
  

  

Abstract—This paper presents a model for fault detection of a 
power leader in nonlinear leader-follower networks. The fault 
detection method is developed for the network model proposed 
by Wang and Slotine [1]. Every follower is coupled with a 
nonlinear, neural net based observer for fault detection. Neural 
net tuning algorithms are derived and fault identifiers are 
developed using the Lyapunov approach. We consider fault 
detection of the power leader, and how such fault propagates 
through the network. We estimate the power leader fault 
detectability time based on the followers’ observers. The paper 
studies properties of the fault dynamics i.e., the dynamics of a 
fault evolution process through a network of interconnected 
dynamic elements. The approach for leader-follower fault 
detection can also be used with any other type of nonlinear 
systems observer. Simulation results are presented to illustrate 
the effectiveness of the proposed technique. 

I. INTRODUCTION 
 Early fault detection and identification in complex 
dynamical networked systems is essential to prevent a whole 
network system failure as well as to efficiently isolate a fault 
source, conduct recovery and repair of faulty components. It 
is a difficult task to locate the malfunctioning system 
components in a network because the fault effects propagate 
through the system, affecting other healthy modules. This 
paper describes the fault detection method for a dynamic 
coupled network where the fault occurs in a power leader.  

A. Related Work 
 First, the mathematical model of a coupled power 
leader-follower network is presented. In [1], Wang and 
Slotine present a theoretical study for the various dynamic 
models of a coupled network according to different leader 
roles. The paper discusses three different types of coupled 
networks containing different roles of leaders: a power leader, 
a knowledge leader, and a pacific coexistence. Recent work 
for this kind of study can be also found in [2], [3], [4], [5]. 
Each provides an understanding for distributed networks in 
the natural world and emulate them in artificial systems. In 
this paper, a coupled network containing a power leader and n 
power followers is selected to study a fault detection and 
propagation properties. Details of a coupled dynamic 
networks with power leader are briefly reviewed in Section II. 
 Second, it is important to know how to detect a fault in an 
interconnected network of dynamic elements. Significant 
research effort has been concentrated on the development of 
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fault detection methods using intelligent control techniques 
such as neural network (NNs) and fuzzy logic [6], [8], [9], 
[10]. The advantage of NNs is the nonlinear approximation 
and adaptive learning properties [11], [12] thereby providing 
the capability to learn abnormalities and failures from actual 
monitoring data. Other traditional approaches such as 
model-based fault detection are restrictive because of the 
requirement of an accurate system model. NNs and fuzzy 
logic are artificial intelligence tools able to overcome this sort 
of the restrictive requirements. Additionally, if a NN detects 
the faults, it may be able to classify the faults without a 
detailed system model [10], [13], [14]. Statistical analysis 
based on the Lyapunov function for fault tolerant control 
system is described in [15]. The fault tolerant control system 
design is presented in [16]. 
 Recent work in adaptive control was also enabled an 
interesting application in actuator failure detection [6], [17]. 
Papers [18], [19] address fault detection, isolation, and 
compensation in partially known nonlinear systems. In this 
paper, it is assumed that the power leader and each follower 
are unknown non-linear coupled dynamical elements 
interconnected into a network. The neural networks (NN) 
tuning algorithms presented in [6] are applied for the fault 
detection of the coupled network using NN observer attached 
to each follower connected either directly or indirectly to the 
power leader.  

Third, an algorithm to locate fault source in the network is 
required to preserve time-consuming network inspection 
upon fault occurrence. Fault identification can be a daunting 
task especially when components of the system are mutually 
coupled. In [22], [23], the nonlinear fault isolation problems 
are investigated. In [22], a fault isolation method is described 
to determine the particular type of known fault set. In [23], the 
algorithm to determine the particular faulty sensor from a set 
of sensors under consideration is presented and the proposed 
fault diagnosis architecture consists of a fault detection 
estimator and a bank of isolation estimators, each 
corresponding to a particular output sensor. In this paper, 
without information about the fault type and a bank of 
isolation estimators, another feasible fault location strategy 
using the fault detection time is developed and 
mathematically justified in coupled networks.  

B. Overview 
 This paper addresses how an unknown fault of a power 
leader is propagated through a coupled network. The fault 
detection method using NN observer attached to each 
follower is presented. The fault detectability condition of 
each follower is also described. Finally, the source of the fault 
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is identified by using the sequence of fault detection time for 
each follower. Simulation results are presented to illustrate 
the effectiveness of the proposed strategy. 

II. PROBLEM FORMULATION 
 Consider the dynamic model of a coupled network [1] 
containing a power leader and n power followers shown in 
Figure 1. 

