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Abstract— This paper investigates the problem of adaptive
feedforward compensation for a class of nonlinear systems,
namely that of input-to-state (and locally exponentially) conver-
gent systems. It is shown how, under suitable assumptions, the
proposed scheme succeeds in achieving disturbance rejection
of a harmonic disturbance at the input of a convergent
nonlinear system, with a semi-global domain of convergence.
The effectiveness of the proposed solution is demonstrated
by combining results from averaging analysis with techniques
for semi-global stabilization. An illustrative example shows the
effectiveness of the scheme.

I. INTRODUCTION

The problem of rejecting unwanted periodic disturbances

occurring in dynamical systems is a fundamental problem in

control theory, with countless technological applications in

control of vibrating structures [1], active noise control [2] and

control of rotating mechanisms [3]. From a theoretical stand-

point, any design philosophy aimed at solving the problem of

periodic disturbance rejection reposes upon a specific variant

of the internal model principle, which states that regulation

can be achieved only if the controller embeds a copy of

the exogenous system generating the periodic disturbance.

In the classic internal model control (IMC), the plant is

augmented with a replica of the exosystem, and the design

is completed by a unit which provides stability of the closed

loop (see [4] and references therein). An alternative design

methodology to the one described above is provided by the

so-called adaptive feedforward compensation (AFC), where

a feedforward action is provided to offset the steady-state

error induced by the exogenous disturbance in an already

stable loop. The parameters of the feedforward control are

computed adaptively by means of pseudo-gradient optimiza-

tion, using the regulated error as a regressor [5]. In a similar

methodology, referred to as external model-based control

(EMC) [6], a stabilizing controller for the plant is computed

first, and then an observer of the exosystem is designed to

provide asymptotic cancellation of the disturbance.

These three design philosophies differ in the role of

the stabilizing controller, which in the classic approach is

embedded with the internal model itself, whereas in both

AFC and EMC the stabilizer is given and the unit that

provides disturbance rejection is placed outside the loop in

an “add-on” fashion to the nominal compensator. The design

of the unit that provides cancellation of the disturbance
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must then be carried out in such a way that stability of

the loop is not affected by the adaptation mechanism or the

observation error. For nonlinear systems, the possibility of

“decoupling” the design of the stabilizer from that of the

internal model unit would be an important methodological

advancement in the theory of output regulation, as this would

open the possibility of using “off-the-shelf” the wealth of

techniques made available by the latest advancement in

nonlinear stabilization.

In this paper, we present preliminary results aiming at

setting the stage for a theory of adaptive feedforward com-

pensation for nonlinear systems. The paper follows the

seminal work of Bodson and co-workers (see, for instance,

[5]), in that it provides a nonlinear equivalent of the condition

for the solvability of the problem in the linear setting, and

uses methods from averaging analysis to prove stability of the

interconnection. In particular, we show how, under suitable

assumptions, the adaptive feedforward scheme of [5] can be

reinterpreted in the nonlinear setting, and applied to achieve

disturbance rejection of harmonic disturbance at the input

of a stable nonlinear systems, with a semi-global domain of

convergence.

The paper is organized as follows: Section II gives the

formulation of the problem and the standing assumptions

used in the paper. In Section III, the properties of the

steady-state solution of the forced uncompensated system

are analyzed. The design of the controller and the proof of

stability are given in Section IV and V, respectively. Finally,

in Section VI an illustrative example is discussed, followed

by some conclusions offered in Section VII.

II. STANDING ASSUMPTIONS AND PROBLEM SETUP

Consider a smooth nonlinear system of the form

ẋ = f(x, u + d) , x(0) = x0

y = Cx (1)

with state x ∈ R
n, control input u ∈ R, input-matched

harmonic disturbance d ∈ R, and measured output y ∈ R.

The disturbance is generated by the following 2-dimensional

autonomous LTI system

ẇ = Sw , w(0) = w0

d = Γw (2)

where S =

(

0 ω0

−ω0 0

)

, Γ =
(

1 0
)

and ω0 = 2π/T is

a known parameter. We assume that the interconnection of

system (2) and system (1) when u = 0 admits a unique well-

defined steady-state response in the form of a continuously-

differentiable mapping xss : R
2 → R

n satisfying ∂xss

∂w
Sw =

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeB03.2

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 2575



f(xss(w), Γw). The scenario considered herein is verified, in

particular, if (1) is input-to-state convergent (ISC) as defined

in [7, pag. 17]. As a matter of fact, this properties implies

that system (1) possess a unique T -periodic steady-state

trajectory xss(t) whenever forced by a harmonic disturbance

with the same period. Henceforth, it will be assumed that

system (1) is ISC and locally exponentially convergent (LEC)

(see [7, p.28]). To make these statements precise, define

x̃ = x − xss(w) and note that the dynamics of the transient

behavior of system (1) (when u = 0) are described by the

periodic system

˙̃x = f̃(t, x̃, w0) , x̃(0) = x0 − xss(w0)

where f̃(t, x̃, w0) = f(x̃ + xss(w(t)), Γw(t)) −
f(xss(w(t)), Γw(t)), and w(t) = exp(St)w0 denotes

the solution of (2). In addition, we require that the

convergence to the steady state is uniform in the following

sense:

