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Abstract— Given a fixed network where each node has some
given initial value, and under the constraint that each node
receives noisy transmissions from its immediate neighbors, we
provide a distributed scheme for any node to calculate an
unbiased estimate of an arbitrary linear function of the initial
values. Our scheme consists of a linear iteration where, at
each time-step, each node updates its value to be a weighted
average of its own previous value and those of its neighbors.
We show that after repeating this process with almost any set
of weights for a finite number of time-steps (upper bounded
by the size of the network), any node in the network will be
able to calculate an unbiased estimate of any linear function
by taking a linear combination of the values that it sees over
the course of the linear iteration. For a given set of weights,
this linear combination can also be optimized to minimize the
variance of the unbiased estimate calculated by each node.

I. INTRODUCTION

In distributed systems and networks, it is often necessary

for some or all of the nodes to calculate some function

of certain parameters distributed throughout the network.

This problem has been studied by the computer science,

communication, and control communities over the past few

decades, leading to the development of various protocols [1],

[2], [3]. Special cases of the distributed function calculation

problem include the transmission of data from one or mul-

tiple sources to one or multiple sinks, and the distributed

consensus problem, where all nodes in the network calculate

the same function [1].

The notion of consensus has recently experienced a resur-

gence in the control literature, due to its applicability to

diverse topics ranging from cooperative control and multi-

agent systems to modeling flocking behavior in biological

and physical systems [4]. In these cases, the approach to

consensus is to use a linear iteration, where each node in

the network repeatedly updates its value to be a weighted

linear combination of its own value and those of its neigh-

bors (e.g., see [4] and the references therein). These works

have revealed that if the network topology satisfies certain

conditions, the weights for the linear iteration can be chosen

so that all of the nodes asymptotically converge to the same
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value. However, the fact that consensus is only reached

asymptotically implies that a large number of time-steps

(and communication) will be required before all nodes are

sufficiently close to the consensus value. Furthermore, it

was shown in [5] that if the linear iteration is affected by

additive noise at each time-step, the reliance on asymptotic

convergence can cause the nodes to be driven arbitrarily

far away from the desired consensus value. The problem of

consensus via linear iterations with noisy transmissions has

only recently started to gain attention (e.g., see [6], [7], [8]),

and the existing schemes only allow each node to calculate

an unbiased1 estimate of the consensus value asymptotically

(i.e., they do not obtain an unbiased estimate in a finite

number of time-steps).

Recently, we showed in [10] (for noise-free networks) that

the linear iterative strategy described above can actually be

applied to the more general function calculation problem,

allowing any node in time-invariant networks to calculate

any arbitrary function of the node values in a finite number

of time-steps (upper bounded by the size of the network).

In this paper, we extend these results to the case where

each node only obtains a noisy (or uncertain) measurement

of its neighbors’ values. While noisy transmissions between

nodes in networks can often be handled by utilizing source

or channel coding, the model that we consider in this paper

applies to situations where coding is not available, or where

nodes directly sense the values of their neighbors, and their

sensing or measurement capabilities are subject to noise [7].

Our model can also be used as an abstraction for the case

where each node can only transmit quantized versions of its

values to its neighbors [8]. Using only the first order statistics

of the noise, we show that each node can obtain an unbiased

estimate of any desired linear function (in strongly connected

graphs) as a linear combination of the noisy values it receives

from its neighbors, along with its own values; furthermore,

this can be done for almost any choice of weights in the

linear iteration, and after running the iteration for a finite

number of time-steps. If the second order statistics of the

noise are also known (perhaps only after running the linear

iteration), we show how each node can refine its estimate

of the linear function by choosing this linear combination in

order to minimize the variance of the estimation error.

In our development, we will use the notation ei to indicate

the column vector with a 1 in its i–th position and zeros

elsewhere. The symbol 1 represents the column vector (of

1An estimate Θ̂ of a parameter Θ is said to be unbiased if the expected

value of Θ̂ is equal to Θ [9].
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appropriate size) that has all entries equal to one. The n×n
identity matrix is denoted by In. The notation A′ indicates

the transpose of matrix A. We will denote the rank of matrix

A by ρ(A). The expected value of a random parameter A
is denoted by E[A].

