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Abstract— In this paper we discuss implications of control
influence terms on the application of the classical averaging
theory to affine in control systems. It is shown that the classical
averaging theorem can be extended to the control systems,
provided that the controllability and stability properties of the
system are preserved in the course of the averaging. Sufficient
conditions are given for the equivalence between the original
and averaged system in the sense that the stabilizing control
law designed for the averaged system also stabilizes the original
system and vise versa.

I. INTRODUCTION

Any casual observer would note that there has been a

proliferation of technical papers that discuss methods for

analyzing the stability of collections of dynamical systems,

in contrast to a single system, in the controls community.

Indeed, such diverse topics as robust control theory, hybrid

system theory and control formulations in terms of differ-

ential inclusions seek at their core to guarantee stability

of families of trajectories. Averaging theory may be one

of the oldest methods for representing a family of very

complex systems in terms of one that is much simpler.

Given the popularity of averaging methods over time, and the

emergence of interest in stabilization of families of solutions

or trajectories, it is surprising that significant open questions

yet remain in the application of these techniques to control

systems. Evidently, the difficulty is not lack of interest by

any means but rather the difficulty in the general problem.

The authors’ own interest in this problem has arisen in

the study of control formulations of piezoelectric energy

harvesting transducers. The foundations of these equations is

well-understood, at least for operation in the regimes wherein

the equations of linear piezoelectricity apply. It is shown

in [5] that the equations governing a linear piezoelectric

transducer that is connected to a switched shunt circuit to

actively harvest energy can be written in the form

ẋ(t) = Akx(t) + Bku(t) for all t ∈ [t+k−1, t
−
k ]

k(t+k ) = S(x(t−k ), k(t−k ), t−k )

x(0) = x0 (1)

In these equations the state x(t) ∈ R
n includes mechanical

and electrical unknowns, the control u(t) ∈ R
m may in-

clude voltages, currents or duty cycles associated with them,
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the switching rule is given by S = S(x(t−k ), k(t−k ), t−k ),
and the switching times are {. . . tk−1, tk, tk+1, . . .}. The

state matrices {Ak}k=1...p and control influence matrices

{Bk}k=1...p are defined by each topology the electromechan-

ical system takes as the switching state k = 1 . . . p evolves.

The precise and rigorous formulation of these equations

can be cast in a number of interesting ways. There are

several hybrid system formulations within which this system

may be studied including the very early work of [15], or

the more recent frameworks employed by [13]. In contrast

to the hybrid formulations that keep the dependence on

the switching process quite explicit, it is also possible to

eliminate the explicit dependence on the switching sequence

by employing a relaxation of the governing equations cast

in terms of Young measures. A representative foundational

work in this direction can be found in [14], while more

recent relaxation techniques are presented in [11] and [4].

Perhaps most relevant for this paper is the work by numerous

authors who have studied techniques for modeling pulse

width modulated (PWM) converters in power electronics.

The volume [7] gives a good overview of this approach and

the reader is referred to the numerous sources therein for a

detailed discussion. This technique begins by assuming the

the switching times occur on a time scale many orders of

magnitude faster than the dynamics of interest. A change of

variables is introduced so that the governing equations can

be recast in the form

ẋ(t) = ε [f(t,x(t)) + G(t,x(t))u(t)] (2)

x(0) = x0 ,

where ε is a small parameter that is inversely proportional

to the switching frequency. At this point a typical averaging

analysis involves classical theorems, such as Theorem 1 in

[3] (p. 431), which do not include a control term. As we

will discuss shortly this control influence term can be a

source of difficulty. In effect, the methodology carries out

a straightforward averaging of the equations (1) to obtain

ẋ(t) = ε [A(D)x(t) + B(D)u(t)] (3)

x(0) = x .

In these equations the explicit switching time sequence

. . . tk−1, tk, tk+1, . . . is eliminated via averaging to obtain

a duty cycle D that represents, roughly speaking, the occu-

pancy time that the switching sequence resides in a partic-

ular state. The qualitative differences between the explicit

representation obtained in (1) and the averaged represented

in (3) is clear. The average representation yields a single

equation whose stability properties should, in principle, be
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more amenable to analysis. Of course the averaged repre-

sentation has eliminated some of the information associated

with the hybrid system formulation. A critical issue is then

to establish when it is possible to carry out control synthesis

for the averaged equations and utilize that feedback control

for the original (hybrid, in this case) system.

