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Abstract— The Chen-Fliess series is known to be an expo-
nential Lie series. Previously explicit formulas for the iterated
integral coefficients were known only for its factorization into
a directed infinite product of exponentials. This factorization
uses Hall sets and the Zinbiel product.

We use the underlying Hopf algebra structure to derive
explicit formulas for the corresponding coefficients in the
logarithm of the series. This allows one to express the series as
a single exponential.

This work is closely related to Fer and Magnus expansions,
and has interpretations in terms of a continuous Campbell-
Baker-Hausdorff formula. The result facilitates work in non-
linear control, numerical integration and various applications
that involve compositions of noncommuting flows.

I. INTRODUCTION AND PRIOR WORK

Solutions formulas in terms of infinite series have a long
history in the context of both uncontrolled and controlled dy-
namical systems, e.g. [2]. They also underlie most numerical
integration schemes for differential equations.

Series expansions are of particular interest for systems that
naturally split – due to different scales involved, or due to the
presence of distinguished control or perturbation terms. Our
interest lies in systems defined by a collection of analytic
vector fields fi on Rn with time varying locally integrable
coefficients ui

ẋ =
m∑

i=1

ui(t)fi(x), x ∈ Rn, u ∈ U ⊆ Rm. (1)

In the general control setting u typically takes values in a
compact convex subset of Rm, often normalized to a ball or
the cube [−1, 1]m. Bang-bang optimal controls might take
values in the vertex set {−1, 1}m, whereas in hybrid or
switched systems one might require u ∈ {0, 1}m with the
additional constraint

∑
ui = 1. Commonly one specializes

to piecewise constant u, in the extreme case as simple
as (u1, u2) = (1, ε) in averaging theory and perturbation
methods. Generally the flows of the vector fields fi do not
commute. It is primary interest to construct the solution of (1)
from the knowledge of the flow of each fi. One such well-
studied application is the numerical integration of ordinary
differential equations with algebraic constraints, especially
geometric integration schemes on manifolds.

Volterra series [36] and the Campbell-Baker-Hausdorff
series [3] which originated in the late 1800s are distin-
guished by rapidly increasing complexity of higher order
terms. Similarly, the expansions introduced in the 1950s
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by e.g. Chen [5], Fer [8], Magnus [23], as well as Fliess’
interpretation [9] of the latter in terms of control systems,
and Agrachev’s and Gamkrelidze’s exponential represen-
tations [1] also suffer from many redundant terms. The
quest to simplify these expansion to the minimal number
of terms and to obtain explicit formulas for the kernels and
iterated integral coefficients has been going hand-in-hand
with efforts to uncover the underlying algebraic and com-
binatorial structures. It is now well-understood that instead
of directly manipulating complicated iterated integrals, it is
advantageous to encode these by simple algebraic objects
such as linear combinations of words or labeled trees, and
utilize their respective algebraic structures. In this context,
the original Chen series and Fliess’ reinterpretation of it may
be recognized as images of the identity map on the free
associative algebra under suitable algebra homomorphisms.
For analytic vector fields fi in (1), the corresponding images
of formal power series are interpreted as asymptotic series
which will converge uniformly on compact sets, compare
e.g. [30], [33]. The focus here is on the combinatorics and
algebra, and we will not discuss convergence issues in detail.

While earlier work focused on Lie and shuffle algebra
structures, it is now understood that even more basic pre-Lie
structures lead to deeper insights and simpler formulas. In
particular, the coefficients in the factorization of the identity
into an infinite directed product of exponentials indexed by
a Hall set take a particularly simple form in terms of a
product that generates a Zinbiel algebra – the name coined
by Loday [22] in the context of studying Leibniz algebras.
In terms of the iterated integral functionals in control, this
product maps to what we may consider the product of
nonlinear control theory, e.g., for absolutely continuous
functions U, V : [0, T ] 7→ R

(U ∗ V )(t) =
∫ t

0

U(s) · V ′(s) ds. (2)

This fundamental building block of nonlinear control systems
is easily verified to satisfy the right Zinbiel identity

U1 ∗ (U2 ∗ U3) = (U1 ∗ U2) ∗ U3 + (U2 ∗ U1) ∗ U3. (3)

Recent work by Ebrahimi-Fard et.al [7], [6] uses dendriform
algebras, which basically combine simultaneous right and
left Zinbiel structures together with a compatibility con-
dition, to demonstrate the intimate relationships between
Fer and Magnus expansions. However, that work does not
(yet) utilize bases to minimize the size of the expansions
in a free setting. This article combines Hall bases and the
Zinbiel product with a Hopf-algebra approach. Starting from
formulas for the coordinates of the second kind (in a product
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of exponentials) which are based on Hall sets and Zinbiel
products, we derive formulas for the corresponding formulas
for coordinates of the first kind (in the exponential of a
series).