II. BACKGROUND

The interaction constraints in distributed systems and

networks can be conveniently modeled via a directed graph

G = {X , E}, where X = {x1, . . . , xN} is the set of nodes

in the system and E ⊆ X × X is the set of directed edges

(i.e., directed edge (xj , xi) ∈ E if node xi can receive

information from node xj). All nodes whose values can be

received by node xi are said to be neighbors of node i, and

are represented by the set Ni. The number of neighbors of

node i is called the in-degree of node i, and denoted by degi.

At each time-step k, nodes can update their values based

on some strategy. The scheme that we study in this paper

makes use of linear iterations; specifically, at each time-step,

each node updates its value as

xi[k + 1] = wiixi[k] +
∑

j∈Ni

wijxj [k],

where the wij ’s are a set of weights. For ease of analysis, the

values of all nodes at time-step k can be aggregated into the

value vector x[k] =
[
x1[k] x2[k] · · · xN [k]

]′
, so that

the update strategy for the entire system can be represented

as

x[k + 1] =





w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

. . .
...

wN1 wN2 · · · wNN





︸ ︷︷ ︸
W

x[k] (1)

for k = 0, 1, . . ., with the constraint that wij = 0 if j /∈ Ni.

We assume that each node i has some initial value xi[0] that

is potentially required for functions calculated by other nodes

in the network.

In [10], it was shown that, for almost any2 choice of

weights, the nodes in the system can calculate an arbitrary

function of the other node values after running the linear

iteration (1) for a finite number of time-steps (as long as

there are paths from the nodes that hold the needed values to

the nodes that have to calculate the functions). The analysis

in that paper starts by modeling the linear iteration as

x[k + 1] = Wx[k]

yi[k] = Cix[k], 1 ≤ i ≤ N , (2)

where yi[k] denotes the outputs (node values) that are

available to node i during the k–th time-step. Specifically,

Ci is the (degi +1) × N matrix with a single 1 in each

row denoting the positions of the state-vector x[k] that are

available to node i (i.e., these positions correspond to the

2As we will explain in more detail later, the phrase “almost any” in this
context means that the set of weights for which the property is violated has
Lebesgue measure zero.

nodes that are neighbors of node i, along with node i itself).

Since x[k] = Wkx[0], the set of all outputs seen by node i
over L + 1 time-steps is given by





yi[0]
yi[1]
yi[2]

...

yi[L]





︸ ︷︷ ︸
yi[0:L]

=





Ci

CiW

CiW
2

...

CiW
L





︸ ︷︷ ︸
Oi,L

x[0] . (3)

When L = N − 1, the matrix Oi,L in the above equation is

the observability matrix for the pair (W,Ci) [11]. The row

space of Oi,L characterizes the set of all linear functions3

of x[0] that can be calculated by node i up to time-step L.

Specifically, if the row space of the observability matrix Oi,L

contains a vector c′, then one can find a matrix Γi such that

ΓiOi,L = c′. Thus, after running the linear iteration (1) for

L+1 time-steps, node i can immediately calculate the linear

function c′x[0] as a linear combination of the outputs of the

system over those time steps, i.e.,

Γiyi[0 : L] = ΓiOi,Lx[0] = c′x[0] . (4)

If ρ(Oi,L) = N , the pair (W,Ci) is said to be observable.

In this case, node i can determine the entire initial value

vector x[0] from the outputs of the system, and can therefore

calculate any function of those values.

An important feature of the observability matrix is that

there exists an integer νi such that the rank of the matrix Oi,L

monotonically increases with L until L = νi − 1, at which

point it stops increasing. This means that the outputs of

the system yi[0],yi[1], . . . ,yi[νi − 1] contain the maximum

amount of information that is possible to obtain about the

initial state, and future outputs of the system do not provide

any extra information to node i. The integer νi is upper

bounded as νi ≤ N − degi [10], which implies that if

it is possible for node i to calculate the desired function

f(x1[0], x2[0], . . . , xN [0]), it can do so in at most N − degi

time-steps.

The following theorem from [10] indicates that, for almost

any choice of weight matrix, the observability matrix for

each node i will allow node i to obtain the initial value of

all nodes that have a path in the network to node i.
Theorem 1 ([10]): Let G denote the graph

of the network. Define the set Ri =
{xj | There exists a path from xj to xi in G} ∪ {xi}.

