a function V , LV := {x ∈ R

n :
V (x) ≤ 1}.

- L(H) := {x ∈ R
n : |Hx|∞ ≤ 1} .

About the relationship between E(P ) and L(H), we have,

E(P ) ⊆ L(H) ⇐⇒ HℓP
−1HT

ℓ ≤ 1 ∀ ℓ ∈ I[1, r]. (3)

II. Problem statement and preliminaries

A. Problem statement

Consider system (1) with a nonlinear state feedback u =
f(x). Let Xc be the state constraint set given by (2). For the

closed-loop system

ẋ = Ax + Bf(x) + Tw,

y = Cx,
(4)

we use the following sets and quantities to measure its

stability and performance:

Stability region: Suppose w = 0. A set Xs ⊂ Xc is called

a stability region if, for every x(0) ∈ Xs, we have x(t) ∈ Xc

for all t and x(t) → 0 as t → ∞.

Practical stability region: Suppose wT(t)w(t) ≤ 1. A set

Xps ⊂ Xc is called a practical stability region if there exists

a bounded set D ⊂ Xc, such that for every x(0) ∈ Xps and

all possible w(t), we have x(t) ∈ Xc for all t > 0 and there

exists a t0 such that x(t) ∈ D for all t > t0.

Asymptotic output bound: Suppose wT(t)w(t) ≤ 1. Let

Xps ⊂ Xc be a practical stability region. A number γ > 0
is called an asymptotic output bound for Xps if, for every

x(0) ∈ Xps and all possible w(t), lim supt→∞ |y(t)|2 ≤ γ.

The objective of this work is to design a feedback law

u = f(x) so that the closed-loop system has,

- a large stability region Xs;

- a large practical stability region Xps;

- a small asymptotic output bound γ for a guaranteed

practical stability region Xps, or,

- a large practical stability region Xps with a guaranteed

asymptotic output bound γ.

B. The convex hull function

In what follows, we give a brief review of the definition

and some properties of the convex hull function that will

be necessary for the development of the main results. The

convex hull function is constructed from a family of positive

definite matrices. Given Qj ∈ R
n×n, Qj = QT

j > 0, j ∈
I[1, J ]. Let

Γ :=
{

γ ∈ R
J : γ1 + γ2 + · · · + γJ = 1, γj ≥ 0

}

,

the convex hull function is defined as

Vc(x) := min
γ∈Γ

xT





J
∑

j=1

γjQj





−1

x. (5)

For simplicity, we say that Vc is composed from Qj’s.

This function was first used in [14] to study constrained

control systems, where it was called the composite quadratic

function. It was later called convex hull function, or convex

hull of quadratics, in [9], since it is the convex hull (by the

definition of [22]) of the family of quadratics xT Q−1

k x. If

we define the 1-level set of Vc as

LVc
:=

{

x ∈ R
n : Vc(x) ≤ 1

}

,

and denote the 1-level set of the quadratic function xTPx as

E(P ) :=
{

x ∈ R
n : xTPx ≤ 1

}

,
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then

LVc
=







J
∑

j=1

γjxj : xj ∈ E(Q−1

j ), γ ∈ Γ







,

which means that LVc
is the convex hull of the family of

ellipsoids, E(Q−1

j ), j ∈ I[1, J ].

It is evident that Vc is homogeneous of degree 2, i.e.,

Vc(αx) = α2Vc(x). Also established in [9], [14] is that Vc

is convex and continuously differentiable.

For a compact convex set S, a point x on the boundary of

S (denoted as ∂S) is called an extreme point if it cannot be

represented as the convex combination of any other points

in S. A compact convex set is completely determined by

its extreme points. Since LVc
is the convex hull of E(Q−1

j ),
j ∈ I[1, J ], an extreme point must be on the boundaries of

both LVc
and E(Q−1

j ) for some j ∈ I[1, J ]. Denote

Ek := ∂LVc
∩∂E(Q−1

k ) =
{

x ∈ R
n : Vc(x) = xTQ−1

k x = 1
}

.

Then
⋃J

k=1
Ek contains all the extreme points of LVc

. The

exact description of Ek is given as follows.