Earlier work by the second author [18] obtained formulas
for the first 14 terms in the logarithm of the Chen-Fliess
series by a brute force calculation relying on computer
algebra. Recently, Murua [28] and Rocha [31] also proposed
formulas for these coordinates of the first kind. Further
related work by Gray and Li [21], [11] is on the Laplace-
Borel transform of Fliess operators, by Ignatovich and Skl-
yar [14] on power moments, by Monaco, Normand-Cyrot and
Califano [25] also consider discrete-time dynamics in their
description of the Magnus exponent. In the last few years,
much related activity has been centered about uncovering
the algebraic structures that underlie geometric (numerical)
integration algorithms, compare e.g. the work by Iserles [4],
[15] Ebrahimi-Fard [7], [6], Munthe-Kaas [26], and co-
authors, and the works cited therein.

In the setting of control theory the directed infinite expo-
nential product expansion of Sussmann [34] has given sig-
nificant insight into the geometry, and much simplified both
analysis of optimality and controllability, and applications
such as tracking and path planning. One commonly restricts
attention to finitely parameterized families of controls and
try to invert the endpoint map to solve for parameter values
that steer the system as desired. Typical examples include
Jacob [16] using piecewise constant and polynomial inputs,
Lafferierre and Sussmann [20], and Murray and Sastry [27]
using sinusoidal inputs. Working with a single exponential
(of a Lie series), rather than an infinite product of exponen-
tials is expected to simplify such applications.

The organization of this article is as follows: After this
introduction surveying the history and relevance of the
problem, the next sections quickly review some algebraic and
combinatorial background, formally state the main result and
provide some illustrative example calculations and formulas.
For detailed proofs and complete technical statements of the
algebraic background we refer the reader to [17], [19], [30]
and the references therein.

II. TECHNICAL BACKGROUND

Consider a set Z, henceforth called alphabet. Elements
a ∈ Z are called letters. For the purpose of this note assume
Z is finite, |Z| = m, and indexes the set of vector fields
fa and controls ua in (1). For k ∈ Z+

0 let Zk denote the
set of all sequences of length k with values in Z. The
empty word is denoted e ∈ Z0. Concatenation of sequences
endows the sets Z∗ = ∪∞k=0Z

k and Z+ = ∪∞k=1Z
k with a

natural (noncommutative, associative) product structure. We
use juxtaposition w = a1a2 . . . ak ∈ Zk to denote both this
product and sequences of letters, and henceforth call such w
a word.

The product extends linearly to the algebra A of all finite
linear combinations of words in Z∗ with coefficients in a
field k, here taken to be R. Declaring Z∗ ⊆ A to be an

orthonormal basis equips A with an inner product. Write
A+ for the subalgebra spanned by Z+.

Given a collection of m analytic vector fields F =
{fa : a ∈ Z} on Rn, the map EvF : a 7→ fa naturally extends
to an associative algebra homomorphism from A to the
algebra of partial differential operators under compositions.
For a polynomial p ∈ A write fp for the corresponding
partial differential operator. In the sequel we will refine the
view of this map, and introduce corresponding maps for the
controls, actually for functionals on the space of controls.

The algebra A contains various subalgebras of interest,
and it gives rise to a variety of other product structures.
Use [·, ·] : A × A 7→ A to denote the commutator defined
by [w, z] = wz − zw. The smallest Lie subalgebra of A
that contains Z and is closed under [·, ·] is denoted L(Z)
and is isomorphic to the free Lie algebra on m generators.
Hence, the map a 7→ fa immediately extends to a Lie algebra
homomorphism from L(Z) to the Lie algebra of analytic
vector fields on Rn.

