Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuA02.4

Estimation of Non-stationary Markov Chain Transition Models

L. F. Bertuccelli and J. P. How

Aerospace Controls Laboratory
Massachusetts Institute of Technology
{lucab, jhow} @mit.edu

Abstract— Many decision systems rely on a precisely known
Markov Chain model to guarantee optimal performance, and
this paper considers the online estimation of unknown, non-
stationary Markov Chain transition models with perfect state
observation. In using a prior Dirichlet distribution on the
uncertain rows, we derive a mean-variance equivalent of the
Maximum A Posteriori (MAP) estimator. This recursive mean-
variance estimator extends previous methods that recompute
the moments at each time step using observed transition counts.
It is shown that this mean-variance estimator responds slowly
to changes in transition models (especially switching models)
and a modification that uses ideas of pseudonoise addition
from classical filtering is used to speed up the response of the
estimator. This new, discounted mean-variance estimator has
the intuitive interpretation of fading previous observations and
provides a link to fading techniques used in Hidden Markov
Model estimation. Our new estimation techniques is both faster
and has reduced error than alternative estimation techniques,
such as finite memory estimators.

I. INTRODUCTION

Many decision processes, such as Markov Decision Pro-
cesses (MDPs) and Jump Markov Linear systems, are mod-
eled as a probabilistic process driven by a Markov Chain.
The true parameters of the Markov Chain are frequently
unavailable to the modeler, and many researchers have re-
cently been addressing the issue of robust performance in
these decision systems [4], [6], [13], [16]. However, a large
body of research has also been devoted to the identification
of the Markov Chain using available observations. With few
exceptions (such as the signal processing community [11],
[17]), most of this research has addressed the case of a
unique, stationary model.

When the transition matrix II of a Markov Chain is
stationary, classical maximum likelihood (ML) schemes [9],
[17] can be used to recursively obtain the best estimate
IT of the transition matrix. Typical Bayesian methods as-
sume a prior Dirichlet distribution on each row of the
transition matrix, and exploit the conjugacy property of the
Dirichlet distribution with the multinomial distribution to
recursively compute I1. This technique amounts to evaluating
the empirical frequency of the transitions to obtain a ML
or Maximum A Posteriori (MAP) estimate of the transition
matrix. In the limit of an infinite observation sequence, this
method converges to the true transition matrix, II. Jilkov and
Li [9] discuss the identification of the transition matrices
in the context of Markov Jump systems, providing multiple
algorithms that can identify II using noisy measurements
that are indirect observations of the transitions. In one of

978-1-4244-3124-3/08/$25.00 ©2008 IEEE

these approaches, a renormalization is used to ensure that
the probability estimates sum to unity. Jaulmes et al. [7],
[8] study this problem in an active estimation context using
Partially Observable Markov Decision Processes (POMDPs).
Marbach [14] considers this problem, when the transition
probabilities depend on a parameter vector. Borkar and
Varaiya [5] treat the adaptation problem in terms of a single
parameter as well; namely, the true transition probability
model is assumed to be a function a single parameter a
belonging to a finite set .A. Konda and Tsitsiklis [10] consider
the problem of slowly-varying Markov Chains in the context
of reinforcement learning. Sato [18] considers this problem
and shows asymptotic convergence of the probability esti-
mates also in the context of dual control. Kumar [12] also
considered the adaptation problem.

If the Markov Chain, II;, is changing over time, classical
ML or MAP estimators will generally fail to respond quickly
to changes in the model. The intuition behind this is that
since these estimators keeps track of all the transitions that
have occurred, a large number of new transitions will be re-
quired for the change detection, and convergence to the new
model. Hence, new estimators are required to compensate
for the inherent delay that will occur in classical techniques.
Note that if the dynamics of the transition matrix were
available to the estimator designer, they could be embedded
directly in the estimator. For example, if the transition matrix
were known to switch between two systems according to
a probabilistic switching schedule, or if the switching time
were a random variable with known statistics, these pieces of
information could enhance the performance of any estimator.
However, in a more general setting, it is unlikely that this
information would be available to the estimator designer.

