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Abstract— In the average consensus a set of linear systems
has to be driven to the same final state which corresponds to
the average of their initial states. This contribution presents
a consensus strategy in which the systems can exchange
information among themselves according to a fixed connected
digital communication network. Beside the decentralized com-
putational aspects induced by the choice of the communication
network, we here have also to face the quantization effects due
to the digital links. We here present and discuss two different
encoding/decoding strategies with theoretical and simulation
results on their performance.

I. INTRODUCTION

A basic aspect in the analysis and in the design of coop-

erative agents systems is related to the effect of the agents

information exchange on the coordination performance. A

coordination task which is widely treated in the literature

is the so called average consensus. This is the problem of

driving states of a set of dynamic systems to a final common

state which corresponds to the average of initial states of each

system.

The way in which the information flow on the network

influences the consensus performance has been already con-

sidered in the literature [1], [2], where the communication

cost is modeled simply by the number of active links in

the network which admit the transmission of real numbers.

However, this model can be too rough when the network

links represent actual digital communication channels. In-

deed the transmission over a finite alphabet requires the

design of efficient ways to translates real numbers into

digital information, namely smart quantization techniques.

The investigation of consensus under quantized communi-

cation started with [3] in which the authors study systems

having (and transmitting) integer-valued states and propose

a class of gossip algorithms which preserve the average of

states and are guaranteed to converge up to one quantization

bin. In [4] the quantization error is seen as a zero-mean

additive noise and by simulations, it is shown for small N
that, if the increasing correlation among the node states is

taken into account, the variance of the quantization noise

diminishes and nodes converge to a consensus. In [5] the

authors propose a distributed algorithm that uses quantized

values and preserves the average at each iteration. Even if the

consensus is not reached, they showed favorable convergence

properties using simulations on some static topologies. The

authors in [6] adopt the probabilistic quantization (PQ)

scheme to quantize the information before transmitting to the
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neighboring sensors. They show that the node states reach

consensus to a quantized level; only in expectation do they

converge to the desired average.

The main contribution of this paper is to introduce a novel

quantized strategy that permits both to maintain the initial

average and to reach it asymptotically. More precisely we

adapt coding/decoding strategies, that were proposed for

centralized control and communication problems, to the

distributed consensus problem. In particular, we present two

coding/decoding strategies, one based on the exchange of

logarithmically quantized information, the other on a zoom

in - zoom out strategy (this latter involves the use of uniform

quantizers). We provide analytical and simulative results

illustrating the convergence properties of these strategies.

In particular we show that the convergence factors depend

smoothly on the accuracy parameter of the quantizers used

and that, remarkably, that the critical quantizer accuracy

sufficient to guarantee convergence is independent from the

network dimension.

The paper is organized as follows. Section II briefly reviews

the standard average consensus algorithm. In Section III

we present two strategies of coding/decoding of the data

throughout reliable digital channels: one based on loga-

rithmic quantizers, the other on uniform quantizers. We

analyze the former from a theoretical point in Section IV and

Section V. We provide simulations results for the latter in

Section VI. Finally, we gather our conclusions in Section VII.

Mathematical Preliminaries

Before proceeding, we collect some definitions and nota-

tions which are used through the paper.

In this paper G = (V, E) denotes a undirected graph where

V = {1, . . . , N} is the set of vertices and E is the set

of (directed) edges, i.e., a subset of V × V . Clearly, if

(i, j) ∈ E also (j, i) ∈ E and this means that i can transmit

information about its state to j and vice-versa. Any (i, i) ∈ E
is called a self loop. A path in G consists in a sequence of

vertices (i1, i2, . . . , ir) such that (ij , ij+1) ∈ E for every

j ∈ {1, . . . , r − 1}. A graph is said to be connected if for

any given pair of vertices (i, j) there exists a path connecting

i to j. A matrix M is said to be stochastic if Mij ≥ 0 for

all i and j and the sums along each row are equal to 1.

Moreover a matrix M is said to be doubly stochastic if it is

stochastic and also the sums along each column are equal to

1. Given a nonnegative matrix M ∈ R
N×N , we can define

an induced graph GM by taking N nodes and putting an edge

(j, i) in E if Mij > 0. Given a graph G on V , M is said to

be adapted or compatible with G if GM ⊆ G. Given a vector

v ∈ R
N and a matrix M ∈ R

N×N , we denote with vT and

MT the transpose of v and of M . Then, let σ(M) denote the

set of eigenvalues of M . If M is symmetric and stochastic

we assume that σ(M) = {1, λ1(M), . . . , λN−1(M)} , where
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1, λ1(M), . . . , λN−1(M) are the eigenvalues of M and are

such that λ1(M) ≥ λ2(M) ≥ . . . ≥ λN−1(M). We define

λmax(M) = λ1(M), λmin(M) = λN−1(M).

With the symbols 1 and 0 we denote the N -dimensional

vectors having respectively all the components equal to 1
and equal to 0. Given v = [v1, ..., vN ]T ∈ R

N , diag {v}
or diag {v1, . . . , vN} mean a diagonal matrix having the

components of v as diagonal elements. Moreover, ‖v‖ and

< v > denote the Euclidean norm of v and the subspace

generated by v, respectively. Finally, for f, g : N → R, we

say that f ∈ o(g) if limn→∞
f(n)
g(n) = 0.