In this paper we address the following question: is it

possible to design a stabilizing control law for the averaged

system in the form

ẏε(t) = ε [fa(yε(t)) + Ga(yε(t))u(t)] , yε(0) = x0 , (4)

where fa(x) and Ga(x) are the averages of f(t, x) and

G(t,x) respectively, that will also stabilize the original sys-

tem given in (2)? Here we retain the notion yε to emphasize

the dependence of the averaged system on ε. To simplify

notations, the subscript ε is suppressed in the sequel.

One may think that the general averaging theory in-

troduced in [3] and the subsequent stability analysis (see

for example [9], [13], [10] and the references therein) can

provide the answer to this question. For, as long as the

stabilizing controller u = ϕ(y) for the averaged system is

constructed, the original and averaged closed loop systems

take the form

ẋ(t) = εf̄(t,x(t))

ẏ(t) = εf̄a(y(t)) , (5)

where f̄(t,x) = f(t,x) + G(t,x)ϕ(x) and f̄a(y) =
fa(y) + Ga(y)ϕ(y), and obviously f̄a(x) is the average

of the function f̄(t, x). Therefore, one may attempt to apply

the existing stability results to conclude the stability of the

original system. For instance, if f̄(t, 0) = 0 uniformly in t,

then the hypothesis of Theorem 10.5 from [9] (p.417) are

satisfied, which states that there exists ε∗ > 0 such that

for all 0 < ε < ε∗, from the exponential stability of the

origin y = 0 of the averaged system follows the exponential

stability of the origin x = 0 of the original system. However,

there are two obstacles in this approach. The first obstacle is

the possible loss of controllability because of the averaging.

That is the original system may well be stabilizible, but the

averaged system may be uncontrollable and unstable.

The second obstacle is the dependence of the stability

properties of the system on the parameter ε∗, which is in

general unknown. Only for linear systems a conservative

estimate for ε∗ has been derived [2]. Therefore for a given

ε the stability of the original system cannot be predicted

from the stability of the averaged system, and it is imperative

to find a controller from the perspective of the stabilization

of the averaged system that stabilizes the original system

independent of the ε.

The rest of the paper is organized as follows. In Section

II we give a motivating example, which shows that the

application of straightforward averaging to control systems

can be misleading when the parameter ε is fixed. We show

that the controller that asymptotically stabilizes the original

system cannot stabilize the averaged system and vise versa.

Moreover, we also show that even in the case when the
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Fig. 1. Functions f(t) and g(t)

averaged system is exponentially stable, the original system

can have a finite escape time, implying that the existing

results on the stability of the original system when coming

from the averaged system are strongly dependent on the

parameter ε. In Section III we show that the conventional

averaging method can be applied to the control systems,

if the trajectories of both original and averaged system

remain bounded. In Section IV we give sufficient conditions

for simultaneous stabilization of both the original and the

averaged system by a controller designed for the averaged

system. The concluding remarks are given in Section V.

Throughout the manuscript bold symbols are used for

vectors, capital letters for matrices and small letters for

scalars.

II. MOTIVATING EXAMPLE

Consider the following system

ẋ(t) = ε[f(t)x3(t) + g(t)u], x(0) = x0 , (6)

where the periodic functions f(t) and g(t) are square waves

presented in Figure 1, where f(t) changes between 2 and

3, and g(t) changes between −1.2 and 1. This system is

locally Lipschitz in x, globally Lipschitz in u, and mea-

surable and uniformly bounded in t. That is the existence

and uniqueness conditions are satisfied for Caratheodory

solution of equation (6). Moreover, the system is globally

stabilizible. For example, the application of the control input

u(t, x) = φ(t)(x3 +kx), where k > 0 is a constant gain and

the function φ(t), presented in Figure 2, is designed such

that g(t)φ(t) = −f(t), results in the closed-loop system

ẋ(t) = −kεf(t)x(t) , (7)

which is globally exponentially stable with a rate of conver-

gence that can be adjusted by selection of the parameter k.