Lemma 1: For each k ∈ I[1, J ],

Ek ={x∈∂LVc
: xTQ−1

k (Qj−Qk)Q−1

k x ≤ 0, j∈I[1, J ]}.
(6)

For x ∈ R
n, define

γ∗(x) := arg min
γ∈Γ

xT





J
∑

j=1

γjQj





−1

x. (7)

The function γ∗(x) can be computed by solving a simple

LMI problem obtained via Schur complements [14].

C. Matrix conditions for invariance of level set

By Lyapunov approach, the stability and performance are

usually characterized via invariant level sets of Lyapunov

functions. Thus it is important to obtain a numerically

tractable condition on set invariance. In [12], we derived a

matrix condition for the controlled invariance of level sets

for linear differential inclusions (LDIs). In [13], it was shown

that, in the absence of disturbance, this matrix condition is

necessary and sufficient for robust stabilization of LDIs. This

condition trivially applies to the open-loop system (1) in the

absence of input and state constraints.

Theorem 1: Consider Vc composed from Qk ∈ R
n×n,

Qk = QT

k > 0, k ∈ I[1, J ]. Suppose that there exist

Yk ∈ R
m×n, k ∈ I[1, J ], λjk ≥ 0, j, k ∈ I[1, J ] and β > 0

such that
[

Mk + βQk T

T T −βI

]

≤ 0 ∀k, (8)

where

Mk = QkAT+AQk+Y T

k BT+BYk−
J

∑

j=1

λjk(Qj−Qk). (9)

For x ∈ R
n, let γ∗(x) be defined as in (7) and let

Y (γ∗) =
J

∑

k=1

γ∗
kYk, Q(γ∗) =

J
∑

k=1

γ∗
kQk, (10)

F (γ∗) = Y (γ∗)Q(γ∗)−1. (11)

Define f(x) = F (γ∗(x))x. Then LVc
is an invariant set

for the linear closed-loop system (4), which means that all

trajectories starting from LVc
will stay inside for any possible

disturbance satisfying w(t)Tw(t) ≤ 1,∀t ≥ 0. Moreover, For

all x0 ∈ R
n and all possible disturbances, x(t) will converge

to LVc
. ⋄

The main idea behind the theorem is that, under the matrix

condition (8) and the control law constructed from (10)-(11),

we have

V̇c = (∂Vc(x))T(Ax + Bf(x) + Tw) ≤ −βVc(x) + βwTw,

(12)

for all x ∈ R
n, w ∈ R

p, where ∂Vc(x) denotes the partial

derivative. If wTw ≤ 1 and Vc(x) = 1, we have V̇c ≤ 0 and

Vc is nonincreasing. Hence LVc
is an invariant set. If Vc(x) >

1, then V̇c is strictly decreasing. Hence any trajectory starting

from outside of LVc
will converge to LVc

.

In the absence of disturbances, i.e., T=0, (8) reduces to

Mk + βQk ≤ 0 ∀k.

This ensures that V̇c ≤ −βVc(x) for all x and that every

trajectory converges to the origin.

The purpose of this paper is to apply the above result

to constrained control systems for several design objectives.

Two key points to be addressed are: which level sets satisfy

the state constraints, and which control laws satisfy the

input constraints? By imposing these additional restrictions

appropriately, we should be able to search for the optimal

(or suboptimal) convex hull function that would yield a large

stability region, a small asymptotic output bound, or a trade

off between these objectives.

III. DESIGN FOR CONSTRAINED CONTROL SYSTEMS

A. Enlarging practical stability region

We consider the problem of enlarging the practical stability

region inside the state constraint set Xc. The problem of

enlarging the stability region is a special case of the former

one with T = 0. We will use LVc
of a certain convex hull

function to construct the practical stability region.

Under the matrix condition in Theorem 1 and the given

feedback law, LVc
is an invariant set in the presence of

disturbance. Since LVc
is bounded, to make it a practical

stability region, we need to have

LVc
⊂ Xc,

and to satisfy the input constraint, we need to ensure that

|f(x)|∞ ≤ 1 ∀x ∈ LVc
.