 
Fig. 1. A coupled leader-follower network model [1]. 

 
The mathematical model of a coupled network dynamics is 

given by 
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where x0 ∈ ℜ m  is a state of the power leader which is 
independent from xi ∈ ℜ m , the state of i -th followers, 
where i =1, 2, ..., n. The functions ),( txf ii  represent a 
nonlinear part of the uncoupled dynamics. Coupling 
coefficients k ji  are positive coupling gains for each follower 
and are bidirectional with k ji = kij . The coupling gain ki 0  is 
the positive constant for the power leader to the followers. 
The constant γ 0  represents the connectivity to the power 
leader, which is equal to either 0 or 1. The followers directly 
connected to the power leader have γ 0 = 1, otherwise γ 0 = 0. 
Assumption 1. The functions ),( txf ii , i=0, 1, 2, ..., n are 
continuously differentiable. 

III. FAULT DETECTION OF A COUPLED NETWORK 
In order to monitor or detect the condition of the whole 

network, we propose a fault detection observer topology 
where each follower has its own observer to detect the fault 
for itself, neighboring followers, and the power leader. The 
observer in this paper is designed using NNs. However, the 
approach can be used with any other type of observer 
designed for nonlinear systems.  

A.  Two-layer Neural Network 
 A two-layer NN is used as on-line neural approximation 
model where only the output layer is tunable. Such NNs are 
linearly parameterized and can be represented by 
 )( NN

TT
NN uVWy σ= , (2)  

where the input layer weights are collected into matrix V, the 
output layer weights into matrix W, p

NNu ℜ∈  denotes the 

NN input, m
NNy ℜ∈  denotes the NN output, and σ (⋅) ∈ ℜ L  

is the NN activation function. Many well-known results 
indicate that any sufficiently smooth function can be 

approximated arbitrarily close on a compact set using a NN 
with appropriate weights [7]. An adaptive estimate of the 
ideal NN weights W will be denoted by ˆ W .  

B. Approximation of Follower Dynamics and its Error   
Dynamics 

The follower dynamics can be approximated as 
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where ε i  is a NN approximation error. The input to the neural 
net ],,[ 0xxxu jii =  depends on the network structure and 
signals fed into the i-th follower. If the follower is not 
connected to the power leader, the input to the NN is given by 

],[ jii xxu = .  
 The state observer for each follower is then given by 
 )ˆ()(ˆˆ iiii

T
i

T
ii xxAuVWx −+= σ& , (4)  

where matrix Ai is a diagonal gain matrix with positive real 
numbers [6]. Let the error between the state of the actual 
system (1) and the observer be defined as iii xxe ˆ−= . The 
error dynamics can then be written as 
 ii

T
i

T
iiii uVWeAe εσ ++−= )(~

&  , (5)  

where the neural network weights error is iii WWW ˆ~
−= . 

Figure 2 shows the network with two followers and their 
observers (one directly connected to the power leader). 

C. NN Observer Tuning Law and a Bound 
 The next theorem provides NN tuning laws and a bound on 
the state observer error using e-modification type of 
adaptation [20]. Note that the NN tuning equations for the 
nonlinear system identifier are similar to Lewis’ NN robotic 
control tuning algorithms [21]. 
Theorem 1. (Tuning of Follower Observers). Given the 
nonlinear system (1) and the NN observer (4), let the 
estimated NN weights be provided by the NN tuning 
algorithm 

 iiii
T
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T
iii WeCheuVCW ˆ)(ˆ −= σ& , (6)  

with any constant matrix Ci = Ci
T > 0 , and a design 

parameter hi. Then the state observer error ei and the NN 
weight estimation errors ˜ W i  are uniformly and ultimately 
bounded.  
Proof:  Select the candidate Lyapunov function for the i-th 
follower as 

 [ ]T
ii

T
ii

T
ii WCWtreeL ~~

2
1

2
1 1−+=  , (7)  

where the gain Ci  is a positive definite constant matrix. 
Lyapunov function derivative with respect to time is given by 
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Substituting error dynamics (5) into (8) and applying tuning 
law (6) yields 
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Fig. 2. A coupled leader-follower network with follower observers. 

 
where Ai min  is a minimum eigenvalue of Ai . The 
approximation error term ε i  is bounded by ici εε <  [7]. The 
ideal NN weights Wi  are also bounded such that Wi ≤ Wic . 
Therefore, one has 
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The derivative of Lyapunov function iL&  is negative 
semi-definite if the following inequality conditions are 
satisfied  

 ei >
hi

Wic
2

4
+ε ic

Ai min

  , (11)  