Define a (right) Zinbiel algebraic structure on A+, com-
pare the identity (3), by defining the product ∗ : A+×A 7→ A
for nonempty words w, z ∈ Z∗ \ {e}, and any letter a ∈ Z
by e ∗ w = w, w ∗ a = wa,

w ∗ (za) = (w ∗ z)a + (z ∗ w)a (4)

and extending linearly to A+ × A. Note that e ∗ e remains
undefined. The symmetrization of this product

w x z = w ∗ z + z ∗ w (5)

extends to x : A × A 7→ A by setting ex e = e, and
equips A with the familiar (associative) shuffle algebra. To
relate these abstract algebras to the control setting, suppose
U = AC0([0, T ], R) is the space of absolutely continuous
scalar valued functions defined on an interval [0, T ] ⊆ R that
vanish at zero. (Think of their derivatives as the controls ua

in (1)). Consider the set Map(UZ ,U) of all mappings from
the product UZ (of |Z| copies of U indexed by Z) to U , and
define a linear map Υ: A 7→ Map(UZ ,U) on letters a ∈ Z
for U ∈ UZ by setting Υa(U) = Ua, and on words w ∈ Z+

and a ∈ Z by setting for U ∈ UZ and t ∈ [0, T ]

Υwa(U)(t) =
∫ t

0

Υw(U)(s) · U ′a(s) ds (6)

It is readily seen that this map Υ is indeed a right Zinbiel
algebra homomorphism and the image IIF(U) = Υ(A)
with the product (2) is the right Zinbiel algebra of iterated
integral functionals on UZ . Under suitable hypotheses on U
the map Υ is actually injective [17]. Denote by Â, Â+, L̂(Z)
the completions of the spaces of (Lie) polynomials to (Lie)
series with the usual topologies. Most of the maps and
products discussed above carry over to series in a natural
way. For full technical details see [17].

One recognizes the Fliess series of system (1) essentially
as the image of the identity under the map Υ⊗ EvF : A⊗
A 7→ Map(UZ , U). Here the identity map IdA : A 7→ A
is identified with the element

∑
w∈Z w ⊗ w ∈ A ⊗ Â,
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using the usual identification of Hom(V,W ) = V ∗⊗W for
vector spaces V and W (leaving the details about the dual
spaces of power series versus polynomials to [17], [30]).
More specifically, the Fliess series of an analytic output map
φ : Rn 7→ R evaluated along a solution curve of (1) starting at
x(0) = 0 with integrable control u = U ′ is, for t sufficiently
small,

φ(x(t, u)) =
∑

w∈Z∗

Υw(U)(t) · (fwφ)(0). (7)

Since Υ is a Zinbiel algebra homomorphism and the shuffle
product is the symmetrization of the Zinbiel product w x z =
w ∗z +z ∗w it is immediate that Υ also maps shuffles to the
symmetrization of the Zinbiel product (2). Using elementary
calculus this is seen to be the pointwise product in U ,

Υw x z(U)(t) = Υw∗z(U)(t) + Υz∗w(U)(t)

=
∫ t

0

(
Υw(U) (Υz(U))′ + Υz(U) (Υw(U))′

)
(s) ds

= (Υw(U) ·Υz(U)) (t). (8)

Using the classical language this reestablishes that the coef-
ficients of the Fliess series satisfy the shuffle relations, and
hence by Ree’s theorem [29] the underlying series is the
exponential of a Lie series. Thus it is clear that for any
set H that encodes a basis for the free Lie algebra over
Z there exist well-defined functions ζ, ξ : H 7→ A, called
coordinates of the first and second kind, respectively, such
that in the complete tensor algebra A⊗̃Â with the shuffle
product on the left and the concatenation product on the
right ∑

w∈Z∗

w ⊗ w = exp

(∑
H∈H

ζH ⊗ [H]

)
(9)

∑
w∈Z∗

w ⊗ w =
←∏

H∈H
exp (ξH ⊗ [H]) . (10)

Here [H] denotes the Lie polynomial corresponding to the
tree H , see below for details. The images of these expan-
sions under the map Υ ⊗ EvF are effectively a continuous
version of the Campbell-Baker-Hausdorff formula, and an
exponential product expansion of the Chen-Fliess series.

The utility of these expansions hinges on the knowledge
of explicit bases H of the free Lie algebra, and on explicit
formulas for the maps ξ and ζ which ultimately encode the
iterated integral functionals. Several bases for free Lie alge-
bras were introduced in the past, but shown by Viennot [35]
to effectively all be special cases of (generalized) Hall sets.
A Hall set over an alphabet Z is a strictly ordered subset
H̃ ⊆ T (Z) of the set of binary trees labeled by Z that
satisfies

• Z ⊆ H̃,
• for w ∈ Z∗ and a ∈ Z, (w, a) ∈ H̃ if and only

if (w ∈ H̃, w ≺ a and a ≺ (w, a)), and (11)

• for u, v, w, (u, v) ∈ H̃ (u, (v, w)) ∈ H̃ if and only
if (v � u � (v, w) and u ≺ (u, (v, w))).