The averaged system has the form

ẏ(t) = ε

[

5

2
y3(t) −

1

10
u

]

, y(0) = x0 , (8)

which is obviously controllable. However, the application
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Fig. 3. Instability of the averaged system in Example 2

of the same control input u(t, y) = kφ(t)(y3 + ky) results

in the closed-loop system

ẏ(t) = ε

[

5

2
y3(t) −

1

10
φ(t)[y3(t) + ky(t)]

]

, (9)

which has a finite escape time on the interval (0, 1), if the

initial condition satisfies the inequality

x0 >

√

3k

28(exp 0.6kε − 1)
.

It can be shown that the closed loop system is unstable

for a larger set of initial conditions. Figure 3 displays the

simulation result with k = 0.01, k = 1, k = 100, ε = 0.01
and y(0) = 0.1, where y(t) obviously grows unbounded.

On the other hand the averaged system in (8) can be

globally exponentially stabilized by the feedback control

u(y) = 25y3 + 10ky. The resulting closed-loop system is

ẏ(t) = −εky(t) , (10)

the solution to which exponentially converges to zero with

the rate of εk. However, this feedback controller can not

stabilize the original system in (6). Indeed, the resulting

closed-loop system has the form

ẋ(t) = ε[f(t)x3(t) + 25g(t)x3(t) + 10kg(t)x(t)] . (11)

This system has a finite escape time on the interval (0, 1), if

the initial condition satisfies the inequality

x0 >

√

10k

28(exp 2kε − 1)
.

Thus, we have constructed an example, in which the

controller that stabilizes the original system cannot stabilize

the averaged system, and the controller that stabilizes the

averaged system cannot stabilize the original one.

III. AVERAGING PROBLEM FOR CONTROL SYSTEMS

In this section we present formulation of the averaging

problem for general affine in control systems and give the

asymptotic analysis.

A. Formulation of the averaging problem

Let the dynamical system be described by the differential

equation (2), where x(t) ∈ R
n is the state of the system,

u(t) ∈ R
m is the control input, and ε > 0 is a small

parameter. It is assumed that the functions f(·, ·) : R
+ ×

R
n → R

n and G(·, ·) : R
+ × R

n → R
n×m satisfy the

common conditions that ensure existence and uniqueness of

solutions to the initial value problem in (2): in the domain

R
+ ×D, where D ⊂ R

n is an open set, the functions f and

G are uniformly bounded

‖f(t, x)‖ ≤ Mf , ‖G(t,x)‖ ≤ MG , (12)

measurable in t for any x ∈ D, and satisfy the Lipschitz

condition in x

‖f(t,x) − f(t,y)‖ ≤ λf‖x − y‖

‖G(t,x) − G(t,y)‖ ≤ λG‖x − y‖ . (13)

Here Mf , MG, λf , λG are positive constants. Additionally,

we assume that the functions f(t, x) and G(t,x) have well

defined averages in the sense of the following definition [9]

(p. 414):

Definition 1: A continuous, bounded function g : R
+ ×

D → R
n is said to have an average ga(x) if the limit

ga(x) = lim
T→∞

1

T

∫ T

0

g(t,x)dt (14)

exists and
∥

∥

∥

∥

∥

1

T

∫ T

0

g(t,x)dt − ga(x)

∥

∥

∥

∥

∥

≤ kσ(T ) (15)

for any x ∈ D0, where D0 ⊂ D is a compact set, k is a

positive constant (possibly dependent on D0) and σ : R
+ →

R
+ is a strictly decreasing, continuous, bounded function

such that σ(T ) → 0 as T → ∞. The function σ is called

the convergence function.

It is also assumed that the control input (designed from

any control perspective) is admissible, that is, the function

t → u(t, x) is measurable, the mapping x → u(t, x) is

continuous, and u(t,x) uniformly bounded in the domain

R
+ ×D.