Assumption 2.1: There exists a smooth T -periodic func-

tion V : [0, T ) × R
n × R

2 → R+ with the following

properties: for any given compact set Kw ⊂ R
2 there exist

class-K∞ functions α1(·), α2(·) and class-K functions α3(·),
α4(·) such that

α1(‖x̃‖) ≤ V (t, x̃, w0) ≤ α2(‖x̃‖)
∂V

∂t
+

∂V

∂x̃
f̃(t, x̃, w0) ≤ −α3(‖x̃‖)

∥

∥

∥

∥

∂V

∂x̃

∥

∥

∥

∥

≤ α4(‖x̃‖) (3)

for any t ∈ [0, T ), x̃ ∈ R
n and w0 ∈ Kw In addition, given

Kw, there exist positive constants r, ai, i = 1, . . . , 4 such

that ∀s ∈ [0, r]

a1s
2 ≤ α1(s) , α2(s) ≤ a2s

2

a3s
2 ≤ α3(s) , α4(s) ≤ a4s. (4)

For the purpose of this paper, it is further assumed that

the steady-state xss(w) is a polynomial in the components

of w of finite order m ∈ N, that is, xss(w) = ā1,0w1 +

ā0,1w2 +
2
∑

k=0

āk, 2−kwk
1w2−k

2 +, ...,+
m
∑

k=0

āk, m−kwk
1wm−k

2 ,

where āi,j ∈ R
n depend on the period T . As a result, the

steady-state output is a polynomial of order m as well, which

reads as

yss(w) = a1,0w1+ a0,1w2 +
2

∑

k=0

ak,2−kwk
1w2−k

2 +, . . . ,+

m
∑

k=0

ak,m−kwk
1wm−k

2 (5)

where ai,j ∈ R.

The control problem considered in this paper consists in

finding a control law that provides asymptotic cancellation

of the disturbance d while maintaining boundedness of the

internal trajectories of the closed-loop system. Letting the

solutions of (2) be parameterized by the initial condition w0,

the problem is cast in the semi-global output stabilization

framework as follows:

Semi-global Periodic Output Stabilization Problem:

Given the parameterized family of T -periodic systems

ẋ = f(x, ΓeStw0 + u)

y = Cx (6)

find a parameterized family of T -periodic controllers

η̇ = gκ(t, η, y) , η(0) = η0

v = hκ(t, η, y) (7)

with η ∈ R
ν and gκ(·, ·, ·), hκ(·, ·, ·) smooth functions of

their arguments, such that for any given compact sets Kx ⊂
R

n and Kw ⊂ R
2 there exist a compact set Kη ⊂ R

ν and

a selection κ∗ of the parameter vector κ such that for any

w0 ∈ Kw the trajectories of the closed-loop system

ẋ = f(x, ΓeStw0 + hκ∗(t, η, Cx))

η̇ = gκ∗(t, η, Cx)

originating within (x0, η0) ∈ Kx × Kη, are bounded and

satisfy limt→∞ y(t) = 0.

III. STRUCTURE OF THE STEADY-STATE OUTPUT

Due to the standing assumptions, the periodic steady-state

output yss(w(t)) = yss(exp(St)w0) can be expanded in a

finite Fourier series bearing the contribution of harmonics of

order at most m of the fundamental tone at frequency ω0.

Let 0 ≤ p ≤ m and 0 < d ≤ m denote arbitrary even and

odd integers, respectively. Then, the following result holds,

whose proof needs to be omitted for space reasons.

Proposition 1: Any odd term in yss(w(t)) of the form

ad,pw
d
1(t)wp

2(t) can be represented as

ad,p wd
1(t)wp

2(t) = ΓeSt

(

nd,p(w0) 0
0 nd,p(w0)

)

w0 (8)

+ hd,p(t, w0)

whereas odd terms of the form ap,dw1(t)
pw2(t)

d can be

given the representation

ap,d wp
1(t) wd

2(t) = ΓeSt

(

0 np,d(w0)
−np,d(w0) 0

)

w0 (9)

+ hp,d(t, w0)

where nd,p(w0), np,d(w0), hd,p(t, w0) and hp,d(t, w0) are

smooth functions. In particular, hd,p(t, w0) and hp,d(t, w0),
which represent the contributions of harmonics different from

the fundamental, are T -periodic and vanish in w0 = 0.