There is a natural map, with slight abuse of notation con-
veniently also denoted by the symbol for the commutator,
[·] : M(Z) 7→ L(Z) that maps binary trees a ∈ Z and
(t, t′) labeled by Z to the Lie polynomials [a] = a and
[(t, t′)] = [t][t′] − [t′][t]. Due to properties of the Lazard
elimination process the image [H̃] ⊆ L(Z) of a Hall set
forms a basis for the free Lie algebra L(Z).

The foliage map β : M(Z) 7→ Z∗ sends a labeled tree
to the word (sequence) that labels its leafs, i.e. for a ∈ Z,
β(a) = a, and recursively β(t, t′) = β(t)β(t′).

A characteristic property of Hall sets is that the restriction
of this map β to a Hall-set is injective [35]. This allows
one to work with the words in the image H = β(H̃) rather
than the binary trees themselves in the sequel. But care has
to be taken here as e.g. [a, [b, [a, b]]] = [b, [a, [a, b]]] as Lie
elements, but only the word baab = β((b(a(ab)))) is in the
image of the standard Hall set – i.e. Lie products do not have
well defined left and right factors, whereas nontrivial binary
trees have, as do the words that are the foliage of Hall trees.
As a consequence, the functions ζ and ξ are defined not on
a Hall basis [H̃] ⊆ L(Z), but rather on the Hall-set H̃, or
by convenience on the image H = β(H̃) ⊆ Z∗.

Explicit formulas for the coordinates of the second kind ξ
for Hall sets have been discovered by various authors in
different settings – including Schützenberger [32], Suss-
mann [34], Grossman [12], and for the special case of
Lyndon bases by Melançon and Reutenauer [24]. We now
understand that the elegance and simplicity of the formula
for the function ξ results from a perfect match of the Zinbiel
product with the Lazard elimination process which yields
both Hall sets and underlies the convergence of solutions of
differential equations by iteration or by recursive variation of
parameters. For letters a ∈ Z and Hall words H,K,HK ∈
H one has

ξa = a

ξHK = µHK · ξH ∗ ξK (12)

where µ is a simple normalization factor in terms of multi-
factorials that depends on the number of repetitions of
subtrees in the tree β−1(HK).

An immediate application is a generalization of the con-
trollable normal form of linear systems to maximally acces-
sible nilpotent systems – now indexed by a finite subset of
a Hall set, e.g. all Hall words of length less than r.

ẋa = ua

ẋHK = xH · ẋK (13)

It is straightforward to recursively expand the equations to
rewrite it in the standard form (1). The Lie algebra generated
by the corresponding fields fa will be nilpotent of order r
and span the tangent space at every point, i.e. the system is
accessible. For details see e.g. [19].

The quest for similarly simple and elegant formulas for
the function ζ is continuing. Rocha [31] and Murua [28]
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have proposed algorithms and formulas that should map to
formulas for ζ, but they are considerably more complicated
than (12). Using a brute force computer algebra calculation
formulas for ζh for the first 14 Hall words h over a two-letter
alphabet were computed in [18]. These may be enough for
some numerical integration algorithms, but do not satisfy the
needs for deeper analytic studies and for tracking and path
planning algorithms, or to study e.g. high order conditions
for optimal controls. In the next section we provide a simple
formula in terms of natural maps in Hopf algebras that allows
one to quickly calculate ζh from the known ξh.

III. MAPS IN THE HOPF ALGEBRA

Hopf algebraic structures of trees and differential operators
are well studied, see e.g. [13]. More recently [26] uses them
for closely related geometric integration algorithms, and
Murua [28] uses a Hopf algebra of labeled rooted trees for
computations of exponentials of Lie series and to provide for-
mulas for a continuous Baker-Campbell-Hausdorff formula.
Here we follow the terminology and notation introduced in
[30] for studying free Lie algebras.