This paper proposes a new technique to speed up the
estimator response that does not require information on the
dynamics of the uncertain transition model. First, recursions
for the mean and variance of the Dirichlet distribution are de-
rived; these are equivalent to a mean-variance interpretation
of classical ML or MAP estimation techniques. Importantly,
however, we use the similarity of these recursions to Kalman
filter-based parameter estimation techniques to notice that the
mean-variance estimator does not incorporate any knowledge
of the parameter (or transition matrix) dynamics, and there-
fore results in stationary prediction step. To compensate for
this, the responsiveness of the estimator can be improved
by adding an artificial pseudonoise to the variance which
is implemented by scaling the variance [15]. Scaling the
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variance leads to a very natural interpretation for updating
the Dirichlet parameters, which amounts to progressively
fading the impact of older transitions. This result provides an
intuition for measurement fading applied to Hidden Markov
Models [11]. This insight, and the resulting benefits of faster
estimation when applied to decision systems, are the core
results of this paper.

II. MARKOV CHAIN AND THE DIRICHLET DISTRIBUTION

A transition matrix II of an N-state Markov Chain is
defined as IT € RV*N given by

m(1,1) =(1,2) (1, N)
o - m(2,1) 7(2,2) (2, N)
(V1) 7(N,2) ... 7(N,N)

where 7 (i, j) entry is the probability that the a transition to
state j at time k + 1, given the state was ¢ at the previous
time step

m(i,§) = Prlzpi1 = j | o =i (1)

Note that . (i, ) 1. When the transition matrix
II is uncertain, we can take a fairly common Bayesian
viewpoint [7] and assume a prior Dirichlet distribution on
each row of the transition matrix, and recursively update this
distribution with observations.!

The Dirichlet distribution fp at time k£ for a row
the IN-dimensional transition model is given by pg
[p1,D2,---,pn]T and hyperparameters (with o;; > 1) (k)
[a1,az, ..., an]|T, is defined as

N
K Hp;‘li_lv szzl
i=1 %

N-1
1= ) p) !
i=1

where K is a normalizing factor that ensures the probability
distribution integrates to unity. Each p; is the i*" column of
the m'" row, that is: p; = m(m,i) and and 0 < p; < 1
and ), p; = 1. The primary reasons for using the Dirichlet
distribution is that the mean p; satisfies the requirements of
a probability mass function 0 < p; < 1 and >, p; = 1 by
construction. In fact, by sampling the Dirichlet distribution,
each sample p; will satisfy > .pf = 1, Vs and 0 <
p; <1, Vs. Furthermore, the hyperparameters «; that can
be interpreted as “counts”, or times that a particular state
transition was observed, thus easily updating the distribution
based on new observations.

The mean and the variance of the Dirichlet distribution
can then be calculated directly as

of

fo(prlatk)) 2

(0%

—1
K pi" " ps

D = /oo 3)
o ai(ag —ay)
W = 7043 (a9 +1) 4)

ISince each row of the transition matrix satisfies the properties of
a probability mass function, the following description of the Dirichlet
distribution is interpreted to apply to each row of the transition matrix.
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These are the mean and the variance of each column of
the transition model, and need to be evaluated for all rows
(recalling p; = w(m,1)).

III. DERIVATION OF MEAN-VARIANCE ESTIMATOR

It is well known that the Dirichlet distribution is conju-
gate to the multinomial distribution; therefore, performing a
Bayesian measurement update step on the Dirichlet amounts
to a simple addition of currently observed transitions to
the previously observed counts «(k). The posterior distri-
bution fp(pr+1|a(k + 1)) is given in terms of the prior
So(pila(k)) as

fo(Prr]alk +1)) fo(prla(k)) fa (B(F)(Ipk)

N N

i—1 i i i —1
[ ' =] o
i=1 =1

where fa(8(k)|px) is a multinomial distribution with hy-
perparameters 3(k) = [f1,...,0n]. Each §; is the total
number of transitions observed from state ¢ to a new state

i': mathematically 3, = >.;6; and
1 ifi=i
(S. o= 5
o { 0 celse )

indicates how many times transitions were observed from
state 4 to state i . For the next derivations, we assume that
only a single transition can occur per time step, (3; =9, ;.

Upon receipt of the observations ((k), the parameters
a(k) are thus updated in the following manner

a;(k) + 61’,1”
a; (k)

., . . ./
Transition ¢ to 2

Oél(k‘F 1) = { Else

The mean and the variance can then be calculated by using
Egs. 3 and 4.