Remark 1: The condition in (14) is satisfied for time-

periodic systems. ¤

Remark 2: From the relationships in (12), (13) and (14)

it follows that the function fa(x) and the matrix Ga(x)
are bounded by the constants Mf and MG respectively, and

satisfy the Lipschitz conditions

‖fa(x) − fa(y)‖ ≤ λf‖x − y‖

‖Ga(x) − Ga(y)‖ ≤ λG‖x − y‖ (16)
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in the domain D. ¤

The objective is to show that the averaging method devel-

oped in [3] can be applied to the control system in (2).

B. Asymptotic Analysis

As noted in the introduction our goal is to establish a cor-

respondence between the solution of the original equation in

(2) and of the averaged equation in (4). This correspondence

requires that we introduce the notion of Dρ subset and ε-

approximation.

Definition 2: The set Dρ is a ρ-subset of D, if Dρ ⊆ D
and inf ‖x − y‖ ≥ ρ for all x ∈ ∂D, y ∈ Dρ, where ∂D
denotes the boundary of the set D. ¤

Definition 3: The function y(t) ∈ Dρ is called a γ-

approximation of the x(t) ∈ D if for any γ > 0 there exist

constants L(ρ, γ) > 0 and ε0(ρ, γ) > 0 such that for any

0 < ε < ε0(ρ, γ) the inequality

‖x(t) − y(t)‖ < γ (17)

holds on the interval 0 < t <
L(ρ,γ)

ε
. ¤

The asymptotic properties of the averaged system are

given by the following theorem that extends the similar the-

orem from [3] for the systems with no control contribution.

Theorem 1: Let y(t) be the solution of the averaged

system in (4) and x(t) be the solution of the original system

in (2). If there exists a constant ρ > 0 such that y(t) lives

in ρ-subset Dρ of the domain D corresponding to system in

(2) for all t > 0, then y(t) is the γ-approximation of the

solution x(t).
Proof: Consider the following auxiliary function

h(x) =

{

c
(

1 − ‖x‖2

a2

)

, ‖x‖ ≤ a

0, ‖x‖ > a ,
(18)

with the property
∫

Rn

h(x)dx = 1 , (19)

where a is a positive constant. Since h(x) is continuously

differentiable with support contained in the ball ‖x‖ ≤ a, it

follows that the integral

I =

∫

Rn

∥

∥

∥

∥

∂h(x)

∂x

∥

∥

∥

∥

dx (20)

is bounded. Next we introduce a new variable z = y +
εe(t,y), where the e(t,y) is defined as follows

e(t,y) =

∫

D

h(y − s)
{

∫ t

0

[

f(τ, s) − fa(s)

+ [G(τ, s) − Ga(s)]u(τ, s)
]

dτ
}

ds (21)

It should be noted that since the functions f(τ, s), G(τ, s)
and u(τ, s) are bounded and measurable in τ , it follows that

the function

v(t, s) =

∫ t

0

[

f(τ, s) − fa(s)

+ [G(τ, s) − Ga(s)]u(τ, s)
]

dτ (22)

is well defined and absolutely continuous in t. Therefore

e(t,y) is well defined and differentiable in time. To obtain

the dynamic equation for z(t), we differentiate it, taking into

account the equations in (4) and (21):

ż(t) = ẏ(t) + ε
∂e(t, y)

∂t
+ ε

∂e(t, y)

∂y
ẏ(t) (23)

= εfa(y(t)) + εGa(y(t))u(t,y(t)) + ε
∂e(t,y)

∂t

+ ε
∂e(t,y)

∂y

[

εfa(y(t)) + εGa(y(t))u(t,y(t))
]

= εf(t,z(t)) + εG(t,z(t))u(t,z(t)) + F (t,y(t)) ,

where

F (t,y) = ε
[

G(t,y)u(t,y) − f(t,y + εe(t, y))

− G(t, y + εe(t,y))u(t, y + εe(t,y))

+ f(t,y)
]

+ ε
∂e(t,y)

∂t
− ε[f(t,y) − fa(y)]

− ε[G(t, y) − Ga(y)]u(t,y)

+ ε2 ∂e(t,y)

∂y

[

fa(y) + Ga(y)u(t,y)
]