The algebra A is endowed with two Hopf algebra struc-
tures, that is, two matching triples each consisting of a
product, co-product, and an antipode. The first uses the
concatenation product as the product and uses as co-product
the concatenation-algebra homomorphism ∆: A 7→ A ⊗ A
defined on letters a ∈ Z by

∆(a) = e⊗ a + a⊗ e. (14)

For example, for letters a, b ∈ Z, one has

∆(ab) = e⊗ ab + a⊗ b + b⊗ a + ab⊗ e. (15)

This coproduct is just the transpose of the shuffle product,
i.e., for all u, v, w ∈ Z∗,

〈u x v, w〉 = 〈u⊗ v,∆(w)〉. (16)

A second Hopf algebra structure uses the shuffle product
as its product and uses as its co-product the shuffle-algebra
homomorphism ∆′ : A 7→ A⊗A that satisfies

∆′(w) =
∑

u,v∈Z∗

〈w, uv〉 u⊗ v. (17)

Both Hopf algebra structures use the same antipode α : A 7→
A, the linear map that maps any word w = a1a2 . . . ak ∈ Zk

to its signed reversal

α(w) = (−1)k ak . . . a2a1. (18)

Each Hopf algebra structure on gives rise to an associative
convolution product of linear endomorphism of the algebra
A. For linear endomorphisms f, g : A 7→ A define

f ? g = conc ◦ (f ⊗ g) ◦∆, and
f ?′ g = shu ◦ (f ⊗ g) ◦∆′, (19)

i. e., for any word w ∈ A

(f ? g)(w) =
∑

u,v∈Z+

〈w, u x v〉 f(u)g(v) and (20)

(f ?′ g)(w) =
∑

u,v∈Z+

〈w, uv〉 f(u) x g(v)

=
∑

uv=w

u,v∈Z+

f(u)x g(v). (21)

It appears that confusion of these two different maps has led
to incorrect formulas in some of the existing literature. Note
that while the sum in the first convolution product ? is over
all pairs of words u, v such that the given word w appears
with nonzero coefficient in the shuffle of u and v, the second
product is conceptually much easier to evaluate. Fortunately,
it is the latter which we need in our eventual computations
of the map ζ.

However, the first convolution product is required for the
projections onto the fundamental subspaces. Write I : A 7→
A+ for the projection that maps the empty word to zero and
that is the identity on Z+. The key map is the logarithm of
the identity in the ? convolution algebra of endomorphisms
on A. Using iterated convolution products, this is

π1 =
∑
k≥1

(−1)k−1 1
k I?k. (22)

Using (20) this may also expressed in terms of higher k-ary
analogues of the coproduct and concatenation product, which
is the form commonly employed in example calculations

π1 =
∑
k≥1

(−1)k−1 1
k conck ◦ I⊗k ◦∆k. (23)

It is not hard to see that the image of A under π1 is
contained in L(Z), and that the restriction of π1 to L(Z)
is the identity on L(Z). However, π1 is not an orthogonal
projection with respect to the standard inner product. To
see the connection between the kernel of π1 and its higher
powers w.r.t. the convolution product, first consider the
symmetrization of the concatenation product on A. More
specifically, the symmetric product of any finite collection
p1, . . . pk ∈ A of polynomials in A is the usual multi-linear
map defined by

Sym(w1, . . . wk) = 1
k!

∑
σ∈Sk

wσ(1)wσ(2) . . . wσ(k) (24)

where the sum is taken over the symmetric group of order
k. Specializing to symmetric products of Lie polynomials
` ∈ L(Z), define the fundamental subspaces Uk, k ∈ Z+,
as the linear subspaces spanned by all symmetric products
of k Lie polynomials. In particular, U1 = L(Z) and U2 is
the linear span of all polynomials of the form `1`2 + `2`1
where `1, `2 ∈ L(Z). These fundamental subspaces provide
a direct sum composition of the algebra A

A =
∞⊕

k=1

Uk (25)

and it turns out that the associated projections πk : A 7→ Uk

are nothing else than the normalized k-fold convolutions of
π1 with itself,

πk = 1
k!π

?k
1 . (26)
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IV. THE MAIN RESULT AND EXAMPLES

The definition (9) makes clear that the desired function ζ
takes value on the other side, i.e., whereas πk projects onto
the fundamental subspace Uk, ζ takes values in the duals.

Thus define the map π′1 : A 7→ A as the adjoint map of
π1, i.e. the linear map for all w, z ∈ Z

〈w, π1(z)〉 = 〈π′1(w), z〉. (27)

From the definition (22) of π1 in terms of the convolution
product ?, and that I is selfadjoint, conc and ∆′ are adjoints
of each other, as are x and ∆, one immediately obtains

π′1 =
∑
k≥1

(−1)k−1 1
k I?′k. (28)

Note that this formula uses the second convolution product
?′, and on words w ∈ Z one readily calculates

π′1(w) =
∑
k≥1

1
k (−1)k−1

∑
u1...uk=w

u1 x . . . x uk

As a simple example calculate
π′1(ξab) = π′1(ab) = ab− 1

2 ax b = 1
2 (ab− ba). (29)

It is easy to see that ζ and π′1 both take values in the same
subspace U ′1, but it takes work, for details see [10], to see
that π′1 actually maps ξh elementwise onto ζh for every Hall
word h ∈ H.