Instead of calculating the mean and variance from the
transitions at each time step, we can directly find recursions
for the mean p;(k) and variance X;;(k) of the Dirichlet
distribution by deriving the Mean-Variance Estimator with
the following proposition [3].

Proposition 1: The posterior mean p;(k+ 1) and variance
3;i(k+1) of the Dirichlet distribution can be found in terms
of the prior mean p;(k) and variance X;;(k) by using the
following recursion for the Mean-Variance Estimator:

pi(k+1) = pi(k) + Zii(k)ﬁj};;/(li%

Bat (k+1) = e 25 (8) + 5ma e

pi(k)(1—pi(k))
Di(k+1)(1—pi(k+1)) "
Remark 1: The recursion for the mean is actually the
maximum a posteriori (MAP) estimator of the mean of the
Dirichlet distribution, expressed in terms of prior mean and
variance. If the updated counts are o (k + 1), then the
posterior distribution is given by

N ’
=1 7

where Y41 =

fD(Pk+1\Oé’(k +1))
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TABLE I
MEAN VARIANCE RECURSION SHOWN IN PREDICTION AND UPDATE STEP

l l

Mean-variance

Prediction

ik + 1‘](:) =

Pi(k + 1|k) = p; (Kk|k)
Zii(k|k)

Measurement update

pl(k + 1|k +1) —pz(k + 1\k) + 24 (k + 1[k)

o —Pi(k+1|k)
Pi (k+1\k)(1 pi(k+11k))
Di (k+1|k)(1 pi(k+1[k))

(k+1\k)

and the MAP estimate j; is p; = argmax fp(pla’ (k +1)).
Remark 2: This mean-variance estimator explicitly guaran-
tees that the estimates sum to unity, >, p;(k|k) = 1, VE,
since they are calculated directly from the MAP estimate.
Other mean-variance approaches [9] only enforce the unit
sum constraint at the end of each estimator cycle, through
some form of normalization. However, in the mean-variance
form for the Dirichlet, no approximations are needed to
ensure that the estimates remain within the unit simplex.
Remark 3: The convergence of the mean-variance estimator
is guaranteed since the MAP estimator is guaranteed to
converge [7]. After a large number of observations, the
MAP estimate of the probability p; = «;/ap will be equal
to the true probability p;, and the variance asymptotically
approaches O.

This is immediately clear from the mean-variance for-
mulation as well. From proposition 1, the estimate p;(k)
will converge if limy_.o p;(k + 1) — p;(k) = 0, which
implies that for any arbitrary measurement 9§, -, that this
will be true if the variance asymptotically approaches 0,
limg 00 24:(k) = 0.

The steady-state covariance can be found explicitly in the
mean-variance estimator by rearranging the expression in
Proposition 1, and taking the limit.

lim ¥ = hm (1 —Yi+1) Dilk+ 1)1 —p:;(k+1)) =0

k—oo

Note that we have used the fact that, since the estimate
converges, then by definition of 7, limg_ o0 Y41 = 1.

Remark 4: The mean-variance estimator can also be ex-
pressed more explicitly in a prediction step and a mea-
surement update step, much like in conventional filtering.
The prior distribution is given by fp(pg|x|c(k)) where the
prior estimate is now written as p;(k|k). The propagated
distribution is fp(pj-1)x|c(k)) and the propagated estimate
is denoted as p;(k + 1|k). The posterior distribution is
D (Pr+1jk+1]a(k + 1)), where a(k + 1) are the updated
counts, and the updated estimate is written as p; (k+1|k+1).
These steps are shown in Table 1. In the (trivial) prediction
step, the mean and the variance do not change, while the
measurement update step is the proposition we just derived.

IV. DERIVATION OF THE DISCOUNTED MEAN VARIANCE
ESTIMATOR

The general limitation of applying this estimation tech-
nique to a non-stationary problem is that the variance of the
estimator decreases to 0 rapidly after IV,, < oo measure-
ments, which in turn implies that new observations 51‘,;‘/ will

not be heavily weighted in the measurement update. This can
be seen in the measurement update step of Table I: as the
variance Y;; approaches zero, then new measurements have
very little weighting.