Then, for almost any choice of weight matrix W, node

i can obtain the value xj [0], xj ∈ Ri, after running

the linear iteration (1) for Li + 1 time-steps, for some

0 ≤ Li < |Ri| − degi; node i can therefore calculate any

arbitrary function of the values {xj [0] | xj ∈ Ri}.

In the above theorem, the phrase “almost any” indicates

that the set of parameters for which the theorem does not

hold has Lebesgue measure zero [10]. As discussed in

3A function f(x1[0], x2[0], . . . , xN [0]) of the initial values is linear if
it is of the form Qx[0] for some matrix Q.
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[10], the weights can be chosen (almost arbitrarily) by a

centralized entity and provided to the nodes4 a priori, or they

can be chosen independently by each node and discovered

by the network after following a simple distributed protocol.

Remark 1: Note that unlike asymptotic consensus

schemes, where x[k] converges to a constant vector after an

infinite number of time-steps, the protocol described above

does not require x[k] to converge to any particular vector

(or even to converge at all).

III. THE NOISE MODEL

In the rest of the paper, we will extend the above results

to the case where the system is operating in the presence of

noise. We will first introduce the noise model, and then show

that each node in the system can use a modified version of

the above techniques to obtain an unbiased estimate of any

desired linear function5 in a finite number of time-steps.

Consider the linear iteration in (2). To simplify the devel-

opment, we will assume without loss of generality that the

rows of Ci are ordered such that the first row of each Ci

corresponds to node i’s own value in the state vector x[k]
(i.e., the i–th element of the first row of Ci is 1, and all other

entries in that row are zero). Suppose that the values that each

node i receives (or senses) from its neighbors are corrupted

by noise (i.e., there is a noise component associated with

each exchange of values between two neighboring nodes).

Let ni[k] denote the degi ×1 vector containing the noise

that affects the values received by node i at time-step k. For

each 1 ≤ i ≤ N , let D̂i denote the (degi +1)×(degi) matrix

given by D̂i =
[

0
Idegi

]
; i.e., the first row of D̂i has all entries

equal to zero, and the remaining rows form the degi × degi

identity matrix. The noisy values that node i receives at time-

step k are then given by yi[k] = Cix[k] + D̂ini[k]. Note

that the reason for setting the top row of D̂i equal to zero

is to model the fact that node i has noise-free access to its

own value. If we define

n[k] ≡
[
n′

1[k] n′
2[k] · · · n′

N [k]
]′

,

Di ≡
[
0 · · · 0 D̂i 0 · · · 0

]
,

where each Di matrix has
∑i−1

j=1 degj columns of zeros, fol-

lowed by the matrix D̂i, followed by
∑N

j=i+1 degj columns

of zeros, the output seen by node i then becomes yi[k] =
Cix[k] + Din[k].

Now consider the update equation. Recall that each node

uses the values that it receives from its neighbors to update

its own value. In particular, node i multiplies the value that

it receives from node j by the weight wij . Let w̄i denote the

1 × degi vector that contains the weights corresponding to

4Actually, each node i only requires the weights corresponding to the
i-th row of W, along with the coefficient matrix Γi that is used in (4) to
solve for the desired vector c′.

5We will focus on linear functions because, as we will see, unbiased
estimates of such functions can be obtained as a linear combination of the
values seen by each node over the linear iteration. However, one can also use
our results to obtain unbiased estimates of more general nonlinear functions.

the neighbors of node i. The update for node i is then given

by

xi[k + 1] =
[
wii w̄i

]
yi[k]

=
[
wii w̄i

]
(Cix[k] + Din[k])

= wiixi[k] +
∑

j∈Ni

wijxj [k]

+
[
0 · · · 0 w̄i 0 · · · 0

]
n[k] .

Defining the matrix

B ≡





w̄1 0 · · · 0
0 w̄2 · · · 0
...

...
. . .

...

0 0 · · · w̄N




, (5)

one obtains the noise model

x[k + 1] = Wx[k] + Bn[k]

yi[k] = Cix[k] + Din[k], 1 ≤ i ≤ N . (6)

Note that the noise vector n[k] in this case has dimension(∑N

j=1 degj

)
× 1 (since

∑N

j=1 degj is equal to the number

of edges in the graph [12], and since each edge corresponds

to a noisy transmission, one requires a noise term at each

time-step for every edge in the graph).