Theorem 1: For every Hall set H ⊆ Z∗, for all h ∈ H

ζh = π′1 (ξh). (30)

Or, using function notation, simply ζ = π′1 ◦ ξ.

Recall the characteristic property of Hall sets that every
word w ∈ Z∗ factors uniquely into a decreasing product of
Hall words, i.e. there exists Hall words h1 ≥ h2 ≥ . . . ≥
hk such that w = h1h2 · · ·hk. Such factorizations play a
fundamental role in the Poincaré-Birckhoff-Witt basis of A
when regraded as the enveloping algebra of L(Z). Indeed, it
is common to extend the domains of ξ and ζ to all of A, and
one finds that if w = hr1

1 hr2
2 · · ·hrk

k for a strictly decreasing
sequence h1 > h2 > . . . > hk of Hall words then

ξw = 1
r1!···rk!ξ

x r1
h1

x ξ x r2
h2

x . . . x ξ x rk

hk
(31)

provides the correct extension. In general the maps π′k do not
commute with shuffle products. But surprisingly they do on
products of this special form. Indeed, if |r| = r1 + . . . + rk

is the number of factors in the factorization of w, then

ζw = π′|r|(ξw) = 1
r1!···rk!ζ

x r1
h1

x . . . x ζ x rk

hk
(32)

For complete proofs, details, and studies of the geometry of
the subspaces Uk and U ′k we refer the reader to [10].

With the characterization (27) of π′1 and formulas for it,
it now is a straightforward calculation to obtain explicit for-
mulas for the ζh. As an example first consider the projection
of an individual word

π′1(aaabb) = aaabb− 1
2 (aaabx b + aaax bb + aax aab

+ax aabb) + 1
3 (aaax b x b + aax abx b

+ax aabb) + 1
3 (aaax b x b + aax abx b

+2aax ax bb + ax aab x b + ax ax abb)

− 1
4 (aax ax b x b + ax aax b x b + ax ax abx b

+ax ax ax bb) + 1
5ax ax ax b x b. (33)

Using the above, and similar straightforward manipulations,
starting from ξabaab = 1

2 (abx ax a)b = 3aaabb+2aabab+
abaab, the following calculation yields ζabaab.

ζabaab = π′1(ξabaab) = π′1(3aaabb + 2aabab + abaab)
= 1

10aaabb + 1
15aabab + 1

15aabba + 1
15abaab

− 1
10ababa + 1

15abbaa− 1
10baaab + 1

15baaba

+ 1
15babaa− 1

10bbaaa. (34)

In a similar fashion one calculates the following, reaffirming
the formulas first presented in [18], then obtained by a brute
force linear algebra using computer algebra system.

ζa = a ζb = b (35)
ζab = 1

2 (ab− ba) = 1
2 [a, b]

ζaab = 1
6 ( aab− 2aba + baa) = 1

6 [a, [a, b]]

ζaab = 1
6 (−abb + 2bab− bba) = 1

6 [b, [a, b]]
ζaaab = 1

6 (abaa− aaba)

ζbaab = 1
6 (abab− aabb + bbaa− baba)

ζbbab = 1
6 (bbab− babb)

ζaaaab =− 1
30 (aaaab+aaaba−4aabaa+abaaa+baaaa)

ζbaaab = 1
30 (−2aaabb + 3aabab + 3aabba− 2abaab

− 2ababa + 3abbaa− 2baaab

− 2baaba + 3babaa− 2bbaaa)

ζabaab = 1
30 (−3aaabb + 2aabab + 2aabba + 2abaab

− 3ababa + 2abbaa− 3baaab

+ 2baaba + 2babaa− 3bbaaa)
ζbbaab = 1

30 (2aabbb− 3ababb + 2abbab + 2abbba

− 3baabb + 2babab + 2babba

− 3bbaba− 3bbaab + 2bbbaa)

ζabbab = 1
30 (−aabbb− ababb + 4abbab− abbba

− baabb− babab + 4babba

− bbaba− bbaab− bbbaa)
ζbbbab = 1

30 (abbbb + babbb− 4bbabb + bbbab + bbbba)

The direct implementation of the main formula (30) ex-
presses each of the ζh, h ∈ H, as a linear combination of the
standard basis vectors w ∈ Z∗. These immediately translate
into iterated integrals of a plain left to right structure as in the
original Chen-Fliess series – albeit summed over a nontrivial
subset of words (or multi-indices) with rational coefficients
whose values are not easily predicted.

