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Abstract— We consider distributed iterative algo-
rithms for the averaging problem over time-varying
topologies. Our focus is on the convergence time of such
algorithms when complete (unquantized) information is
available, and on the degradation of performance when
only quantized information is available. We study a
large and natural class of averaging algorithms, which
includes the vast majority of algorithms proposed to
date, and provide tight polynomial bounds on their con-
vergence time. We then propose and analyze distributed
averaging algorithms under the additional constraint
that agents can only store and communicate quantized
information. We show that these algorithms converge
to the average of the initial values of the agents within
some error. We establish bounds on the error and tight
bounds on the convergence time, as a function of the
number of quantization levels.

I. INTRODUCTION

There has been much recent interest in distributed
control and coordination of networks consisting of
multiple, potentially mobile, agents. This is motivated
mainly by the emergence of large scale networks,
characterized by the lack of centralized access to in-
formation and time-varying connectivity. Control and
optimization algorithms deployed in such networks
should be completely distributed, relying only on
local observations and information, and robust against
unexpected changes in topology such as link or node
failures.

A canonical problem in distributed control is the
consensus problem. The objective in the consensus
problem is to develop distributed algorithms that can
be used by a group of agents in order to reach
agreement (consensus) on a common decision (repre-
sented by a scalar or a vector value). The agents start
with some different initial decisions and communicate
them locally under some constraints on connectivity
and inter-agent information exchange. The consensus
problem arises in a number of applications including
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coordination of UAVs (e.g., aligning the agents’ di-
rections of motion), information processing in sensor
networks, and distributed optimization (e.g., agreeing
on the estimates of some unknown parameters). The
averaging problem is a special case in which the
goal is to compute the exact average of the initial
values of the agents. A natural and widely studied
consensus algorithm, proposed and analyzed in [14]
and [15], involves, at each time step, every agent
taking a weighted average of its own value with
values received from some of the other agents. Similar
algorithms have been studied in the load-balancing lit-
erature (see for example [6]). Motivated by observed
group behavior in biological and dynamical systems,
the recent literature in cooperative control has studied
similar algorithms and proved convergence results
under various assumptions on agent connectivity and
information exchange (see [16], [7], [12], [11],[10]).

In this paper, our goal is to provide tight bounds
on the convergence time (defined as the number of
iterations required to reduce a suitable Lyapunov
function by a constant factor) of a general class of
consensus algorithms, as a function of the number n
of agents. We focus on algorithms that are designed to
solve the averaging problem. We consider both prob-
lems where agents have access to exact values and
problems where agents only have access to quantized
values of the other agents. Our contributions can be
summarized as follows.

In the first part of the paper, Sections II and III,
we consider the case where agents can exchange and
store continuous values, which is a widely adopted
assumption in the previous literature. We consider a
large class of averaging algorithms defined by the
condition that the weight matrix is a possibly non-
symmetric, doubly stochastic matrix. For this class
of algorithms, we prove that the convergence time is
O(n2/η), where n is the number of agents and η is
a lower bound on the nonzero weights used in the
algorithm. To the best of our knowledge, this is the
best polynomial-time bound on the convergence time
of such algorithms. We also show that this bound is
tight. We remark that it is possible to choose the co-
efficients in a distributed manner in order to improve
this convergence time to O(n2). This matches the best
currently available convergence time guarantee for the
much simpler case of static connectivity graphs [13].
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In the second part of the paper, Section IV, we
impose the additional constraint that agents can only
store and transmit quantized values. This model pro-
vides a good approximation for communication net-
works that are subject to communication bandwidth or
storage constraints. We focus on a particular quantiza-
tion rule, which rounds down the values to the nearest
quantization level. We propose a distributed algorithm
that uses quantized values and we prove that all agents
have the same value after O((n2/η) log(nQ)) time
steps, where Q is the number of quantization levels
per unit value. Due to the rounding-down feature of
the quantizer, this algorithm does not preserve the
average of the values at each iteration. However,
we provide bounds on the error between the final
consensus value and the initial average, as a function
of the number Q of available quantization levels. In
particular, we show that the error goes to 0 at a rate
of (log Q)/Q, as the number Q of quantization levels
increases to infinity.