Remark 2: Note that the noise model in (6) can also

handle the case where noise only affects the update equation

for each node (e.g., due to quantization), but does not affect

the exchange of values between nodes, simply by setting B

to be the N × N identity matrix, and choosing each Di to

be the zero matrix. Note that in this case, the noise vector

n[k] will only have N components.

In [5], the authors considered the problem of asymptotic

consensus in the presence of update noise via a linear

iteration of the form x[k + 1] = Wx[k] + n[k], where

n[k] is zero mean white noise with covariance matrix

E[n[k]n′[k]] = I , and W is a symmetric matrix providing

asymptotic consensus, i.e., limk→∞ xi[k] = 1
N

1′x[0] for

all i. They showed that as k → ∞, the variance of the

node values xi[k] from the value 1
N

1′x[0] increases without

bound. This phenomenon is essentially due to the fact that

any weight matrix that provides asymptotic consensus must

necessarily have a (marginally stable) eigenvalue at 1 [13],

and thus the components of the noise that excite this mode

of the system will accumulate and cause the values of the

nodes to evolve according to a random walk.

Recent work has focused on addressing this issue in

various ways [8], [7], [6], but unlike our approach here,

all of these works focus on obtaining convergence in an

asymptotic number of time-steps. In the next section, we

show that for almost any choice of weight matrix W, each

node can obtain an unbiased estimate of any linear function

of x[0] after running the linear iteration for a finite number

of time-steps. Furthermore, if the second order statistics of

the noise are known, we show how each node can minimize

the variance of its estimate of the function (for a given choice

of weight matrix W).
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Remark 3: As we will see in the next section, given

an appropriate weight matrix W, each node can obtain

an unbiased estimate of its desired linear function simply

by knowing the first order statistics of the noise (and not

necessarily the second order statistics). If the second order

statistics are also known (perhaps only after running the

linear iteration), we will show that each node can refine its

estimate of its linear function by taking an appropriate linear

combination (given by the matrix Γi) of the values it sees

over the course of the linear iteration. Note that the implicit

assumption of a fixed and known topology is also made by

much of the existing literature on distributed consensus in the

presence of noise (e.g., see [5], [8]). In noise-free networks,

it is possible for the nodes to calculate their observability

matrices (and the gains Γi) in a distributed manner (see [10]),

but the extension of such techniques to noisy networks is an

open question and an avenue for future research.

IV. UNBIASED MINIMUM-VARIANCE ESTIMATION

A. Unbiased Estimation

Consider the noisy system model given by (6). The output

seen by node i over Li + 1 time-steps is given by





yi[0]
yi[1]
yi[2]

...

yi[Li]





︸ ︷︷ ︸
yi[0:Li]

=





Ci

CiW

CiW
2

...

CiW
Li





︸ ︷︷ ︸
Oi,Li

x[0]+





Di 0 · · · 0
CiB Di · · · 0

CiWB CiB · · · 0
...

...
. . .

...

CiW
Li−1B CiW

Li−2B · · · Di





︸ ︷︷ ︸
Mi,Li





n[0]
n[1]

...

n[Li]





︸ ︷︷ ︸
n[0:Li]

. (7)

We will assume here that the noise is zero mean (i.e.,

E[n[k]] = 0 for all k); this assumption can be easily relaxed,

but we adopt it here for simplicity. Suppose each node

i wants to calculate an unbiased estimate of the function

c′ix[0], for some vector c′i. We will find a gain Γi and the

smallest integer Li for each node i so that the quantity

Γiyi[0 : Li] is an unbiased estimate of c′ix[0]. To this end,

we use (7) to examine the estimation error

ǫi ≡ Γiyi[0 : Li] − c′ix[0]

= (ΓiOi,Li
− c′i)x[0] + ΓiMi,Li

n[0 : Li] . (8)

The estimate Γiyi[0 : Li] will be unbiased (i.e., E[ǫi] = 0)

for any given x[0] if and only if matrix Γi satisfies

ΓiOi,Li
= c′i . (9)

In other words, the vector c′i must be in the row-space of the

matrix Oi,Li
. Following the notation in Theorem 1, let Ri

denote the set of all nodes that have a path to node i in the

network. As long as all nonzero entries of c′i are in columns

corresponding to nodes in Ri, Theorem 1 indicates that, for

almost any choice of weight matrix W, c′i will be in the row

space of Oi,Li
, for some 0 ≤ Li < |Ri| − degi. One can

then find the smallest Li for which the vector c′i is in the

row-space of Oi,Li
, and this will also be the smallest number

of time-steps required for unbiased estimation by node i (for

that choice of W). The above discussion immediately leads

to the following theorem.