Moreover, even terms in the polynomial (5) do not yield

any contribution to the fundamental harmonic of yss(w(t)).
Letting Γ̄ := (Γ Γ . . . Γ ) ∈ R

1×(2m−2) and using

equations (8) and (9), simple manipulations show that the

steady-state output (5) can be written as

yss(e
Stw0) = r0(w0) + ΓeStr1(w0)w0 + Γ̄ eS̄tr2(w0)w0

(10)

where S̄ = blk diag(Sk), k = 1, ...,m − 1, and Sk =
(

0 (k + 1)ω0

−(k + 1)ω0 0

)

. The functions r0 : R
2 → R and
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r2 : R
2 → R

2(m−1)×2(m−1) are respectively related to the

mean value of yss(w(t)) and to the harmonics of frequency

multiple than the fundamental. From Proposition 1, it follows

that the smooth matrix-valued function r1 : R
2 → R

2×2 can

be given the following structure

r1(w0) =

(

a1,0 + m(w0) n(w0)
−n(w0) a1,0 + m(w0)

)

(11)

where, in particular, m(w0) =
∑m

d=1

odd

∑m
p=2

even

nd,p(w0) . The

next assumption, which can be regarded as a nonlinear

version of the one formulated in [5], ensures that the funda-

mental harmonic of yss(w(t)) carries enough information so

as to allow an asymptotic reconstruction of the disturbance

signal.

Assumption 3.1: The coefficients ad,p are such that a1,0 >
0 and m(w0) ≥ 0 for all w0 ∈ R

2. As a result, r1(w0) is

positive definite for all w0 ∈ R
2.

IV. CONTROLLER DESIGN

Thanks to Assumption 3.1, the contribution of the fun-

damental harmonic to yss(w(t)) (given by the second term

in the right-hand side of equation (10)) should be the one

to used be the controller to provide cancelation of the

disturbance, while the remaining terms of the expansion (10)

are undesired. Consequently, it is convenient to process the

output of the system (1) by a linear filter in order to reject the

constant contribution r0(w0) and to exert a sufficiently large

attenuation on the harmonics of frequencies higher than ω.

Since the filter should reproduce exactly the term in (10)

associated with the first harmonic, a simple internal model

of the exosystem (2) should be embedded in the filter, which

is chosen as the third-order, relative degree-one system

Fλ(s) =
s(s + z0)

s(s + z0) + (s + λ)(s2 + ω2
0)

(12)

where z0 > 0 is fixed, and λ ≥ 1 is a design parameter. It can

be verified that the filter is stable for any z0 > 0 and λ ≥ 1.

The zero at the origin secures rejection of constant signals at

the input; in addition, it is possible to verify that (12) embeds

an internal model for the fundamental tone at frequency ω0.

Recall that we are interesting in attenuating the harmonics

of yss(w(t)) at ω = k ω0, k ∈ {2, 3, . . . ,m}. The frequency

response of the filter, for ω 6= 0, reads as

Fλ(jω) =
jωz0 − ω2

jω[z0 + ω2
0 − ω2] − ω2[1 + λ − λ

ω2

0

ω2 ]

showing that |Fλ(jω0)| = 1 and that limλ→∞ |Fλ(jk ω)| =
0, k ∈ {2, 3, . . . ,m}. As a result, once z0 is fixed, it is

possible to achieve an arbitrary degree of attenuation at any

given frequency k ω0 in the considering range by choosing λ
large enough. For convenience, we will denote by γλ the

response of the filter at the first frequency of interest, that is,

γλ = |Fλ(j2ω0)|, with the understanding that |Fλ(jk ω0)| <
|Fλ(j(k + 1)ω0)|, k = 2, 3, . . . ,m − 1. The filter (12) can

be realized in observer canonical form as

ẋf = AF (λ)xf + BF uf

yf = CF xf (13)

with xf ∈ R
3. Since system (13) is linear, the cascade system

(1)-(13) obtained by setting uf = y inherits the properties

of the plant model, as far as existence and uniqueness of

the steady-state solution are concerned. In particular, let the

cascade be written as

ẋa = fa(x, u + d, λ) , xa(0) = xa
0

ya = Caxa (14)

where xa = col(x, xf ) ∈ R
na denotes the combined state,

and na = n+3. From [7, p.21 and 28] it follows that the ISC

and LEC properties of the plant model are preserved for the

cascade, therefore a unique globally attractive steady-state

trajectory xa
ss(w, λ) = col(xss(w), xfss

(w, λ)) is defined

when u = 0, where xfss
(w, λ) is a polynomial in w with

λ-dependent coefficients. In particular, letting x̃a = xa −
xa

ss(w, λ) and w(t) = exp(St)w0, the transient dynamics of

system (14), when u = 0, can be written as

˙̃xa = f̃a(t, x̃a, w0, λ) , x̃a(0) = xa(0) − xa
ss(w0) (15)

where f̃a(t, x̃a, w0, λ) = fa(x̃a +
xa

ss(w(t), λ), Γw(t), λ) − fa(xa
ss(w(t), λ),

Γw(t), λ). The following result, whose proof needs to

be omitted for lack of space, holds for system (15) due

to Assumption 2.1 and the fact that the x̃f -dynamics is

exponentially stable:

Proposition 2: Fix λ > 0. For any given compact set

Kw ⊂ R
2, there exists a smooth T -periodic function V a :