Other than the papers cited above, our work is also
related to [8], [3], and [4], which study the effects of
quantization on the performance of averaging algo-
rithms. In [8], Kashyap et al. proposed randomized
gossip-type quantized averaging algorithms under the
assumption that each agent value is an integer. They
showed that these algorithms converge to approximate
consensus and provided bounds on the convergence
time for specific static topologies. In the recent work
[3], Carli et al. proposed a distributed algorithm
that uses quantized values and showed favorable
convergence properties using simulations on some
static topologies. Our results on quantized averaging
algorithms differ from these works in that we study
the more general case of time-varying topologies,
and provide tight polynomial bounds on both the
convergence time and the discrepancy from the initial
average, in terms of the number of quantization levels.

II. PRELIMINARIES ON DISTRIBUTED AVERAGING

We consider a set N = {1, 2, . . . , n} of agents,
which will henceforth be referred to as “nodes.” Each
node i starts with a scalar value xi(0). At each
nonnegative integer time k, node i receives from some
of the other nodes j a message with the value of
xj(k), and updates its value according to

xi(k + 1) =

n
∑

j=1

aij(k)xj(k), (1)

where the aij(k) are nonnegative weights with the
property that aij(k) > 0 only if node i receives in-
formation from node j at time k. We use the notation
A(k) to denote the weight matrix [aij(k)]i,j=1,...,n.
Given a matrix A, we use E(A) to denote the set

of directed edges (j, i), including self-edges (i, i),
such that aij > 0. At each time k, the nodes’
connectivity can be represented by the directed graph
G(k) = (N, E(A(k))).

Our goal is to study the convergence of the it-
erates xi(k) to the average of the initial values,
(1/n)

∑n
i=1 xi(0), as k approaches infinity. In or-

der to establish such convergence, we impose some
assumptions on the weights aij(k) and the graph
sequence G(k).

Assumption 1: For all k ≥ 0, the weight matrix
A(k) is a doubly stochastic matrix with positive
diagonal. Additionally, there exists a constant η > 0
such that if aij(k) > 0, then aij(k) ≥ η.

The doubly stochasticity assumption on the weight
matrix guarantees that the average of the node values
remains the same at each iteration. The second part of
this assumption states that each node gives significant
weight to its values and to the values of its neighbors
at each time k.

Our next assumption ensures that the graph se-
quence G(k) is sufficiently connected for the nodes
to repeatedly influence each other’s values.

Assumption 2: There exists an integer B ≥ 1 such
that the directed graph

„

N, E(A(kB))
[

· · ·
[

E(A((k + 1)B − 1))

«

is strongly connected for all k ≥ 0.
Any algorithm of the form given in Eq. (1) with

the sequence of weights aij(k) satisfying Assump-
tions 1 and 2 solves the averaging problem. This is
formalized in the following theorem.

Theorem 1: Let Assumptions 1 and 2 hold. Let
{x(k)} be generated by the iteration (1). Then, for
all i, we have

lim
k→∞

xi(k) =
1

n

n
∑

j=1

xj(0).

This theorem is a minor modification of known
results in [14], [15], [7], [2], where the convergence
of each xi(k) to the same value is established under
weaker versions of Assumptions 1 and 2. The fact that
the limit is the average of the entries of the vector
x(0) follows from the fact that multiplication of a
vector by a doubly stochastic matrix preserves the
average of the vector’s components.

Recent research has focused on methods of choos-
ing weights aij(k) that satisfy Assumptions 1 and 2,
and minimize the convergence time of the resulting
averaging algorithm (see [17] for the case of static
graphs, see [12] and [1] for the case of symmetric
weights, i.e., weights satisfying aij(k) = aji(k), and
also see [5]). For static graphs, some recent results
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on optimal time-invariant algorithms may be found
in [13].