 ˜ W i >
hi

Wic
2

4
+ε ic

hi

+
1
2

Wic . (12)  

 Inequalities (11) and (12) provide the explicit error bound 
of NN observer for i-th follower under healthy (nominal) 
system conditions, i.e.  

 eiB =
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The state estimation error bound can be reduced by increasing 
Ai min . However, extremely large values of Ai min  can result in 

amplifying noise and disturbance effects [6]. The small 
values of Ai min  also result in a singularity of (13).  
 The bound on the state estimation error will be used as a 
threshold for fault detection at the i-th follower. The fault 
detection and isolation for the whole dynamic network 
depends on the parameters of individual observers. Knowing 
that iii WWW ~ˆ ≤− , the bound on actual NN weights can 

be given by 
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D. Modified NN Weight Tuning Law 
It is assumed that the learning of the system dynamics is 

completed during an initial (healthy) phase of the system 
operation. Theorem 1 guarantees NN weight bounds while 
the system is healthy. In case of a power leader/follower fault, 
the NN weights will be limited by the following algorithm 
modification that is equivalent to saturation-based tuning 
laws 
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Assumption 2. (Power-leader Fault Occurred After Learning 
Phase) A fault in a nonlinear system (1) has occurred after the 
NN identification error has settled below the bounds given by 
Theorem 1.  
 This is a natural requirement that the system must be 
healthy during the learning phase in order to be able to detect 
the potential fault. The identification is performed during the 
healthy phase of the system. 

IV. POWER LEADER FAULT DETECTION BY NETWORK 
FOLLOWERS 

In this section, the proposed fault detection (FD) approach 
will be described and analyzed with reference to the special 
case where the full state is available for measurement. It is 
assumed that the power leader has a fault in its dynamics 
which can be represented by  
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where ∆(x0 , t)  is a fault in the power leader. The function 
β (t − t 0)  and t0  are a step function and an unknown fault 
occurrence time, respectively. The power leader fault model 
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corresponds to the model presented in [19].  

A. Fault detectability condition of each follower 
In this section, the fault detectability condition for an 

individual follower is derived. Consider the simplest network 
configuration with the power leader and two followers 
connected to it, i.e. one immediate follower (one hop away 
from the leader) and a two-hop away follower as described in 
Figure 3. Denoting the i-th follower as the one connected to 
the power leader directly, while the j-th follower is connected 
to the i-th follower. 

 
Fig. 3. The simple network with the power leader, i-th follower, and 

j-th follower. 

1)  Fault Propagation through Network 
Assume that a fault exists in the power leader. Upon the 

fault occurrence we are interested in fault propagation 
through power leader dynamics as well as the network 
dynamics. The fault in the power leader might cause system 
trajectories to be deviated from nominal system trajectories, 
i.e.  
 ˜ x 0 = x0 − x 0  , (18)  
where state x 0  and ˜ x 0  represent a nominal state of a healthy 
system and a deviation term, respectively. For this simple 
network case, the dynamics of the i-th follower is given by 
 000000

~)()(),( xkxxkxxktxfx iiiijjiiii γγ +−+−+=& . (19)  
Equation (19) shows the fault propagation through the power 
leader dynamics and the first-neighbor followers. 

Now, let study how the fault of the power leader is 
propagated towards the j-th follower.  

Rearranging (19) in terms of xi  yields 
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The j-th follower dynamics is given by,  
 iijjjiijjijjjj xktxFxkxktxfx +=+−= ),(),(& . (21)  
Substituting (20) into (21),  
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The effect of the fault generated by the power leader is 

diminished by the factor 
kk

k

ij

ij

0γ+
 at the j-th follower.  

2)  Fault Detectability Condition 
Lemma 1. (The Fault Detectability Condition of the i-th 
Follower)  A sufficient condition for a power leader fault 
detection at an immediate, one-hop away neighbor, at time Ti 
is given by the following condition, 
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Proof: The i-th follower observer error is given by 
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Knowing that iBi ete ≤)( 0  and using the triangle inequality 
from (24) follows that the power leader fault detectability 
condition at the i-th follower is given by 
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thus yielding to (23).  Inequality (23) provides the fault 
detectabilty condition that the discrepancy ˜ x 0  between the 
healthy state and the faulty state of a power leader is sufficient 
enough to exceed to terms related to NN estimator parameters 
and the fault detection time. The following result specifies 
sufficient fault detectability conditions for followers two or 
more hops away from the power leader. It is assumed that 
only the power leader fault has occurred, i.e., followers are in 
the healthy state.  
Lemma 2. (The Fault Detectability Condition of the j-th 
Follower)  A sufficient condition for the power leader fault 
detection at the j-th follower at time Tj is given by the 
following condition 
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Proof: The j-th follower observer error vs. time is given by 
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Taking the norm of (28) and substituting the fault detection 
time T j  into t, 

.))(exp()(

)(~)(exp()(

00

10
000

jjj

T

t iij

ij
jj

T
j

T
jjjj

TtAte

d
kk

k
uVWtATe

j

−−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∆

+
++−−= ∫ τ

γ
εστ   

(29)  
Using the triangular inequality yields to (27). 