There might be infinitely many Vc’s satisfying these re-

strictions. To choose the “optimal” one such that LVc
is large

in some sense, we need a measure of the size of a set so that
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we can formulate an optimization problem. Here we borrow

the measure from [17].

Given a set of reference points xκ, κ = 1, 2, · · · ,K, the

“inner” size of LVc
is measured by

αin := max{α : αxκ ∈ LVc
, κ ∈ I[1, K]}. (13)

Using this measure of inner size, the problem of enlarging

the practical stability region can be formulated as,

sup
Qk,Yk,λjk,β

α (14)

s.t. αxκ ∈ LVc
, κ ∈ I[1,K], (15)

LVc
⊂ Xc, (16)

|f(x)|∞ ≤ 1 ∀x ∈ LVc
, (17)

[

Mk + βQk T

T T −βI

]

≤ 0 ∀k, (18)

Qk > 0, β > 0, λjk ≥ 0.

To solve the above problem with LMI-based method, we

need to transform the constraints (15) to (17) into matrix

inequalities.

Claim 1: The constraints (15) to (17) are equivalent to the

existence of γκ ∈ Γ, κ ∈ I[1,K] such that
[

1 αxT

κ

αxκ

∑J
j=1

γκjQj

]

≥ 0, κ ∈ I[1, K], (19)

GsQjG
T

s ≤ 1, s ∈ I[1, r], j ∈ I[1, J ], (20)
[

1 Ykℓ

Y T

kℓ Qk

]

≥ 0, k ∈ I[1, J ], ℓ ∈ I[1,m], (21)

where Gs is the sth row of G and Ykℓ is the ℓth row of Yk.

From Claim 1, the objective of maximizing the practical

stability region within state and input constraint can be

formulated as the following optimization problem:

sup
Qj>0,λjk≥0,β>0,γκ∈Γ

α s.t. (18), (19), (20), (21). (22)

Inequalities (18)-(19) contain bilinear terms, and (20)-(21)

contain all linear terms. As in our other works involving

convex hull functions, we combined the path-following algo-

rithm and the direct iterative algorithm for the optimization

problem. Numerical examples have been conducted which

show the effectiveness of the algorithm and the advantage of

nonlinear feedback control over linear feedback control for

constrained control systems (see Example 1 in Section III-C).

B. Reducing asymptotic output bound for x(0) = 0

Assume zero initial condition for the state: x(0) = 0.

Suppose that LVc
is an invariant set for all w such that

|w|2 ≤ 1. Then x(t) ∈ LVc
for all t ≥ 0. Let

δb = max{|Cx|2 : x ∈ LVc
}, (23)

then δb is an upper bound for the output y(t). To minimize

this output bound, we may construct an invariant set LVc

within Xc with a minimal δb. In what follows, we use matrix

inequalities to characterize δb.

From (23), δb is the minimal δ such that xTCTCx ≤ δ2

for all x ∈ LVc
, i.e.,

δb = min{δ : LVc
⊂ δE(CTC)}.

Since LVc
is the convex hull of E(Q−1

j ), j ∈ I[1, J ], and

E(CTC) is a convex set, LVc
⊂ δE(CTC) if and only if

E(Q−1

j ) ⊂ δE(CTC) for all j, i.e., CTC ≤ δ2Q−1

j . By Schur

complements, these inequalities are equivalent to

CQjC
T ≤ δ2I, j ∈ I[1, J ], (24)

and δb is the minimal δ satisfying (24).

Similarly to the problem of enlarging the practical stability

region, we also need to ensure that |f(x)|∞ ≤ 1 for all x ∈
LVc

and LVc
⊂ Xc. After incorporating all the constraints,

the problem of minimizing the output bound for x(0) = 0
can be formulated as

inf
Qj>0,λjk≥0,β>0

δ s.t. (18), (24), (20), (21). (25)

C. Small asymptotic output bound with guaranteed practical

stability region

The feedback law from solving (22) that achieves a large

practical stability region may produce an asymptotic output

bound not sufficiently small. On the other hand, the feedback

law from solving (25) for small output bound may not be

able to generate a satisfactory practical stability region. This

is demonstrated through the following example.