However, it is relatively straightforward to rewrite these
results to again yield recursive formulas, but in terms of non-
trivially structured iterated integrals. For the sake of clarity,
rather than integral signs, similar to (13) we again write a
nilpotent cascade system of differential equations satisfied by
the iterated integrals zh(t, U ′) = µh Υ(ζh)(U)(t), compare
[18]. Suppressing the normalization factors µh we obtain
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ża = ua żb = ub (36)
żab = − 1

6zbua + 1
6zaub

żaab =
(
− 1

2zab − 1
12zazb

)
ua + 1

12z2
aub

żbab = − 1
12z2

bua +
(
− 1

2zab + 1
12zazb

)
ub

żaaab =
(
− 1

2zaab − 1
12zabza

)
ua

żbaab =
(
− 1

2zbab − 1
12zabzb

)
ua −

(
1
2zaab + 1

12zabza

)
ub

żbbab =
(
− 1

2zbab − 1
12zabzb

)
ub

żaaaab =
(
− 1

2zaaab − 1
12zazaab − 1

720z3
azb

)
ua

− 1
720z4

aub

żbbbab = 1
720z4

bua −
(

1
2zbbab + 1

12zbzbab + 1
720zaz3

b

)
ub

żbaaab =
(

1
240z2

ay2
b − 1

2zbaab − 1
12zbzaab − 1

12zazbab

)
ua

−
(

1
2zaaab + 1

12zazaab + 1
240z3

azb

)
ub

żabaab =
(
− 1

2zbaab + 1
12zbzaab − 1

12zazbab − 1
12y2

ab

+ 1
360z2

ay2
b

)
ua +

(
− 1

6zazaab − 1
360z3

azb

)
ub

żabbab =
(
− 1

2zbbab
1
12zbzbab + 1

720zaz3
b

)
ua

−
(

1
6zazbab + 1

12y2
ab + 1

720z2
ay2

b

)
ub

żbbaab =
(
− 1

2zbbab − 1
12zbzbab + 1

240zaz3
b

)
ua

−
(

1
2zbaab + 1

12zbzaab + 1
12zazbab + 1

240z2
ay2

b

)
ub

V. SUMMARY AND CONCLUSION

Using basic maps that utilize Hopf algebra structures con-
nected to the free Lie algebra, we presented a direct formula
for obtaining the coordinates of the first kind ζh from the
respective coordinates of the second kind ξh. Elegant formula
for the latter are known in terms of the Zinbiel product.
While the new formulas do not exhibit as elegant and as
simple a product structure as the latter – and thus do not im-
mediately give insight to geometric features, controllability
and optimality properties, they are nonetheless explicitly and
easily computable. The given format is amenable for direct
implementation into e.g. controls for tracking, path planning,
or for geometric integration procedures.

The main contribution is not the existence of such a map –
which was clear a priori – but rather expressing this map in
terms of elementary objects in the Hopf algebra. The quest
for a different way of expressing the ζh in terms of some
new product, or as a one-line recursive description such as
(12), continues.

VI. ACKNOWLEDGMENTS

The authors gratefully thank the referees for their careful
reading and helpful suggestions for improving the article.

REFERENCES

[1] A. Agrachev and R. Gamkrelidze, Exponential representation of flows
and chronological calculus, Math. USSR Sbornik (English translation),
vol. 35, 1978, pp. 727–786.

[2] R. Brockett, Volterra series and geometric control theory, Automatica,
vol. 12, 1976, pp. 167-176.

[3] J. Campbell, Proc. London Math. Soc., vol. 28, 1897, pp. 381-390.
[4] F. Casas and A. Iserles, Explicit Magnus expansions for nonlinear

equations, J. Physics A: Math. General, vol. 39, 2006, pp. 5445-5461.
[5] K. T. Chen, Integration of paths, geometric invariants and a generalized

Baker-Hausdorff formula, Annals Math., vol. 65, 1965, pp. 163-178.
[6] K. Ebrahimi-Fard, D. Manchon, and F. Patras, New identities in

dendriform algebras, J. Algebra, vol. 320, 2008, pp.708–727.