[0, T )×R
na ×R

2×R+ → R+ satisfying for any t ∈ [0, T ),
x̃a ∈ R

na and w0 ∈ Kw

ᾱ1(‖x̃a‖) ≤ V a(t, x̃a, w0, λ) ≤ ᾱ2(‖x̃a‖)
∂V a

∂t
+

∂V a

∂x̃a
f̃(t, x̃a, w0, λ) ≤ −ā3‖x̃a‖2

∥

∥

∥

∥

∂V a

∂x̃a

∥

∥

∥

∥

≤ ᾱ4(‖x̃a‖).

for some class-K∞ functions ᾱ1(·) and ᾱ2(·), some positive

constant ā3, and some class-K function ᾱ4(·). Moreover,

there exist positive constants r̄, āi, such that ā1s
2 ≤ ᾱ1(s),

ᾱ2(s) ≤ ā2s
2 and ᾱ4(s) ≤ ā4s, for all s ∈ [0, r̄].

Next, we analyze the output of the cascaded system (14).

As a result of the properties of the filter (13), the steady-state

output response, ya
ss(w, λ) = Caxa

ss(w, λ), reads as

ya
ss(e

Stw0, λ) = ΓeStr1(w0)w0 + γλΓ̄2(λ)eS̄tr2(w0)w0

(16)

where Γ̄2(λ) = 1
γλ

CF Π̄(λ) and Π̄(λ) is the unique solu-

tion of the Sylvester equation Π̄(λ)S̄ = AF (λ)S̄ + BF Γ̄
which defines the steady-state response of the filter (13)

when forced by the higher-order harmonics of yss(w(t)).
A comparison of (10) with the filtered steady-state response

(16) shows that in ya
ss(w(t), λ) the constant term has been

rejected, the term related to the fundamental harmonic has

been perfectly reproduced, and the high-frequency terms

have been attenuated by a factor γλ, which can be ren-

dered arbitrarily small by increasing the parameter λ, since

‖Γ̄2(λ)‖ = O(γλ) as λ → ∞. The term Γ̄2(λ) also
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accounts for the phase shift exerted by the filter on the higher

harmonics of the output yss(w(t)).
Following [5], the control signal u is generated by periodic

nonlinear system

η̇ = ǫe−StΓT ya , η(0) = η0

u = −ΓeStη (17)

where η ∈ R
2, and ǫ > 0 is tunable gain parameter. By

changing variables as θ = w0 − η, z = xa − xa
ss(e

Stθ)
ad using (16), it follows that the closed-loop system can be

written as

ż = f̃a(t, z, θ, λ) − ∂
∂θ

xa
ss(e

Stθ, λ)θ̇

θ̇ = −ǫfθ(t, θ) − ǫγλg1(t, θ, λ) − ǫg2(t, z) (18)

where fθ(t, θ) , e−StΓT ΓeStr1(θ)θ, g1(t, θ, λ) ,

e−StΓT Γ̄2(λ)eS̄tr2(θ)θ, and g2(t, z) , e−StΓT Caz. Note

that all functions above are smooth, T -periodic in the first

argument, and such that fθ(t, 0) ≡ 0, g1(t, 0, λ) ≡ 0, and

g2(t, 0) ≡ 0.

The main result of the paper is the following:

Theorem 3: System (18) is semi-gobally uniformly

asymptotically (locally exponentially) stable in the param-

eters (λ, ǫ). Specifically, for any closed ball B̄R1
⊂ R

na and

B̄r1
⊂ R

2 there exist λ∗ ≥ 1 and ǫ∗ > 0 such that for

all λ ≥ λ∗ and all ǫ ∈ (0, ǫ∗] the origin of system (18) is

uniformly asymptotically (locally exponentially) stable, with

domain of attraction which includes B̄R1
× B̄r1

.

The proof follows from an application of averaging the-

ory and the semi-global stabilization lemmas of Teel and

Praly [8]. The technical machinery needed for the proof will

be developed in the next section.

V. STABILITY ANALYSIS

To prove semi-global stability of the closed-loop sys-

tem (18), we begin by looking at the properties of the lower

subsystem. Since fθ(t, θ) is smooth and T -periodic in t, from

[9, p. 404] it follows that the average

fav(θ) =
1

T

∫ T

0

fθ(τ, θ)dτ

is well defined. Consider the standard near-identity transfor-

mation

θ = ϑ + ǫ

∫ t

0

[fθ(τ, ϑ) − fav(ϑ)]dτ , θ(t, ϑ, ǫ) . (19)

The following result holds by continuity of the map (19) with

respect to all its arguments, and the fact that θ(0, ϑ, ǫ) =
θ(T, ϑ, ǫ) and θ(t, ϑ, 0) = ϑ.

Lemma 4: For any three numbers 0 < r1 < r2 < r3 there

exists ǭ > 0 such that for any t ∈ [0, T ) and any ǫ ∈ (0, ǭ ]

1) The map θ = θ(t, ϑ, ǫ) is a diffemorphism over an open

neighborhood of the closed-ball B̄r3
= {ϑ : |ϑ| ≤ r3}.