Example 1: Consider the balance beam test rig in [18].

Under a certain current assignment strategy, the system is

described as

ẋ = Ax + Bu + 0.25Bw, y = Cx, (26)

where

A =

[

0 1
0 −0.211

]

, B =

[

0
−0.5258

]

, C = [1 0].

We added the disturbance term to incorporate unknown

external force. The input constraint is |u| ≤ 1 and the state

constraint is |x1| ≤ 0.004. The disturbance is bounded by

|w| ≤ 1. In [18], a saturated linear state feedback was

designed to produce a contractively invariant ellipsoid within

the state constraint set.

First, we would like to design a state feedback to achieve

a large practical stability region. If quadratic Lyapunov

function is used, a practical stability region is obtained as an

ellipsoid, see the dashed boundary in Fig. 1. If the convex

hull of three quadratics is used, a practical stability region

is obtained as the convex hull of three ellipsoids, see the

outer boundary in Fig 1. The matrices Qi’s for the convex

hull function and the matrices Yi’s for the feedback law are

given as follows:

Q1 =

[

1.6000 −2.0071
−2.0071 201.4514

]

× 10−5; (27)

Q2 =

[

1.5159 −20.0736
−20.0736 362.9777

]

× 10−5; (28)

Q3 =

[

1.6000 −9.4538
−9.4538 327.4302

]

× 10−5; (29)

Y1 = [3.7282 11.4842] × 10−3; (30)

Y2 = [−1.9737 49.5580] × 10−3; (31)

Y3 = [0.7836 46.4727] × 10−3. (32)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC10.6

3484



−4 −2 0 2 4

x 10
−3

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

x
1

x
2

Fig. 1. Large stability region but poor disturbance rejection

Under the feedback law u = f(x) constructed in Theorem 1

and a certain disturbance signal, a trajectory starting from

x(0) = (0.004, 0) is plotted in the same figure (solid curve).

Another trajectory starting from the origin is also generated

(dash-dotted curve). It should be noted that for each of the

trajectories, the disturbance at each time instant is chosen

such that the time derivative of Vc is maximized. This can

be considered as the worst ”disturbance” with respect to the

Lyapunov function Vc. As can be seen from the trajectories,

the asymptotic output bound is about 2×10−3 for both case.

Next, we attempt to minimize the asymptotic output

bound. If we solve the optimization problem (25) with

J = 1 (quadratic Lyapunov function), the output bound

for x(0) = 0 can be made as small as possible by in-

creasing β. As a result, the state feedback gain would be

too high. For instance, with β = 100, the output bound

is 1.4851 × 10−7 and the linear state feedback gain is

F = [3.9113 0.0041] × 106. However, with the saturated

state feedback law u = sat(Fx), the practical stability

region may not be large enough. We simulated the closed-

loop system with a feedback law resulting from β = 10,

which is u = sat([3.9924 0.0399] × 104x). The asymptotic

output bound for trajectories starting from x(0) = 0 is

1.4709 × 10−5. In Fig. 2, we plotted two trajectories under

this feedback law with initial conditions marked by “*”.

The trajectory starting from (0.002, 0) goes near the origin

but the trajectory starting from (0.0032, 0) diverges and hit

the righthand side boundary of the state constraint at the

point marked with a diamond. This means that the balance

beam hits the stator with a positive velocity. Thus the point

(0.0032, 0) and all points on the trajectory starting from it

do not belong to the practical stability region.

The above example motivates us to combine the objective

for large practical stability region and that for small asymp-

totic output bound. Can we ensure a certain practical stability

region while reducing the asymptotic output bound as much

as possible?

Suppose that we have two invariant sets LVc1
, LVc0

with

LVc0
⊂ LVc1

, and LVc0
is considerably smaller than LVc1

.

Is it possible to construct a feedback law such that every

−4 −2 0 2 4
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Fig. 2. Strong disturbance rejection but small stability region

trajectory starting from LVc1
will converge to the smaller

invariant set LVc0
? The following theorem says that under

certain condition, this can be done.