(24)

Denoting the convergence functions for the functions f(t,x)
and G(t,x) by δf (t) and δG(t) respectively, where for

simplicity the constant k is absorbed into the convergence

functions, the following inequalities can be easily derived

‖e(t, y)‖ ≤

∫

D

h(y − s)
∥

∥

∫ t

0

[

f(τ, s) − fa(s)

+ [G(τ, s) − Ga(s)]u(τ, s)
]

dτ
∥

∥ds

≤

∫

D

h(y − s)t
[

δf (t) + u∗δG(t)
]

ds

= t
[

δf (t) + u∗δG(t)
]

∫

D

h(y − s)ds

≤ t
[

δf (t) + u∗δG(t)
]

(25)
∥

∥

∥

∥

∂e(t, y)

∂y

∥

∥

∥

∥

≤

∫

D

∥

∥

∥

∥

∂h(y − s)

∂y

∥

∥

∥

∥

∥

∥

∫ t

0

[

f(τ, s) − fa(s)

+ [G(τ, s) − Ga(s)]u(τ, s)
]

dτ
∥

∥ds

≤

∫

D

∥

∥

∥

∥

∂h(y − s)

∂y

∥

∥

∥

∥

t
[

δf (t) + u∗δG(t)
]

ds

≤ It
[

δf (t) + u∗δG(t)
]

, (26)

where u∗ = max ‖u(t,x)‖, t > 0, x ∈ D. Therefore

the terms in the first square brackets in (24) can be upper

bounded as follows:

∥

∥f(t,y) + G(t,y)u(t,y) − f(t,y + εe(t,y))

− G(t,y + εe(t, y))u(t,y + εe(t, y))
∥

∥

≤
∥

∥f(t,y) − f(t,y + εe(t, y))
∥

∥ +
∥

∥G(t, y)u(t,y)

− G(t,y + εe(t, y))u(t,y + εe(t, y))
∥

∥

≤ ελf‖e(t,y)‖ + εu∗λG‖e(t,y))‖

≤ ε(λf + u∗λG)t
[

δf (t) + u∗δG(t)
]

(27)
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The second square bracket in (24) can be upper bounded

using the expression for
∂e(t,y)

∂t

∂e(t, y)

∂t
=

∫

D

[

f(t, s) − fa(s) (28)

+ [G(t, s) − Ga(s)]u(t, s)
]

h(y − s)ds

and the property in (19). The computations result in

∥

∥

∂e(t,y)

∂t
−

[

f(t,y) − fa(y) + [G(t, y)

− Ga(y)]u(t,y)
]

∫

D

h(y − s)ds
∥

∥ ≤

∫

D

∥

∥f(t, s)

− fa(s) + [G(t, s) − Ga(s)]u(t, s)
]

− f(t,y)

+ fa(y) − [G(t, y) − Ga(y)]u(t,y)
∥

∥h(y − s)ds

≤

∫

D

[2λf‖s − y‖ + 2u∗λG‖s − y‖h(y − s)]ds

≤ 2(λf + u∗λG)a (29)

The last term in (24) can be upper bounded taking into

account the inequalities in (16) and (25):
∥

∥

∥

∥

∂e(t, y)

∂y

[

fa(y) + Ga(y)u(t,y)
]

∥

∥

∥

∥

(30)

≤ (Mf + u∗MG) It[δf (t) + u∗δG(t)]

Combining the bounds in (27), (29) and (30) we obtain

‖F (t, y)‖ ≤ ε2λtδ(t) + 2ελa + ε2MItδ(t) (31)

where λ = λf + u∗λG, δ(t) = δf (t) + u∗δG(t) and M =
Mf + u∗MG. We notice that if u∗ is finite, then δ(t) is

bounded and vanishes as t → ∞.

We introduce functions

ϕ(ε) = sup
τ≤L

τδ
(τ

ε

)

, ψ(t) =
1

t2

∫ t

0

τδ(τ)dτ (32)

From the definition of ϕ(ε) it follows that

lim
ε→0

ϕ(ε) = lim
ε→0

sup
τ≤L

τδ
(τ

ε

)

= sup
τ≤L

τ lim
ε→0

δ
(τ

ε

)

= sup
τ≤L

τ lim
t→∞

δ(t) = 0 (33)

With respect to the function ψ(t) we note that it is well

defined for any fixed t, since δ(t) is absolutely continuous.