2) The image of the set B̄r2
= {ϑ : |ϑ| ≤ r2} under the

map θ = θ(t, ϑ, ǫ) includes the set B̄r1
= {θ : |θ| ≤

r1}.

3) The image of the set B̄r2
= {ϑ : |ϑ| ≤ r2} under the

map θ = θ(t, ϑ, ǫ) is included in the set B̄r4
= {θ :

|θ| ≤ r4}, for some finite number r4 > 0.

Assume that ǭ > 0 has been fixed in correspondence of some

arbitrary ri > 0, i = 1, 2, 3, as discussed above. Following

the same arguments as in [9, pp. 404-405], it is seen that the

lower subsystem in equation (18) can be written in the new

variable as

ϑ̇ = −ǫfav(ϑ)+ǫ2q1(t, ϑ, ǫ)+ǫγλq2(t, ϑ, ǫ, λ)+ǫq3(t, ϑ, z, ǫ)
(20)

where fav(ϑ) = 1
2r1(ϑ)ϑ and the functions q1(t, ϑ, ǫ),

q2(t, ϑ, ǫ) and q3(t, z, ϑ, ǫ), which are well-defined in

(t, ϑ, z, ǫ, λ) ∈ [0, T ) × B̄r3
× R

na × [0, ǭ ] × [1,∞), satisfy

q1(t, 0, ǫ) ≡ 0, q2(t, 0, ǫ, λ) ≡ 0 and q3(t, ϑ, 0, ǫ) ≡ 0.

Proposition 5: The origin ϑ = 0 of system

ϑ̇ = −ǫfav(ϑ) + ǫ2q1(t, ϑ, ǫ) + ǫγλq2(t, ϑ, ǫ, λ) (21)

is exponentially stabilizable in the parameters ǫ and λ, with

domain of attraction that includes the closed invariant set

B̄r3
.

Proof: Let Ωϑ
a = {ϑ ∈ R

2 : U(ϑ) ≤ a} denote the

level sets of the Lyapunov function candidate U(ϑ) = ϑTϑ,

and fix a = r2
3 so that Ωϑ

a = B̄r3
. By virtue of the fact that

q1(t, ϑ, ǫ) and q2(t, ϑ, ǫ, λ) are continuously differentiable

with respect to ϑ in an open neighborhood of B̄r3
, and

the fact that they vanish at ϑ = 0, it is possible to write

q1(t, ϑ, ǫ) = q̄1(t, ϑ, ǫ)ϑ and q2(t, ϑ, ǫ, λ) = q̄2(t, ϑ, ǫ, λ)ϑ,

where q̄1(t, ϑ, ǫ) and q̄2(t, ϑ, ǫ, λ) are continuous with re-

spect to their arguments and bounded in (t, ϑ, ǫ, λ) ∈ [0, T )×
Ωϑ

a × [0, ǭ ] × [1,∞). As a result, the derivative of U along

the trajectories of (21) can be estimated as

U̇(ϑ) ≤ −ǫ ‖ϑ‖2 [

a1,0 − 2ǫ ‖q̄1(t, ϑ, ǫ)‖ (22)

− 2γλ ‖q̄2(t, ϑ, ǫ, λ)‖
]

for all t ∈ [0, T ) and all ϑ ∈ Ωϑ
a . Recalling that

limλ→∞ γλ = 0, it follows that there exist numbers ǭ∗ ∈
(0, ǭ], λ∗ ≥ 1 and ā > 0 such that, for all ǫ ∈ (0, ǭ∗] and

all λ ≥ λ∗: U̇(ϑ) ≤ −ǫ ā ‖ϑ‖2
for all t ∈ [0, T ) and all

ϑ ∈ Ωϑ
a ; from which the result follows.

The result of Proposition 5 is used as follows: Let the set

B̄r1
for θ(0) be given as in Theorem 3, and determine a ball

B̄r2
for ϑ(0) on the basis of Lemma 4. Proposition 5 implies

that, when z = 0, system (21) enjoys the uniform Lyapunov

property as defined in [8], and that B̄r2
is properly contained

in the open invariant subset of the domain of attraction given

by {ϑ ∈ R
2 : U(ϑ) < r2

3}. To facilitate the use of the results

of [8, Lemma 2.2] in our proof, we let r2 and r3 in Lemma 4

and Proposition 5 be defined, without loss of generality, as

r2 =
√

µ and r3 =
√

µ + 1, with µ ≥ 1. Consequently, we

determine ǭ∗ and λ∗ as in the proof of Proposition 5, and we

fix λ ≥ λ∗ once and for all. As a result of this assignment,

from now on we will omit the explicit dependence on λ of

all terms in our equations.