III. CONVERGENCE TIME

In this section, we give an analysis of the con-
vergence time of averaging algorithms of the form
(1). Our goal is to obtain tight estimates on the
convergence time, under Assumptions 1 and 2. As a
convergence measure, we use the “sample variance”
of a vector x ∈ R

n, defined as

V (x) =

n
∑

i=1

(xi − x̄)2,

where x̄ is the average of the entries of x.
Let x(k) denote the vector of node values at time k

[i.e., the vector of iterates generated by algorithm (1)
at time k]. We are interested in providing an upper
bound on the number of iterations it takes for the
“sample variance” V (x(k)) to decrease to a small
fraction of its initial value V (x(0)). We omit the
proofs of some of the results due to space restrictions
and refer the interested reader to the technical report
[?].

A. Preliminaries on Doubly Stochastic Matrices

We begin by analyzing how the sample variance
V (x) changes when the vector x is multiplied by a
doubly stochastic matrix A. The next lemma shows
that V (Ax) ≤ V (x). Thus, under Assumption 1, the
sample variance V (x(k)) is nonincreasing in k, and
V (x(k)) can be used as a Lyapunov function.

Lemma 1: Let A be a doubly stochastic matrix.
Then, for all x ∈ R

n,

V (Ax) = V (x) −
∑

i<j

wij(xi − xj)
2,

where wij is the (i, j)-th entry of the matrix AT A.
Because the weight matrix A(k) has nonnegative

entries, the entries wij(k) of A(k)T A(k) are non-
negative. In view of this, Lemma 1 implies that

V (x(k + 1)) ≤ V (x(k)) for all k,

and the amount of variance decrease is given by

V (x(k))−V (x(k+1)) =
∑

i<j

wij(k)(xi(k)−xj(k))2.

We will use this result to provide a lower bound on the
amount of decrease of the sample variance V (x(k))
in between iterations.

Since every positive entry of A(k) is at least η, it
follows that every positive entry of A(k)T A(k) is at
least η2. Therefore, it is immediate that

if wij(k) > 0, then wij(k) ≥ η2.

In our next lemma, we establish a stronger lower
bound. In particular, instead of focusing on an in-
dividual wij , we consider all wij associated with
edges (i, j) that cross a particular cut in the graph
(N, E(AT A)), which allows us to provide a lower
bound linear in η.

Lemma 2: Let A be a stochastic matrix with pos-
itive diagonal, and assume that its smallest positive
entry is at least η. If (S−, S+) is a partition of the
set N = {1, . . . , n} into two disjoint sets with

∑

i∈S−, j∈S+

wij > 0,

then
∑

i∈S−, j∈S+

wij ≥ η

2
.

B. A Bound on Convergence Time

With the preliminaries on doubly stochastic matri-
ces in place, we can now proceed to derive bounds
on the decrease of our Lyapunov function V (x(k))
during the interval [kB, (k+1)B−1]. In what follows,
we denote by V (k) the sample variance V (x(k)) at
time k.

Lemma 3: Let Assumptions 1 and 2 hold. Let
{x(k)} be generated by the update rule (1). Suppose
that the components xi(kB) of the vector x(kB) have
been ordered from largest to smallest, with ties broken
arbitrarily. Then, we have

V (kB)−V ((k+1)B) ≥ η

2

n−1
∑

i=1

(xi(kB)−xi+1(kB))2.

Proof: By Lemma 1, we have for all t,

V (t) − V (t + 1) =
∑

i<j

wij(t)(xi(t) − xj(t))
2, (2)

where wij(t) is the (i, j)-th entry of A(t)T A(t).
Summing up the variance differences V (t)−V (t+1)
over different values of t, we obtain

V (kB)−V ((k+1)B) =

(k+1)B−1
X

t=kB

X

i<j

wij(t)(xi(t)−xj(t))
2
.