Moreover, ψ(t) is a smooth function on the interval (0,∞).
Therefore the Hospital’s rule can be applied to conclude that

lim
t→∞

ψ(t) = lim
t→∞

∫ t

0
τδ(τ)dτ

t2

= lim
t→∞

tδ(t)

2t
= lim

t→∞

δ(t)

2
= 0 (34)

Therefore, for any fixed ρ > 0 and γ > 0 there exists ε0 =
ε0(ρ, γ) > 0 such that for any 0 < ε < ε0 the following

inequalities hold [3]:

ϕ(ε) < ρ, ϕ(ε) <
γ

2
, ψ

(

L

ε

)

≤
γ

4L2eλL(λ + IM)
(35)

Then ε‖e(t,y)‖ ≤ εtδ(t) ≤ ϕ(ε) < ρ for all 0 < t < L
ε

.

That is ‖z(t)‖ ≤ ‖y(t)‖ + ε‖e(t,y(t))‖ ≤ ‖y(t)‖ + ρ.

Hence, y(t) ∈ Dρ implies that z(t) ∈ D. Therefore the

Lipschitz conditions can be applied. It follows that

‖ẋ(t) − ż(t)‖ ≤ ε(‖f(t,x(t)) − f(t, z(t))‖ (36)

+ ‖G(t,x(t))u(t,x(t)) − G(t,z(t))u(t,z(t))‖)

+ ‖F (t, y(t))‖ ≤ λε‖x(t) − z(t)‖ + ‖F (t, y(t))‖ ,

For the same ρ and γ we choose a to satisfy the inequality

a < γ
8λLeλL . Then, taking into account the inequality

d
dt
‖x(t) − z(t)‖ ≤ ‖ẋ(t) − ż(t)‖ and the equation x(0) =

z(0), we integrate the inequality in (36) and obtain

‖x(t) − z(t)‖ ≤

∫ t

0

eελ(t−τ)‖F (τ, y(τ))‖dτ

≤ eελt

∫ L

ε

0

‖F (τ, y(τ))‖dτ

≤

[

2λaL + (IM + λ)L2ψ

(

L

ε

)]

eελt

≤
γ

4
+

γ

4
=

γ

2
. (37)

Therefore the difference x(t) − y(t) can be upper bounded

as follows

‖x(t) − y(t)‖ ≤ ‖x(t) − z(t)‖ + ‖y(t) − z(t)‖

≤
γ

2
+ ϕ(ε) < γ . (38)

The proof is complete.

Remark 3: In this paper we do not treat the control design

problem. The only requirement is that the control signal

u(t,x) satisfy conventional measurability and continuity

properties, and be bounded both in t and in x. Boundedness

in t is common requirement for control systems and is usu-

ally met when the right hand side of the dynamic equations

are bounded in t, which is true in realistic scenarios. Bound-

edness in x is essentially a stability requirement. Indeed, in

most cases the control signal is a continuous function of the

state, meaning that if the state is bounded the control signal

is bounded. Control signals that are discontinuous in the state

usually appear in the form of signum or saturation functions,

which are bounded by default.

Remark 4: Theorem 1 implies that the averaging method

requires preliminary analysis of the original system in two

aspects. First, the averaging process must not alter the

controllability. Second, one needs to make sure that the states

of the original system and of the averaged system can be

included in bounded domains, which relate to each other via

Definition 2

IV. STABILIZATION WITH AVERAGING

In this section we give sufficient conditions under which

the stabilizing controller for the averaged system will also

stabilize the original system and vise versa. To this end we

will use the notion of a control Lyapunov functions (CLF)

introduced in [1]:

Definition 4: A continuously differentiable function V :
R

+ × R
n → R

+ is a CLF for the system (2) if there exist
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class K∞ functions α1(‖x‖) and α2(‖x‖) such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)

inf
u

{

a(t,x) + b⊤(t, x)u
}

< 0 , (39)

where a(t,x) = ∂V
∂t

+ ∂V
∂x

f(t,x) and b(t,x) = G(t, x)∂V
∂x

⊤
.