Once λ has been fixed, we move on to considering the

semi-global stabilization (in the parameter ǫ) of the origin

of the closed-loop system (18), with respect to the domain
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0 = {z ∈ R
na}×{ϑ : U(ϑ) < µ+1}. In the new coordinates

(z, ϑ), the upper subsystem in equation (18) is written as

ż = F (t, z, ϑ, ǫ) + ǫl1(t, z, ϑ, ǫ) + ǫl2(t, ϑ, ǫ) (23)

where F (t, z, ϑ, ǫ) , f̃a(t, z, θ(t, ϑ, ǫ), λ), and

l1(t, z, ϑ, ǫ) , ∂
∂θ

xa
ss(e

Stθ, λ)|θ = θ(t, ϑ, ǫ)
e−StΓT Caz

l2(t, ϑ, ǫ) ,
[

∂
∂θ

xa
ss(e

Stθ, λ)e−StΓT ΓeSt

× r1(θ)θ
]

|θ = θ(t, ϑ, ǫ)
+ γλ

[

∂
∂θ

xa
ss(e

Stθ, λ)

× e−StΓT Γ̄2(λ)eS̄tr2(θ)θ
]

|θ = θ(t, ϑ, ǫ)
.

Note that the above vector-fields are T -periodic in the first

argument, and that F a(t, 0, ϑ, ǫ) ≡ 0, l1(t, 0, ϑ, ǫ) = 0, and

l2(t, 0, ǫ) = 0. As a Lyapunov function candidate for (23),

we choose the function V(t, z, ϑ, ǫ) , V a(t, z, θ(t, ϑ, ǫ), λ)
from which, for a given positive constant b, we define the

following parameterized family of level sets

Ωz
b,t,ϑ,ǫ =

{

z ∈ R
na : V(t, z, ϑ, ǫ) ≤ b, (t, ϑ, ǫ) ∈ [0, T )

× Ωϑ
µ+1 × [0, ǭ∗]

}

.

Due to Lemma 4, there exists r4 > 0 such that θ(t, ϑ, ǫ) ∈
B̄r4

for all (t, ϑ, ǫ) ∈ [0, T )×Ωϑ
µ+1 × [0, ǭ∗]. Consequently,

from Proposition 2 it follows that for any R1 > 0 the

inclusions B̄R1
⊂ Ωz

c,t,ϑ,ǫ ⊂ B̄R2
hold for all (t, ϑ, ǫ) ∈

[0, T )×Ωϑ
µ+1× [0, ǭ∗], where c = ᾱ2(R) and R2 = ᾱ−1

1 (c).
Therefore, in the domain 0 (which is unbounded in the z-

direction) any given compact set of initial conditions z(0)
(specified by Theorem 3) can be included in all elements

of the family of parameterized level sets of V of the form

Ωz
b,t,ϑ,ǫ. Following [8], consider now the Lyapunov function

candidate

W(t, z, ϑ, ǫ) = V(t, z, ϑ, ǫ) + µ
U(ϑ)

µ + 1 − U(ϑ)
,

which, by construction, is proper in the set 0. Fix a positive

constant d and define the parameterized family of sets

Ωd,t,ǫ =
{

(z, ϑ) ∈ R
na × R

2 : W(t, z, ϑ, ǫ) ≤ d ,

(t, ǫ) ∈ [0, T ) × [0, ǭ∗]
}

.

Notice that for any (t, ǫ) ∈ [0, T ) × [0, ǭ∗] the following

inclusions hold (see [8, Lemma 2.2])

Ωz
c,t,ϑ,ǫ × Ωϑ

µ ⊂ Ωc+µ2+1,t,ǫ ⊂ B̄R3
× Ωϑ

σ ⊂ 0 (24)

where R3 = ᾱ−1
1 (c + µ2 + 1) and σ = (µ+1)(c+µ2+1

c+µ2+µ+1 . This

shows that every fixed compact set of initial conditions for

(z, ϑ) can be included in any element of the parameterized

family of level sets Ωd,t,ǫ, and that the union of these sets

lies in a compact set. For convenience, we denote this set by

S̄ , B̄R3
× Ωϑ

σ .

Proposition 6: For any number ρ > 0 there exist real

numbers 0 < ǫ∗1 ≤ ǭ∗, κ > 0 such that for each ǫ ∈
(0, ǫ∗1] and t ∈ [0, T ) the Lie derivative of the Lyapunov

function candidate W along the vector field of system (23)–

(20) satisfies Ẇ(t, z, ϑ, ǫ) ≤ −κ for all (z, ϑ) in the set

St,ǫ =
{

(z, ϑ) : ρ ≤ W(t, z, ϑ, ǫ) ≤ c + µ2 + 1
}

.