(3)
We next introduce some notation.
(a) For all d ∈ {1, . . . , n−1}, let td be the first time

larger than or equal to kB (if it exists) at which
there is a communication between two nodes
belonging to the two sets {1, . . . , d} and {d +
1, . . . , n}, to be referred to as a communication
across the cut d.

(b) For all t ∈ {kB, . . . , (k + 1)B − 1}, let D(t) =
{d | td = t}, i.e., D(t) consists of “cuts”
d ∈ {1, . . . , n − 1} such that time t is the
first communication time larger than or equal
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to kB between nodes in the sets {1, . . . , d}
and {d + 1, . . . , n}. Because of Assumption 2,
the union of the sets D(t) includes all indices
1, . . . , n − 1.

(c) For all d ∈ {1, . . . , n−1}, let Cd = {(i, j) | i ≤
d, d + 1 ≤ j}.

(d) For all t ∈ {kB, . . . , (k+1)B−1}, let Fij(t) =
{d ∈ D(t) | (i, j) ∈ Cd}, i.e., Fij(t) consists of
all cuts d such that the edge (i, j) at time t is
the first communication across the cut at a time
larger than or equal to kB.

(e) To simplify notation, let yi = xi(kB). By
assumption, we have y1 ≥ · · · ≥ yn.

We make two observations:
(1) Suppose that d ∈ D(t). Then, for some (i, j) ∈

Cd, we have either aij(t) > 0 or aji(t) > 0. In
either case, we obtain wij(t) > 0. By Lemma 2,
we obtain

∑

(i,j)∈Cd

wij(t) ≥
η

2
. (4)

(2) Fix some (i, j), with i < j, and time t ∈
{kB, . . . , (k+1)B−1}, and suppose that Fij(t)
is nonempty. Let Fij(t) = {d1, . . . , dk}, where
the dj are arranged in increasing order. Since
d1 ∈ Fij(t), we have d1 ∈ D(t) and therefore
td1

= t. By the definition of td1
, this implies

that there has been no communication between
a node in {1, . . . , d1} and a node in {d1 +
1, . . . , n} during the time interval [kB, t − 1].
It follows that xi(t) ≥ yd1

. By a symmetrical
argument, we also have

xj(t) ≤ ydk+1. (5)

These relations imply that

xi(t) − xj(t) ≥ yd1
− ydk+1

=

k−1
∑

h=1

(ydh
− ydh+1

)

+(ydk
− ydk+1)

≥
∑

d∈Fij(t)

(yd − yd+1),

where the last inequality follows because we
have ydi

− ydi+1
≥ ydi

− ydi+1 for all i =
1, . . . , k − 1. Since the components of y are
sorted in nonincreasing order, we have yd −
yd+1 ≥ 0, for every d ∈ Fij(t). For any
nonnegative numbers zi, we have

(z1 + · · · + zk)2 ≥ z2
1 + · · · + z2

k,

which implies that

(xi(t) − xj(t))
2 ≥

∑

d∈Fij(t)

(yd − yd+1)
2. (6)

We now use these two observations to provide a lower
bound on the expression on the right-hand side of Eq.
(2) at time t. We use Eq. (6) and then Eq. (4), to
obtain
X

i<j

wij(t)(xi(t) − xj(t))
2

≥
X

i<j

wij(t)
X

d∈Fij(t)

(yd − yd+1)
2

=
X

d∈D(t)

X

(i,j)∈Cd

wij(t)(yd − yd+1)
2

≥
η

2

X

d∈D(t)

(yd − yd+1)
2
.

We sum both sides of the above inequality for
different values of t, and use Eq. (3), to obtain

V (kB) − V ((k + 1)B)

=

(k+1)B−1
X

t=kB

X

i<j

wij(t)(xi(t) − xj(t))
2

≥
η

2

(k+1)B−1
X

t=kB

X

d∈D(t)

(yd − yd+1)
2

=
η

2

n−1
X

d=1

(yd − yd+1)
2
,

where the last inequality follows from the fact that
the union of the sets D(t) is only missing those d for
which yd = yd+1.