The property in (39) is equivalent to requiring that in the

set S = {x : b(t, x) = 0, x 6= 0} the inequality a(t, x) < 0
holds.

From Definition 4 and converse Lyapunov theorems the

following lemma follows.

Lemma 1: The system in (2) is uniformly globally asymp-

totically stabilizible (UGAS) iff it admits a CLF.

As we mention in the introduction and showed by con-

structing an example, from the stability of the averaged

system in general does not follow the stability of the original

system. It strongly depends on the value of the parameter ε,

which may not be of the designers disposal. The following

lemmas give sufficient conditions independent of ε under

which from the UGAS of the original system follows that

the averaged system is globally asymptotically stable (GAS)

and vise versa.

Lemma 2: If there exists a time invariant CLF V (x) for

the system (2), then V (x) is a CLF for the averaged system

provided that it is controllable.

Proof: Let V (x) be a CLF for the system (2). Then

V (x) is positive definite and radially unbounded. Moreover,

from the equation b(t,x) = 0 it follows that ∂V
∂x

f(t,x) < 0
or x = 0. Since V (x) does not depend on t, the integration

and limiting operation result in

0 = lim
t→∞

1

t

∫ t

0

b⊤(t,x) = lim
t→∞

1

t

∫ t

0

∂V

∂x
G(τ, x)dτ

= lim
t→∞

∂V

∂x

1

t

∫ t

0

G(τ, x)dτ =
∂V

∂x
Ga(x) , (40)

implying that the set S is the same for the original and aver-

aged systems. Next, integrating the inequality ∂V
∂x

f(t,x) < 0
and taking the limit we obtain

0 > lim
t→∞

1

t

∫ t

0

a(t,x) = lim
t→∞

1

t

∫ t

0

∂V

∂x
f(τ, x)dτ

=
∂V

∂x
lim

t→∞

1

t

∫ t

0

f(τ, x)dτ =
∂V

∂x
fa(x) . (41)

Therefore V (x) is a CLF for the averaged system in (4). That

is there exists control law that stabilizes both the original and

the averaged systems. Notice that this control can be given

in many different ways. In particular, it can be given by the

universal formulas such as Sontag’s formula [12], Freeman

and Kokotovic’s formula [8] or satisficing formula [6].

To go in opposite direction we impose more restrictions

on the system in (2).

Lemma 3: Let V (x) be CLF for the averaged system in

(4). If G(t,x) is a sign definite matrix, then V (x) is a CLF

for system in (2), provided that a(t,x) < 0 on the set Sa =
{x : ∂V

∂x
Ga(x) = 0, x 6= 0}.

Proof: Since V (x) is a CLF for the system (4), it

is positive definite, radially unbounded and on the set Sa

the inequality holds: ∂V
∂x

fa(x) < 0. Sign definiteness of the

matrix G(t,x) implies that of the materix Ga(x). Therefore

the sets Sa for the averaged system in (4) and S for the

original system in (2) are the same. Hence, V (x) is a CLF

for the original system if a(t, x) < 0 on the set Sa.

Remark 5: Theorem 1 along with Lemmas 2 and 3 imply

that if the sufficient conditions are satisfied, the control signal

that stabilizes the averaged system guarantees ε-closeness

of the solutions of the original and averaged systems in

transient and in steady-state. The same is true when tracking

a reference model.

V. CONCLUSION

In this paper we have discussed the question of the

extendibility of the classical averaging theory to affine in

control systems. It has been shown that for the control

systems the straightforward application of averaging can be

misleading in the sense that the controller that stabilizes the

original system may fail to stabilize the averaged system,

and the controller that stabilizes the averaged system may

fail to stabilize the original one. This is a consequence of

the dependence of the stability properties on the parameter

ε. Sufficient conditions are derived to guarantee the validity

of the extension of the classical averaging to affine in control

systems, provided that the controllability is preserved after

averaging.
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