Theorem 2: Let G denote the graph of the network. Define

the set Ri = {xj | There exists a path from xj to xi in G}∪
{xi}. Then, for almost any choice of weight matrix W, node

i can obtain an unbiased estimate of any linear function of

values in {xj [0]|xj ∈ Ri} after running the linear iteration

(1) for Li + 1 time-steps, for some 0 ≤ Li < |Ri| − degi.

Note that for a given W, there may be multiple choices

of Γi satisfying (9). This leads us to ask the question: if the

second order statistics of the noise are also known (perhaps

a posteriori), can we obtain a better estimate of the linear

function by choosing the gain Γi appropriately? We will

address this question in the following section.

B. Minimizing the Variance of the Estimate

In order to minimize the mean square error of each node’s

estimate of its linear function, suppose that the covariance

of the noise is known (or obtained over the course of the

linear iteration), and given by E[n[k]n′[j]] = Qkj . Note

that we are not assuming any constraints on the second order

statistics (e.g., the noise does not have to be stationary, and

can be colored). Examining the estimation error given by (8),

we note that after satisfying the unbiased condition (9), the

expression for the variance of the error is given by

σi ≡ E [ǫiǫ
′
i]

= ΓiMi,Li
E [n[0 : Li]n[0 : Li]

′]M′
i,Li

Γ′
i

= ΓiMi,Li





Q00 Q01 · · · Q0Li

Q10 Q11 · · · Q1Li

...
...

. . .
...

QLi0 QLi1 · · · QLiLi





︸ ︷︷ ︸
ΠLi

M′
i,Li

Γ′
i .

(10)

Suppose Li is chosen as the smallest integer for which (9)

has a solution (this will be the smallest delay required for

unbiased estimation by node i with the given weight matrix

W). Let the singular value decomposition of the matrix Oi,Li

be given by Oi,Li
= Ui

[
Λi 0
0 0

]
V′

i, where Ui and Vi are

unitary matrices, and Λi is a diagonal matrix with positive

entries. Furthermore, ρ(Λi) = ρ(Oi,Li
) [14]. Substituting

this into (9), we get

ΓiUi

[
Λi 0
0 0

]
= c′iVi . (11)

Clearly, since c′i is in the row-space of Oi,Li
, we have

c′iVi =
[
a′

i 0
]

(12)

for some vector a′
i with ρ(Oi,Li

) entries. Define the matrix

Γ̂i ≡ ΓiUi , (13)
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and partition it as Γ̂i =
[
Γ̂i1 Γ̂i2

]
, where Γ̂i1 has ρ(Oi,Li

)

columns. Equation (11) then becomes
[
Γ̂i1 Γ̂i2

] [
Λi 0
0 0

]
=

[
a′

i 0
]
. From this equation, it is apparent that

Γ̂i1 = a′
iΛ

−1
i , (14)

and Γ̂i2 is completely unconstrained. In other words, Γ̂i2

represents the freedom in the gain Γi after satisfying the

unbiased constraint given by (9).

To minimize the variance of the estimation error, we

substitute the above parameterization of the gain Γi into (10)

to obtain

σi =
[
Γ̂i1 Γ̂i2

]
U′

iMi,Li
ΠLi

M′
i,Li

Ui

[
Γ̂i1 Γ̂i2

]′
.

Define [
Φi

Ψi

]
≡ U′

iMi,Li
, (15)

where Φi has ρ(Oi,Li
) rows. Using (14), the variance of the

error becomes

σi =
(
a′

iΛ
−1
i Φi + Γ̂i2Ψi

)
ΠLi

(
a′

iΛ
−1
i Φi + Γ̂i2Ψi

)′

= a′
iΛ

−1
i ΦiΠLi

Φ′
iΛ

−1
i ai + a′

iΛ
−1
i ΦiΠLi

Ψ′
iΓ̂

′
i2

+ Γ̂i2ΨiΠLi
Φ′

iΛ
−1
i ai + Γ̂i2ΨiΠLi

Ψ′
iΓ̂

′
i2 .