This covariance can be thought of as the measurement
gain of classical Kalman filtering recursions. A way to
modify this gain is by embedding transition matrix dy-
namics. If transition matrix dynamics were available, these
could be embedded in the estimator by using the Chapman-
Kolmogorov equation [ P(mj1|mi)P(mg|a(k)dmy in the
prediction step. However, in general, the dynamics of the
parameter may not be well known or easily modeled.

In parameter estimation, well known techniques are used
to modify this prediction step for a time-varying un-
known parameters, such as through the addition of artificial
pseudonoise [19], or scaling the variance by a (possibly time-
varying) factor greater than unity [15]. Both pseudonoise
addition or covariance scaling rely on the fundamental idea
of increasing the covariance of the estimate in the prediction
step.

In Ref. [15], Miller artificially scales the predicted co-
variance matrix Y, by a time-varying scale factor wy,
(wr > 1) and shows that the Kalman filter recursions re-
main virtually unchanged, except that that predicted variance
Yj41pk is modified to z;ﬁm = wpDg41)k- Since wy, > 1,
this has the effect of increasing the covariance, thereby
reducing the estimator’s confidence and changing the Kalman
gain to be more responsive to new measurements.

We thus use this similar intuition to our mean-variance
estimator for the case of the Dirichlet distribution; define
Ak = 1/wi (Where now Ay < 1), and modify the prediction
steps in a similar way to Miller, and obtain the direct analog
for our mean-variance estimator. Our new update step for the
variance is given by

25k + k) = M2 (k|E) (6)
The variance is now scaled by a factor 1/A\; > 1 at
each iteration. The complete recursion for the Discounted
Mean-Variance Estimator is as follows (the prediction and
measurement update step have been combined)
_ —pi(k|k)
pi(k + 1|k +1) = pi(k|k) + 1/)\k212(k|k)m

S5t (k+ 1k + 1) = My 25 (KIk) + sommassamy
Note that since the posterior mean p;(k+ 1|k +1) is directly

dependent on X;;(k|k), scaling the variance by 1/\; will
result in faster changes in the mean than if no scaling were
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TABLE I
DISCOUNTED MEAN VARIANCE RECURSION

Mean-variance

Prediction

Stk +11k) = A 5" (klk)

pi(k + 1|k) = p; (klk)

Combined updates

Pi(k+ 1k + 1) = p;(k|k) + 1/ XS4 (k| k) =2
—1 —1
T (B4 Uk +1) = Mevir1 25 (k1K) + 5rmma 5,600

A )
RICIRICACID)

applied. Table II shows this estimator also in terms of the
individual prediction and measurement update steps.

A. Intuition on the Dirichlet model

There is a fairly natural counts-based interpretation of
covariance scaling for the Dirichlet distribution. Note that
the variance of the Dirichlet implies that the following holds,

(67 (Oé() — O[Z')

1/A
/A ad(ap+1)
Ak (Agag — Aga;)
Apod (oo +1)
When g > 1 (this holds true very early in the estimation
process), the above expression is approximately equal to

1/ Ak Zii(k + 1]k)

(7

Ak (AR — Akay)
Apag(ag +1)

- ai(ap — Apa)
a%(Akao +1)

®)

But this is nothing more than the variance of a Dirichlet
distribution where the parameters are chosen in the form
o (k) = M\ o(k) instead of ov(k). In fact, if the distribution
is given by fp(pla'(k)) = K [, p}**, the first two
moments are given by

Di
i

= )\kai/)\kao = Oéi/OéO
)\iozi(ao — Oéi) ai(ao — ai)

= 9
)\i&%()\k()éo + 1) ag()\k()éo + 1) ( )

Hence, the discounted mean variance formulation can be
interpreted as updating the counts in the following manner

al(k + 1) = )\kal(k) + 51',1"

rather than o;(k + 1) = a4(k) + d;+ in the undiscounted
version.

(10)

B. Switching Models

Now, consider a specialized case of a time-varying tran-
sition matrix: the case when the matrix switches at distinct
(but unknown) set of times T,,. In this case, it can be shown
that the Mean-Variance estimator will eventually converge to
the true model.

The discounted mean-variance estimator does not exhibit
the same convergence properties as the undiscounted estima-
tor for arbitrary A\ < 1; this includes the case of constant
Ak, where A\, = A < 1. This is because the estimator has
been modified to always maintains some level of uncertainty
by rescaling the uncertainty. In particular, the estimator will
constantly be responding to the most recent observations, and
will only converge if the following proposition holds.