B. Sequence of Fault Detection in Followers 
It is difficult to identify the source of a potential fault in a 

coupled network, because the failure of a power leader or one 
of the followers can affect the entire network operation. Thus, 
the NN observer for each follower might detect the fault 
occurred from unknown sources including the follower itself 
and/or other followers.  

In this paper we address a problem of the power leader 
using the followers’ observers and when this type of fault can 
be detected.  
 Consider the case when a fault can be detected by both i-th 
follower and j-th follower. It is desired that the fault is 
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detected sooner and closer to the real source of the fault, i.e., 
ji TT ≤ , as illustrated in Figure 4. 

 
Fig.  4. Fault detection of a power leader using i-th follower and j-th 

follower. 
Lemma 3.  Choose NN observer bounds such that e jB > eiB . 
Let the observer parameters satisfy  
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Then the fault detection time of the i-th follower is less than 
the detection time of the j-th follower, i.e. ji TT < .  
Proof: For the i-th follower, using the property of norm, the 
upper inequality of eiB  is given by,  
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Taking its norm and using the triangle inequality on the error 
expression for the j-th follower yields, 
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To satisfy the condition iBjB ee >  it is required to have 
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Inequality (34) is equivalent to

[ ] .)(~))(exp()))(exp(1(
)~(

0

0min
min

∫ +−−<−−
+ jT

t
jj

T
j

T
jjjii

i

iciB duVWTATtA
A

W
τεστ

ε .(35) 

The right side of (35) is bounded by 
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From (35) and (36) one has 
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Applying condition (30) and using minmin ji AA >  implies 

ij TT > . 

V. SIMULATION EXAMPLE 
The simulation was conducted to illustrate the fault 

detection in coupled networks using NNs. The numerical 
simulation program was constructed in Matlab and Simulink. 
Consider the network model consisting of a power leader and 
three followers as shown in Figure 5.  

 
Fig. 5. Coupled network dynamic model containing a power leader 

and three followers. 
The power leader dynamics is given by  
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Assume that the follower dynamics is given by 
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with constants 25.1211201 === kkk , 75.03113 == kk , and 

13223 == kk . 
 The observer NNs have 3, 6, and one neurons at the input, 
hidden, and output layers, respectively. The minimum 
eigenvalues Ai min  for follower1, follower2, and, follower3 are 
selected as 3.0, 2.8, and 2.8, respectively. Parameters hi  are 
chosen as 7.3, 13, and 13.5, respectively. These design 
parameters Ai min  and hi  are selected according to Lemma 3. 

The power leader is first assumed healthy. Figure 6 and 
Figure 7 show observer states of followers and the error norm, 
respectively. From Figure 7, the error boundary of the 
followers’ observer is estimated as e1B ≈ 0.046 , e2B ≈ 0.066 , 
and e3B ≈ 0.065 . The NNs weight bounds and approximation 
error bounds are estimated as W1c = 0.125  W2c = 0.175 , 

168.03 =cW , 11.01 =cε , 08.02 =cε , and ε3c = 0.09 . 
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Fig. 6. Follower states (full line) and observer states (dotted line) in 

healthy system. 

 
Fig. 7. Norm of errors follower1 (thick full line), follower2 (full 

line), and follower3 (dotted line). 
The bounds on NNs weight errors of followers are 

estimated yielding inequalities 
 ˜ W 1B +ε1c > ˜ W 2B +ε2c > ˜ W 3B +ε3c  . (40)  

In this section, we assume that a fault in the power leader at 
t=100 seconds is ∆(x0 , t) = 4 sin(0.3t)  and the simulation 
results are given in Figure 8. The full straight line and the 
dotted straight line in Figure 8 indicate e1B  and e2B ≈ e3B , 
respectively. The fault detection times are estimated as 
T1 = 117.1 , T2 = 128.5 , and T3 = 128.9 , respectively. The 
fault is detected by follower1 after 17.1 seconds.  

 
Fig. 8. Norm of errors for follower1 (thick full line), follower2 (full 

line), and follower3 (dotted line). 
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