To minimize the above expression, we take the gradient with

respect to Γ̂i2 and set it equal to zero, which produces

Γ̂i2 = −a′
iΛ

−1
i ΦiΠLi

Ψ′
i (ΨiΠLi

Ψ′
i)

†
,

where the notation (·)† indicates the pseudo-inverse of a

matrix [15]. From (13) and (14), we now obtain the optimal

gain for node i as

Γi = a′
iΛ

−1
i

[
I −ΦiΠLi

Ψ′
i (ΨiΠLi

Ψ′
i)

†
]
U′

i . (16)

The variance of the optimal estimate can now be obtained

from (10).

Remark 4: In the above derivation, we took Li to be the

smallest delay for which unbiased estimation is possible by

node i. If one increases Li past this minimum value, node

i can potentially reduce the variance of its estimate. The

variance of the estimate will be a nonincreasing function

of the delay Li, and thus the tradeoff between delay and

variance can be taken as a design parameter for a given

graph. The gain Γi and the variance σi for any value of Li

(above the minimum required for unbiased estimation) can

be obtained by following the above procedure. A quantita-

tive characterization of the relationship between delay and

variance will be the subject of future research.

Remark 5: It may be the case that some nodes can obtain

an unbiased estimate of their desired functions faster than

others. In such cases, one can have all nodes run the linear

iteration for max1≤j≤N Lj + 1 time-steps, so that every

node receives enough information to obtain an unbiased

estimate. Each node i can either calculate the function

c′ix[0] after the first Li + 1 time-steps of the linear iteration

(i.e., with minimum delay), or it can use the outputs over

2

3

45

6

1

Fig. 1. Ring with 6 nodes from Example 1.

all max1≤j≤N Lj + 1 time-steps (which could reduce the

variance of its estimate).

Example 1: Consider the ring with N = 6 nodes in

Fig. 1. The transmissions between nodes are assumed to

be corrupted by zero-mean white noise with unit variance.

The objective in this system is for each node to calculate

an unbiased estimate of the average of the initial values. To

accomplish this, we set each edge weight to 1, and each

self-weight to zero. We can now determine the gain matrix

Γi and the minimum delay Li required by each node i to

calculate the desired function. For example, node 1 in Fig. 1

receives values from nodes 2 and 6, and has access to its

own value, which means that C1 =
[

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

]
. To find

the number of time-steps required for node 1 to calculate an

unbiased estimate of the average, we first have to find the

smallest integer L1 for which c′ = 1
61

′ is in the row-space

of the matrix O1,L1
. With L1 = 0, we have O1,0 = C1, and

this condition does not hold. For L1 = 1, we have O1,1 =[
C′

1 (C1W)′
]′

, and again the condition does not hold.

With L1 = 2, we have O1,2 =
[
C′

1 (C1W)′ (C1W
2)′

]′
,

and we find that the row-space of this matrix contains the

vector 1
61

′. Therefore, node 1 can calculate an unbiased

estimate of the average after L1+1 = 3 time-steps (i.e., after

it sees the outputs y1[0], y1[1] and y1[2]). Not surprisingly,

we find that Li = 2 for each node i, and thus all nodes in

the system can calculate an unbiased estimate of the average

after running the linear iteration for Li + 1 = 3 time-steps.

Note that both the radius and the diameter of this graph are

equal to 3, and so no scheme can allow all nodes to calculate

the average in fewer than three time-steps (i.e., the linear

iterative scheme is time-optimal for this graph).