[7] K. Ebrahimi-Fard, D. Manchon, and F. Patras, A Magnus- and Fer-
type formula in dendriform algebras, J. Found. Comput. Math., (to
appear).

[8] F. Fer, Résolution de l’equation matricielle U̇ = pU par produit infini
d exponentielles matricielles, Bull. Classe des Sci. Acad. Roy. Belg.,
vol. 44, 1958, pp. 818–829.

[9] M. Fliess, Fonctionelles causales nonlinéaires et indeterminées non-
commutatives, Bull. Soc. Math. France, vol. 109, 1981, pp. 3-40.

[10] E. Gehrig, Hopf algebras, projections, and coordinates of the first kind
in control theory, 2007, PhD. Dissertation, Arizona State U., Tempe.

[11] W. S. Gray and Y. Wang, Non-causal Fliess operators and their shuffle
algebra. Internat. J. Control, vol. 81, 2008, pp. 342–355.

[12] M. Grayson and R. Grossman, Models for free nilpotent algebras, J. of
Algebra, vol. 135, 1990, pp. 177–191.

[13] R. Grossman and R. Larson, Hopf-algebraic structure of combinatorial
objects and differential operators, Isreal J. Math., vol. 72, 1989,
pp. 109-117.

[14] S. Yu. Ignatovich and G. Sklyar, Representations of control systems
in the Fliess algebra and in the algebra of nonlinear power moments,
Systems Control Lett. vol. 47, 2002, pp. 227–235.

[15] A. Iserles, Think globally, act locally: solving highly-oscillatory ordi-
nary differential equations, Appl. Numer. Anal., vol. 43, 2002, 145-160.

[16] G. Jacob, Motion planning by piecewise constant or polynomial inputs,
Proc. IFAC NOLCOS, 1992, Bordeaux, France.

[17] M. Kawski and H. Sussman, Noncommutative power series, and
formal Lie-algebraic techniques in nonlinear control theory. in: Op-
erators, Systems, and Linear Algebra U. Helmke, D. Pratzel-Wolters
and E. Zerz, eds., 1997, pp. 111–128, Teubner.

[18] M. Kawski, Calculating the logarithm of the Chen Fliess series. Proc.
MTNS 2000 (Math. Theory Networks Syst.), 2000, Perpignan, France.

[19] M. Kawski, The combinatorics of nonlinear controllability and non-
commuting flows, Abdus Salam ICTP Lect. Notes vol. 8, 2002,
pp. 223–312.

[20] G. Lafferiere and H. Sussmann, A differential geometric approach
to motion planning, in: Nonholonomic Motion Planning, Z. Li and
J. Canny, eds., 1993, pp 235-270, Kluwer, Boston.

[21] Y. Li and W. Gray, The formal Laplace-Borel transform of Fliess
operators and the composition product, Internat. J. Mathematics and
Mathematical Sciences, vol. 2006, 2006, pp. 1–14.

[22] J.-L. Loday, Une version non commutative des algèbres de Lie: les
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[24] G. Melançon and C. Reutenauer, Lyndon words, free algebras and
shuffles, Canadian J. Math., vol. XLI, 1989, pp. 577-591.

[25] S. Monaco, D. Normand-Cyrot, and C. Califano, From chronological
calculus to exponential representations of continuous and discrete-time
dynamics: a lie-algebraic approach, IEEE Trans. Aut. Control, vol. 52,
2007, pp. 2227–2241.

[26] H. Munthe-Kaas and W. Wright, On the Hopf algebraic structure of
Lie group integrators, J. Found. Comput. Math., “Online First”, 2007.

[27] R. Murray and S. Sastry, Nonholonomic path planning: steering with
sinusoids, IEEE T. Automatic Control, vol. 38, 1993, pp. 700–716.

[28] A. Murua, The Hopf algebra of rooted trees, free Lie algebras, and
Lie series, J. Found. Comput. Math., vol. 6, 2006 pp. 387-426.

[29] R. Ree, Lie elements and an algebra associated with shuffles, Annals
of Math., vol. 68, 1958, pp. 210-220.

[30] C. Reutenauer, Free Lie Algebras, 1991, Oxford UP, New York.
[31] E. Rocha, An algebraic approach to nonlinear control theory, 2004,

PhD. Dissertation, Univ. of Aveiro, Portugal.
[32] M. Schützenberger, Sur une propriété combinatoire des algèbres de
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