We next establish a bound on the variance decrease.

Lemma 4: Let Assumptions 1 and 2 hold, and
suppose that V (kB) > 0. Then,

V (kB) − V ((k + 1)B)

V (kB)
≥ η

2n2
for all k.

Proof: Without loss of generality, we assume
that the components of x(kB) have been sorted
in nonincreasing order. We introduce the notation
∆(kB) = V (kB) − V ((k + 1)B). By Lemma 3, we
have

∆(kB) ≥ η

2

n−1
∑

i=1

(xi(kB) − xi+1(kB))2.

This implies that

∆(kB)

V (kB)
≥ η

2

∑n−1
i=1 (xi(kB) − xi+1(kB))2
∑n

i=1(xi(kB) − x̄(kB))2
.

Observe that the right-hand side does not change
when we add a constant to every xi(kB). We can
therefore assume, without loss of generality, that
x̄(kB) = 0, so that

∆(kB)

V (kB)
≥

η

2
min

x1≥x2≥···≥xn
P

i xi=0

Pn−1
i=1 (xi − xi+1)

2

Pn

i=1 x2
i

.
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Note that the right-hand side is unchanged if we mul-
tiply each xi by the same constant. Therefore, we can
assume, without loss of generality, that

∑n
i=1 x2

i = 1,
so that

∆(kB)

V (kB)
≥ η

2
min

x1≥x2≥···≥xn
P

i xi=0,
P

i x2
i
=1

n−1
∑

i=1

(xi−xi+1)
2. (7)

The requirement
∑

i x2
i = 1 implies that the average

value of x2
i is 1/n, which implies that there exists

some j such that |xj | ≥ 1/
√

n. Without loss of
generality, let us suppose that this xj is positive.1

The rest of the proof relies on a technique from
[9] to provide a lower bound on the right-hand side
of Eq. (7). Let

zi = xi − xi+1 for i < n, and zn = 0.

Note that zi ≥ 0 for all i and
n

∑

i=1

zi = x1 − xn.

Since xj ≥ 1/
√

n for some j, we have that x1 ≥
1/

√
n; since

∑n
i=1 xi = 0, it follows that at least one

xi is negative, and therefore xn < 0. This gives us
n

∑

i=1

zi ≥
1√
n

.

Combining with Eq. (7), we obtain

∆(kB)

V (kB)
≥ η

2
min

zi≥0,
P

i
zi≥1/

√
n

n
∑

i=1

z2
i .

The minimization problem on the right-hand side is
a symmetric convex optimization problem, and there-
fore has a symmetric optimal solution, namely zi =
1/n1.5 for all i. This results in an optimal value of
1/n2. Therefore, ∆(kB)/V (kB) ≥ η/(2n2), which
is the desired result.

Our main result follows immediately from
Lemma 4.

Theorem 2: Let Assumptions 1 and 2 hold. Then,
there exists an absolute constant2 c such that we have

V (k) ≤ εV (0) for all k ≥ c(n2/η)B log(1/ε).
The next theorem shows that the convergence time

bound of the preceding theorem is tight.

1Otherwise, we can replace x with −x and subsequently reorder
to maintain the property that the components of x are in descending
order. It can be seen that these operations do not affect the objective
value.

2We say c is an absolute constant when it does not depend on
any of the parameters in the problem, in this case n,B, η, ε.

Theorem 3: There exist constants c and n0 with the
following property. For any n ≥ n0, nonnegative inte-
ger B, η < 1/2, and ε < 1, there exist a sequence of
weight matrices A(k) satisfying Assumptions 1 and 2,
and an initial value x(0) such that if V (k)/V (0) ≤ ε,
then

k ≥ c
n2

η
B log

1

ε
.

It is possible to synthesize the coefficients aij(k)
in a distributed manner using the 3-hop neighborhood
information for each node. This yields an averaging
algorithm with the improved O(n2B) convergence
time. The details of this algorithm can be found in
the technical report [?].