Having determined the minimum delay for unbiased esti-

mation by each node, our task becomes to choose the gain

Γi for each node i satisfying the unbiased condition (9),

while minimizing the variance of the estimation error. To do

this, we have to first construct the noisy system model in

(6). For example, consider node 1 in Fig. 1. Since the values

received by node 1 from its neighbors are corrupted by noise,

the output seen by node 1 at time-step k is given by

y1[k] = C1x[k] +




0 0
1 0
0 1





︸ ︷︷ ︸
D̂1

n1[k] ,

where n1[k] contains the additive noise on the links from

node 2 and node 6 to node 1 at time-step k. The outputs

seen by all the other nodes can be obtained in a similar

manner. We can group the noise vectors seen by each node
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into the single noise vector

n[k] =
[
n′

1[k] n′
2[k] n′

3[k] n′
4[k] n′

5[k] n′
6[k]

]′
,

which has twelve entries, since there are six bidirectional

links in the graph. Note that n[k] is white noise with

E [n[k]] = 0 and E [n[k]n′[k]] = I12 (by assumption in

this example). With this notation, the output for node 1 is

given by

y1[k] = C1x[k] +
[
D̂1 0 0 0 0 0

]

︸ ︷︷ ︸
D1

n[k] .

Since each node weighs the values that it receives from its

neighbors by 1, the state update equation is given by the

first equation in (6), where the matrix B is obtained from

(5) as B = I6⊗
[
1 1

]
(the symbol ⊗ denotes the Kronecker

product).

We now have to find the gain Γ1 for node 1 satis-

fying (9), while minimizing the error variance in (10).

To do this, we first find the singular value decompo-

sition of O1,2 as O1,2 = U1

[
Λ1

0

]
V′

1, where Λi =
diag(3.682, 3.113, 1.4142, 1, 0.6653, 0.5564). We omit the

values of U1 and V1 in the interest of space. From the

above decomposition, we obtain the vector a′
1 in (12) as

a′
1 =

1

6
1′V1

=
[
−0.2787 −0.267 0 0 −0.0752 −0.1098

]
.

We also obtain the matrices Φi and Ψi from (15) (again,

these values are omitted in the interest of space). Sub-

stituting these values into the expression for the optimal

gain in (16), with Π2 ≡ E [n[0 : 2]n′[0 : 2]] = I36

(since the noise is white with unit variance), we ob-

tain Γ1 = 1
36

[
−6 −1 −1 −2 2 2 4 3 3

]
. The

mean-square error for the estimate of the average obtained

by node 1 is calculated by substituting the above gain into

(10), and is found to be σ1 = 0.25. The above procedure can

be repeated to obtain the optimal gains for all nodes, and in

this example the minimum mean-square error for all nodes

is the same (i.e., σi = 0.25 for all i).
Once the optimal gains are calculated and

provided to each node, suppose that the initial

values of the nodes are given by x[0] =[
0.8372 −5.3279 3.6267 4.4384 −2.7324 8.9546

]′
,

which has a mean of 1.6328. The nodes run the linear

iteration given by (6) for three time-steps with x[0] as

given above, and driven by zero-mean white noise with

unit variance on each link. An example of the outputs seen

by node 1 during the three time-steps, with a particular

sampling of noise vectors n[0],n[1] and n[2], is given by

y1[0] =
[

0.8372 −5.7054 8.6587
]′

,

y1[1] =
[

2.9533 2.9668 −1.7085
]′

,

y1[2] =
[

1.2583 1.5285 17.8313
]′

.

Node 1 then obtains a minimum-variance unbiased estimate

of the average as Γ1

[
y′

1[0] y′
1[1] y′

1[2]
]′

= 1.4374. The

other nodes follow the same procedure, and the values calcu-

lated by nodes 2–6 (for this sample run) are 1.2716, 1.3985,

1.9846, 1.7501 and 1.4736, respectively. One can verify

empirically (i.e., by running several simulations with dif-

ferent initial conditions and calculating the average squared

estimation error) that the variance of the estimation error at

each node i is indeed close to the theoretical value of 0.25.

V. SUMMARY

We have studied the problem of performing distributed cal-

culation of linear functions in systems operating in the pres-

ence of noise. In particular, we analyzed a linear iteration-

based scheme where each node updates its value as a linear

combination of its own value, and those of its neighbors.

In the study of traditional linear iterative schemes that rely

on asymptotic convergence, it has been shown that the

presence of noise can drive the node values arbitrarily far

away from the desired function. To solve this problem, we

utilized results on finite-time function calculation via linear

iterations. Specifically, for a given set of update weights, we

showed that it is possible to calculate a set of gains for each

node that allows it to obtain a minimum-variance unbiased

estimate of the function after running the linear iteration for

a finite number of time-steps.
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