Theorem 2: Consider Vc1 composed from Q̂k ∈ R
n×n,

and Vc0 composed from Q̄k ∈ R
n×n, Q̂k > 0, k ∈ I[1, J ],

Q̄k > 0, k ∈ I[1, J ]. Suppose Q̄k < Q̂k for each k. Suppose

that there exist Ŷk, Ȳk ∈ R
m×n, k ∈ I[1, J ], λjk ≥ 0, j, k ∈

I[1, J ] and β > 0 such that
[

1 Ŷkℓ

Ŷ T

kℓ Q̂k

]

≥ 0, k ∈ I[1, J ], ℓ ∈ I[1,m] (33)

[

1 Ȳkℓ

Ȳ T

kℓ Q̄k

]

≥ 0, k ∈ I[1, J ], ℓ ∈ I[1,m] (34)

[

M̂k + βQ̂k T

T T −βI

]

< 0 ∀k, (35)

[

M̄k + βQ̄k T

T T −βI

]

≤ 0 ∀k, (36)

where

M̂k = Q̂kAT + AQ̂k + Ŷ T

k BT + BŶk −
J

∑

j=1

λjk(Q̂j − Q̂k)

M̄k = Q̄kAT + AQ̄k + Ȳ T

k BT + BȲk −
J

∑

j=1

λjk(Q̄j − Q̄k)

Then a nonlinear state feedback satisfying the input con-

straint can be constructed such that LVc1
is an invariant set

and for every x(0) ∈ LVc1
, all possible trajectories under

|w(t)|2 ≤ 1 will converge to LVc0
. ⋄

By Theorem 1, both the level sets LVc1
and LVc0

can

be made invariant with certain feedback laws satisfying the

input constraints. But they are not just any pair of level sets

satisfying the condition of Theorem 1. The matrices Q̂j’s and

Q̄j’s need to satisfy the matrix inequalities with the same

parameters β and λjk’s.

If we want to ensure a certain practical stability region

while reducing the asymptotic output bound as much as

possible, we may first solve problem (22) for a large prac-

tical stability region, then use the resulting β and λjk’s to

minimize δ in problem (25). On the other hand, if we want

to ensure a certain asymptotic output bound while enlarging

the practical stability region, we may solve problem (25) first
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for a small asymptotic output bound then use the resulting

β and λjk’s to maximize α in (22).

Example 1 continued. We use Theorem 2 to design a

feedback law to keep the large practical stability region in

Fig. 1 while the asymptotic output bound is reduced. We

pick Q̂k = Qk, Ŷk = Yk where Qk’s and Yj’s are from

(27)-(32), with corresponding λjk and β. Then we solve

the optimization problem (25) for minimal δ by fixing λjk’s

and β, under the restriction that Q̄k < Q̂k. Let the optimal

matrices to the resulting LMI problem be Q̄k’s and Ȳk’s. As

a result, we obtain

Q̄1 = Q̄2 = Q̄3 =

[

0.5538 −0.6924
−0.6924 691.7638

]

× 10−7;

Ȳ1 = Ȳ2 = Ȳ3 = [1.3129 67.3419] × 10−4.

With these Q̂k, Q̄k, Ŷk, Ȳk, a feedback law can be con-

structed. Fig. 3 shows the two invariant sets and a trajectory

starting from the boundary of the outer invariant set. The

trajectory converges to the inner invariant set. At every time

instant, the disturbance is chosen as the “worst one” which

maximizes ∂V T
cρ(x)(Ax + Bf(x) + Tw). The simulation

confirms that the practical stability region is retained while

the effect of disturbance is much suppressed.
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Fig. 3. Two invariant sets for both stability and disturbance rejection

IV. Conclusions

We developed LMI-based methods for the construction

of nonlinear feedback laws for linear systems with input

and state constraints. The convex hull quadratic Lyapunov

functions are used to guide the design for achieving a few

objectives of stabilization and disturbance rejection. The

advantages of nonlinear feedback over linear feedback has

been demonstrated through some numerical examples.
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