Proof: The Lie derivative of W along (23)–(20) reads

as

Ẇ =
∂V a

∂t
+

∂V a

∂z
F (t, z, ϑ, ǫ) + ǫ

∂V a

∂z

[

l1(t, z, ϑ, ǫ)+

l2(t, ϑ, ǫ)
]

+
∂V a

∂θ
[fθ(t, ϑ) − fav(ϑ)] +

[∂V a

∂θ

∂θ

∂ϑ

+
∂U
∂ϑ

µ(µ + 1)

(µ + 1 − U(ϑ))2
][

− ǫfav(ϑ) + ǫ2q1(t, ϑ, ǫ)

+ ǫγq2(t, ϑ, ǫ) + ǫq3(t, ϑ, z, ǫ)
]

and satisfies for all (z, ϑ) ∈ 0 and all (t, ǫ) ∈ [0, T )×(0, ǭ∗]

Ẇ ≤ −ā3‖z‖2 − ǫ ā
µ

µ + 1
‖ϑ‖2 + ǫ m1(t, z, ϑ, ǫ)

+ ǫm2(t, z, ϑ, ǫ) (25)

where we have used Proposition 5 and we have denoted

m1(t, z, ϑ, ǫ) ,
∂V a

∂z
l1(t, z, ϑ, ǫ) +

∂V a

∂θ

∂θ

∂ϑ
q3(t, z, ϑ, ǫ)

m2(t, z, ϑ, ǫ) ,
∂V a

∂z
l2(t, ϑ, ǫ) +

∂V a

∂θ

∂θ

∂ϑ

[

− fav(ϑ)+

ǫq1(t, ϑ, ǫ) + γq2(t, ϑ, ǫ)
]

+
∂V a

∂θ

[

fθ(t, ϑ)

− fav(ϑ)
]

+
∂U
∂ϑ

µ(µ + 1)

(µ + 1 − U(ϑ))2
q3(t, z, ϑ, ǫ)

Define the set S = {z ∈ R
na : ‖z‖ < ᾱ−1

2 (ρ/2)} ×
{ϑ ∈ R

2 : U(ϑ) <
√

ρ/2}. Since U(ϑ) <
√

ρ/2

implies µ U(ϑ)
µ+1−U(ϑ) < ρ/2, it follows that S ⊂ Ωρ,t,ǫ

for all (t, ǫ) ∈ [0, T ) × [0, ǭ∗]. Recalling (24), it can be

concluded that each St,ǫ is contained in the compact set

S , S̄ \ S . From this point on, the proof follows by a

suitable application of Bacciotti’s semi-global stabilization

lemma (see [10, Theorem 9.3.1]). Specifically, notice that

both m1(t, z, ϑ, ǫ) and m2(t, 0, ϑ, ǫ) vanish at z = 0 (see

Proposition 2). Therefore, for any ǫ ∈ (0, ǭ∗] it follows that

W < 0 on the compact set S0 = {(z, ϑ) ∈ S : z = 0} where

‖ϑ‖ is bounded away from zero. By continuity, W < 0 on an

open neighborhood N of S0. Since z 6= 0 on the compact set

S̃ = S \N , and m1(t, z, ϑ, ǫ) and m2(t, z, ϑ, ǫ) are bounded

in S̃ for all (t, ǫ) ∈ [0, T ) × [0, ǭ∗], one obtains that in this

set: Ẇ ≤ −δ1 − ǫ ā µ
µ+1‖ϑ‖2 + ǫδ2, for some finite numbers

δ1 > 0 and δ2 > 0. Choosing ǫ∗1 such that 0 < ǫ∗1 < δ1/δ2

completes the proof.

Proposition 6 implies that, for any fixed ǫ ∈ (0, ǫ∗1],
all trajectories originating within the set S0,ǫ satisfy

W(t, z(t), ϑ(t), ǫ) ≤ W(0, z(0), ϑ(0), ǫ) − κ t ≤ c + µ2 +
1 − κ t, and thus are trapped by the set Ωρ,t,ǫ for all

t ≥ (c + µ2 + 1 − ρ)/κ. Exponential convergence from a

suitable family of level sets Ωρ,t,ǫ is established as follows:

Proposition 7: Let r̄ > 0 be defined as in Proposition 2.

Then, there exists 0 < ǫ∗2 ≤ ǭ∗ such that the following

inequalities hold in the set {(z, ϑ) ∈ R
na × R

2 : ‖(z, ϑ)‖ ≤
r̄} for all ǫ ∈ (0, ǫ∗2] and all t ∈ [0, T )

c1‖(z, ϑ)‖2 ≤ W(t, z, ϑ, ǫ) ≤ c2‖(z, ϑ)‖2

Ẇ(t, z, ϑ, ǫ) ≤ −c3‖(z, ϑ)|2
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for some numbers ci > 0, 1 ≤ i ≤ 3.