Proposition 2: The discounted mean-variance estimator

will converge if limg_. oo A\ = 1.

Proof: The asymptotic
limg o X (k) is given by

variance,

(1 — Ak ’Yk+1) _

Su(oe) = lim S (4 1)(1 = pik 4 1)

k—oco
and will asymptotically reach zero if both limy_, oo Y5+1 =1
and limg_, . A\ = 1. If Ay = XA < 1, the variance will not
converge to 0; however, if limj_.o, A\x = 1, the discounted
mean estimator will converge to the undiscounted form, and
hence the estimator will converge to the true parameter. W
It is shown in the next simulations that using a constant
Mg still provides good estimates of the true parameter, but
we caution that to achieve convergence, A\ should be chosen
such that limy_,., Ay = 1. Such a choice could for example
be A, = 1 — \¥, where A < 1.

V. NUMERICAL SIMULATIONS

This section presents some numerical simulations showing
the responsiveness of the discounted mean-variance estima-
tor. In the first set of examples, we show a set of runs
showing the identification of an underlying (non-stationary
transition matrix) that switches from A] to A at some
unknown time 7T, and show that the discounted mean-
variance estimator responds quicker to the change than other
estimators, such as the undiscounted version or a finite
memory estimator. In the second set of examples, we show an
implementation of the discounted mean-variance formulation
in an infinite horizon Markov Decision Process, where at
each time that the transition matrix is identified, a new
control policy is calculated. The optimal objective of each
policy converges quicker when the discounted mean-variance
approach is used to identify the transition matrix.

A. Transition Matrix Identification

This first example has an underlying transition matrix that
switches at some unknown time T%,. First, we show the
benefit of using the discounted version of the estimator over
the undiscounted estimator. This is shown in Figure 1 where
the discounted estimator (blue) responds to the change in
transition matrix almost instantly at ¢ = 50 seconds, and
after 20 seconds from the switch, has a 50% error (p = 0.7)
from the true parameter p = 0.8. The undiscounted estimator
(red) has a 50% error after 50 seconds, and is much slower.

Next, compare the identification of this model with a finite
memory estimator which calculated by storing all observed
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Fig. 1. Discounted estimator (blue) has a faster response at the switch

time than undiscounted estimator (red).

transitions in previous M time steps,

& (k) (an
j=k—M+1
where 55 i is unity if a transition occurred from state 7 to

state i at time j. The mean and variance are calculated using

Q;

pi(k) = =

pi(k) &
G (6o — Gy)
Yi(klk) =
a5(do +1)

where &g = >, G&; (k). Note that the finite memory estimator
does not include information that is older than A/ time steps.
The three estimators compared in the next simulations are
Estimator #1: Undiscounted estimator

Estimator #2: Discounted estimator (varying \j)
Estimator #3: Finite memory estimator (varying M)

Table III presents the summary statistics of these simu-
lations in terms of mean absolute error, standard deviation
of absolute error, and min/max of the absolute error. A
two-sided T-test showed that the difference between the
discounted estimator and the finite memory estimator up
to A = 0.925 and M 20 was statistically significant
at p < 0.01. Also note that the use of a finite memory
estimator generally requires that all the observed transitions
in the previous M steps be stored. For large M and a large
system, this may in fact be impractical; this memory storage
is not required in the discounted mean-variance formulation,
where only storing the a;(k) is required.

B. Online MDP Replanning

This section considers a machine repair/replacement prob-
lem [2] driven by a time-varying transition matrix, posed as
a Markov Decision Process (MDP). Similar to the previous
example, the transition model is assumed to switch from
model A] to model A at an unknown time Ty,. The
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TABLE III
MEAN / STANDARD DEVIATION OF ABSOLUTE ERROR

[ A [ Mean | Variance [ Min | Max |
0.85 0.215 0.099 0.018 | 0.632
0.875 | 0.196 0.096 0.011 | 0.601
0.90 0.178 0.094 0.005 0.577
0.925 | 0.163 0.094 0.013 | 0.563
0.95 0.156 0.096 0.011 | 0.587
M Mean | Variance Min Max
10 0.255 0.119 0.014 | 0.659
15 0.236 0.108 0.017 | 0.777
20 0.204 0.102 0.004 | 0.586
25 0.144 0.084 0.009 | 0.463
30 0.144 0.084 0.009 | 0.463

estimate of the transition matrix is updated at each time step
with the most recent observations, and the optimal policy for
the DP is re-calculated using the current estimate.?