IV. QUANTIZATION EFFECTS

In this section, we consider a quantized version of
the update rule (1). This model is a good approxima-
tion for a network of nodes communicating through
finite bandwidth channels, so that at each time instant,
only a finite number of bits can be transmitted.
We incorporate this constraint in our algorithm by
assuming that each node, upon receiving the values
of its neighbors, computes the convex combination
∑n

j=1 aij(k)xj(k) and quantizes it. This update rule
also captures a constraint that each node can only
store quantized values.

Unfortunately, under Assumptions 1 and 2, if the
output of Eq. (1) is rounded to the nearest integer, the
sequence x(k) is not guaranteed to converge to con-
sensus; see [8]. We therefore choose a quantization
rule that rounds the values down, according to

xi(k + 1) =









n
∑

j=1

aij(k)xj(k)







 , (8)

where b·c represents rounding down to the nearest
multiple of 1/Q, and where Q is some positive
integer. For convenience we define U = maxi xi(0)
and L = mini xi(0).

We adopt a slightly different measure of conver-
gence for the analysis of the quantized consensus
algorithm. For any x ∈ R

n, we define m(x) =
mini xi and

V (x) =

n
∑

i=1

(xi − m(x))2.

We will also use the simpler notation m(k) and
V (k) to denote m(x(k)) and V (x(k)), respectively,
where it is more convenient to do so. The function
V will be our Lyapunov function for the analysis of
the quantized consensus algorithm. The reason for
not using our earlier Lyapunov function, V , is that
for the quantized algorithm, V is not guaranteed to
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be monotonically nonincreasing in time, because the
operation of quantizing down can increase V . On the
other hand, V is only decreased when each value is
quantized down. It can be verified that for any x,
we have V (x) ≤ V (x) ≤ nV (x). As a consequence,
any convergence time bounds expressed in terms of
V translate to essentially the same bounds expressed
in terms of V , up to a logarithmic factor. The next
theorem contains our main result on the convergence
time of the quantized algorithm.

Theorem 4: Let Assumptions 1 and 2 hold. Let
{x(k)} be generated by the update rule (8). Then,
there exists an absolute constant c such that for all
ε > 0,

V (k) ≤ εV (0) for all k ≥ c (n2/η)B log(1/ε).

Similar to Theorem 3, we can establish that the
bound in this theorem is tight.

Despite favorable convergence properties of our
quantized averaging algorithm (8), the update rule
does not preserve the average of the values at each it-
eration. Therefore, the common limit of the sequences
xi(k), denoted by xf , need not be equal to the exact
average of the initial values. We next provide an upper
bound on the error between xf and the initial average,
as a function of the number of quantization levels.

Theorem 5: Let Assumptions 1 and 2 hold. Then,
there is an absolute constant c such that for the
common limit xf of the values xi(k) generated by
the quantized algorithm (8), we have

∣

∣

∣

∣

∣

xf − 1

n

n
∑

i=1

xi(0)

∣

∣

∣

∣

∣

≤ c

Q

n2

η
B log(Qn(U − L)).

Let us assume that the parameters B, η, and U −L
are fixed. Theorem 5 implies that as n increases, the
number of bits used for each communication, which is
proportional to log Q, needs to grow only as O(log n)
to make the error negligible. Furthermore, this is true
even if the parameters B, 1/η, and U − L grow
polynomially in n.

V. CONCLUSIONS

We studied distributed algorithms for the averaging
problem over networks with time-varying topology,
with a focus on tight bounds on the convergence time
of a general class of averaging algorithms. We first
considered algorithms for the case where agents can
exchange and store continuous values, and established
tight convergence time bounds. We next studied aver-
aging algorithms under the additional constraint that
agents can only store and send quantized values. We
showed that these algorithms guarantee convergence
of the agent values to consensus within some error

from the average of the initial values and provided
a bound on the error that highlights the dependence
on the number of quantization levels. Future work
includes investigation of other quantization schemes
and their impact on convergence time.
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