Proof: The first two inequalities follow directly from

Proposition 2 and the definition of W . For the last inequality,

notice that, by definition of m1(·) and m2(·), it follows that,

for all (z, ϑ) ∈ 0, m1(t, 0, ϑ, ǫ) ≡ 0, ∂m1

∂z
(t, 0, ϑ, ǫ) ≡ 0,

m2(t, 0, ϑ, ǫ) ≡ 0, and m2(t, z, 0, ǫ) ≡ 0. Since m1(·) and

m2(·) are smooth, there exist numbers M1 > 0, M2 > 0
such that ‖m1(t, z, ϑ, ǫ)‖ ≤ M1‖z‖2 and ‖m2(t, z, ϑ, ǫ)‖ ≤
M2‖z‖ ‖ϑ‖, for all (t, z, ϑ, ǫ) ∈ [0, T ]×{(z, ϑ) : ‖(z, ϑ)‖ ≤
r̄}×[0, ǭ∗]. From (25), and using again Proposition 2, one ob-

tains Ẇ ≤ −ā3‖z‖2−ǫā µ
µ+1‖ϑ‖2+ǫM1‖z‖2+ǫM2‖z‖‖ϑ‖,

for all ‖(z, ϑ)‖ ≤ r̄, all ǫ ∈ (0, ǭ∗] and all t ∈ [0, T ),
hence the result follows from a simple application of Young’s

inequality.

The proof of Theorem 3 is completed by choosing ρ in

Proposition 6 small enough so that Ωρ,t,ǫ ⊂ {(z, ϑ) :
‖(z, ϑ)‖ ≤ r̄} for all (t, ǫ) ∈ [0, T )×[0, ǭ∗], and by choosing

ǫ∗ = min{ǫ∗1, ǫ∗2}.

VI. ILLUSTRATIVE EXAMPLE

Consider the following ISC nonlinear system [7]

ẋ1 = −x1 + x2
2 (26)

ẋ2 = −x2 + u + d

y = x1 + x2.

When forced by the output of (2), the steady-state of sys-

tem (26) reads as xss,1(w) = b1(ω0)w
2
1 + 2b2(ω0)w1w2 +

b3(ω0)w
2
2 and xss,2(w) = a1(ω0)w1 + a2(ω0)w2, where

a1(ω0) and a2(ω0) are given by a1(ω0) = 1
1+ω2

0

and

a2(ω0) = − ω0

1+ω2

0

and the expressions of the polynomials

bi(ω0) can be found in [7, p.67]. This shows that the steady-

state output yss(exp(St)w0) satisfies Assumption 3.1. The

change of variable x̃ = x − xss(w) transforms system (26)

into

˙̃x1 = −x̃1 + x̃2
2 + δ(w)x̃2

˙̃x2 = −x̃2 (27)

where δ(w) = 2(a1(ω0)w1 + a2(ω0)w2). Notice that for all

ω0 > 0, |a1(ω0)| ≤ 1 and |a2(ω0)| ≤ 1/2. Also, since

|wi(t)| ≤ ‖w0‖, i = 1, 2, it follows that |δ(eStw0)| ≤
3‖w0‖, for all t ∈ [0, T ). Consider the Lyapunov function

V (x̃, w0) =
1

2
x̃2

1 +
1

4
x̃4

2 + κ(w0)
1

2
x̃2

2 (28)

where κ(w0) ≥ 0 is to be determined. The derivative of V
along the trajectories of (27) reads as V̇ = −x̃2

1 + x̃1x̃
2
2 +

δ(eStw0)x̃1x̃2 − x̃4
2 − kx̃2

2. Applying Young’s inequality, a

simple algebraic manipulation shows that V̇ ≤ − 1
4 x̃2

1 −
1
2 x̃4

2 + 36‖w0‖2x̃2
2 − κ(w0)x̃

2. By choosing κ(w0) = 1 +
36‖w0‖2, it is seen that (28) fulfills Assumption 2.1. Since

Assumption 3.1 is fulfilled as well, the proposed control

strategy can be applied to system (26), where, due to the

structure of the steady-state response ya
ss(exp(St)w0), it has

not been necessary to add the filter (12) to the output of (26).

The initial conditions for (2) are chosen so that w0 = (1 1),
those of the plant at x0 = (1 2), while the remaining
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Fig. 1. Regulated output for different values of the parameter ǫ.

initial conditions for (17) are chosen at the origin. The

frequency of the sinusoidal disturbance has been selected as

ω0 = 0.5 rad/s. The effect of the controller on the plant

output is visible in Figure 1, which shows the regulated

output for three different values of the controller parameter,

namely ǫ = 0.5, ǫ = 1, and ǫ = 0.1. It is worth noting that

instability occurs for ǫ > 1.2.

VII. CONCLUSIONS

In this work, the problem of adaptive feedforward compen-

sation for a class of nonlinear systems has been addressed.

It has been shown how, under particular assumptions, the

scheme proposed in [5] could be reinterpreted in a nonlinear

setting and applied to achieve disturbance rejection of a

harmonic disturbance at the input of a stable nonlinear

system with a semi-global domain of convergence. The

stability analysis was carried out using tools from averaging

analysis and semi-global stabilization.
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Birkhäuser, 2006.
[8] A.R. Teel and L. Praly. Tools for semi-global stabilization by partial

state and output feedback. SIAM Journal on Control and Optimization,
33:1443–1488, 1995.

[9] H. K. Khalil. Nonlinear Systems (3rd edition). Prentice Hall, 2002.
[10] A. Isidori. Nonlinear Control System: An introduction. Springer

Verlag, New York, NY, 1995.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB03.2

2580