1) Problem Statement: A machine can take on one of
two states xj at time k: ¢) the machine is either running
(z = 1), or 7i) broken (not running, x; = 0). If the machine
is running, a profit of $100 is made. The control options
available to the user are the following: if the machine is
running, a user can choose to either ¢) perform maintenance
(abbreviated as ug = m) on the machine (thereby decreasing
the likelihood the machine failing in the future), or i) leave
the maching running without maintenance (ug n). The
choice of maintenance has cost, C,qint, €.g., the cost of a
technician to maintain the machine.

If the machine is broken, two choices are available to
the user: ¢) repair the machine (ux = ), or ii) completely
replace the machine (ux = p). Both of these two options
come at a price, however; machine repair has a cost Crepqirs
while machine replacement is Cy¢piqce, Where for any sensi-
ble problem specification, the price of replacement is greater
than the repair cost Crepiace > Chrepair- If the machine is
replaced, it is guaranteed to work for at least the next stage.

For the case of the machine running at the current time
step, the state transitions are governed by the following
model

Pr (xy+1 = fails | z,=running, u;=m) Y1

Pr (xg+1 = fails | zx=running, uy=n) Yo

For the case of the machine not running at the current time
step, the state transition are governed by the following model

Pr (241 = fails | ap=fails, ug=r) Y3

0

Pr (zg41 = fails | z,=fails, ur=p)

Note that, consistent with our earlier statement that machine
replacement guarantees machine function at the next time
step, the transition matrix for the replacement is determinis-
tic. From these two models, we can completely describe the
transition matrix if the machine is running or not running at

2This problem is sufficiently small that the policy can be quickly
recalculated. For larger problems, one might have to resort to Real-Time
Dynamic Programming (RTDP) techniques [1].
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Fig. 2. Att = 10, the transition matrix changes from A; to AT, and the
MDP solution (after replanning at each observation) using the discounted
estimator (blue) converges in the neighborhood of the optimal objective J*
quicker than with using the undiscounted estimator (red)

the current time step:

Machine Running (zy = 1), Ay : [ } B 31 :tl }
-7 72
Machine Not Running (zj = 0), As : [ 1 7173 %3 }

The objective is to find an optimal control policy such that
ug(zr = 0) € {1, p} if the machine is not running, and
ug(zr = 1) € {m, n} if the machine is running, for
each time step. The state of the machine is assumed to be
perfectly observable, and this can be solved via dynamic

programming.
2) Results: The transition matrix for time ¢ < T§,, was
_ 0.05 0.95
A _[ 0.3 0.7 ]’

while for ¢ > T,,, the transition matrix was

Exil

0.3 0.7

The response speeds of the two types of estimators can be
calculated by evaluating the difference in the mean objective
function and. The optimal policy u*(k, s) and optimal cost
J*(k, s) are calculated at each time step k and simulation
s using ¢) the discounted estimator (u}(k, s), J;(k, s)) and
the undiscounted estimator (v (k, s), J¥(k, s)). The mean of
the objective function is calculated as follows

1 &
VZJ;U‘%S),
s=1

S

AT =

Ju(k)

The mean of the objective function for A\, = 0.90 is
shown in Figure 2. The discounted estimator response (blue)
is shown to be much faster than the undiscounted response
(red) at the switch time of T, 10 seconds.
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VI. CONCLUSIONS

This paper has presented a formulation for the iden-
tification on non-stationary Markov Chains that uses fil-
tering insight to speed up the response of classical ML-
based estimator. We have shown that the addition of an
artificial pseudonoise like term is equivalent to a fading of
the transition observations using the Dirichlet model; this
fading of the observations is similar to fading mechanisms
proposed in time-varying parameter estimation techniques,
but our pseudonoise-based derivation provides an alternative
motivation for actually fading these Dirichlet counts in a
perfectly observable system.

Our future work will investigate other forms of non-
stationary transition matrices, such as slowly-varying models.
Also we will connect the estimation techniques of the tran-
sition model to our robust MDP formulations [4] to obtain
less conservative robust solutions.
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