II. PROBLEM FORMULATION

We start this section by briefly describing the standard

discrete-time consensus algorithm. Assume that we have a

set of agents V and a graph G on V describing the feasible

communications among the agents. For each agent i ∈ V
we denote by xi(t) the estimate of the average of agent i
at time t. Standard consensus algorithm are constructed by

choosing a doubly stochastic matrix P ∈ R
N×N compatible

with G and assuming that at every times t agent i updates

its estimate according to

xi(t + 1) =

N
∑

j=1

Pijxj(t). (1)

More compactly we can write

x(t + 1) = Px(t), (2)

where x(t) is the column vector entries xi(t) represent the

agents states. In our treatment we will restrict to the case in

which P is symmetric, i.e., PT = P . Note that a stochastic

symmetric matrix P is automatically doubly stochastic.

It is well known in the literature [7] that, if P is a

symmetric stochastic matrix with positive diagonal entries

and such that GP is connected, then the algorithm (2) solves

the average consensus problem, namely

lim
t→+∞

x(t) = xa(0)1,

where xa(0) := 1
N 1

T x(0). From now on we will assume

the following.

Assumption 1: P is a symmetric stochastic matrix such

that Pii > 0, for i ∈ {1, . . . , N}, and GP is connected.

Note that the algorithm (2) relies upon a crucial assumption:

each agent transmits to its neighboring agents the precise

value of its state. This implies the exchange of perfect

information through the communication network.

In what follows, we consider a more realistic case, i.e.,

we assume that the communication network is constituted

only of rate-constrained digital links. Accordingly, the main

objectives of this paper are to understand (i) how the standard

consensus algorithm may be modified to overcome the forced

quantization effects due to the digital channel and (ii) how

much does its performance degrade.

We note that the presence of a rate constraint prevents the

agents from having a precise knowledge about the state of

the other agents. In fact, through a digital channel, the i-th

agent can only send to the j-th agent symbolic data in a

finite or countable alphabet; using only this data, the j-th

agent can build at most an estimate of the i-th agent’s state.

To tackle this problem we take a two step approach. First,

we introduce a coding/decoding scheme; each agent uses this

scheme to estimate the positions of its neighbors. Second, we

consider the standard consensus algorithm where, in place

of the exact knowledge of the states of the systems, we

substitute estimates calculated according to the proposed

coding/decoding scheme.

III. CODER/DECODER PAIRS FOR DIGITAL CHANNELS

In this section we discuss a general and two specific

coder/decoder models for reliable digital channels; we follow

the survey [8]. We will later adopt this coder/decoder scheme

to define communication protocols in the robotic network.

Suppose a source is communicating to a receiver some time-

varying data x : N → R via repeated transmissions at

time instants in N. Each transmission takes place through

a digital channel, i.e., messages can only be symbols in

a finite or countable set. The channel is assumed to be

reliable, i.e., the transmitted symbol is received without error.

A coder/decoder pair for a digital channel is given by the

sets:

(i) a set Ξ, serving as state space for the coder/decoder;

a fixed ξ0 ∈ Ξ is the initial coder/decoder state;

(ii) a finite or countable set A, serving as transmission

alphabet; elements α ∈ A are called message;

and by the maps:

(i) a map F : Ξ × A → Ξ, called the coder/decoder

dynamics;

(ii) a map Q : Ξ × R → A, being the quantizer function;

(iii) a map H : Ξ ×A → R, called the decoder function.

The coder computes the symbols to be transmitted according

to, for t ∈ N,

ξ(t + 1) = F (ξ(t), α(t)), α(t) = Q(ξ(t), x(t)).

Correspondingly, the decoder implements, for t ∈ N,

ξ(t + 1) = F (ξ(t), α(t)), x̂(t) = H(ξ(t), α(t)).

Coder and decoder are jointly initialized at ξ(0) = ξ0.

Note that an equivalent representation for the coder is ξ(t +
1) = F (ξ(t), Q(ξ(t), x(t))), and α(t) = Q(ξ(t), x(t)). In

summary, the coder/decoder dynamics is given by

ξ(t + 1) = F (ξ(t), α(t)),

α(t) = Q(ξ(t), x(t)),

x̂(t) = H(ξ(t), α(t)).

(3)

In what follows we present two interesting coder/decoder

pairs: the “zoom in - zoom out” uniform quantizer strategy

and the logarithmic quantizer.

A. Zoom in - zoom out uniform coder

In this strategy the information transmitted is quantized by

a scalar uniform quantizer which can be described as follows.

For L ∈ N, define the uniform set of quantization levels

SL =
{

− 1 +
2ℓ − 1

L

∣

∣ ℓ ∈ {1, . . . , L}
}

∪ {−1} ∪ {1}
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and the corresponding uniform quantizer (see Figure 1)

unqL : R → SL by

unqL(x) = −1 +
2ℓ − 1

L
,

for ℓ ∈ {1, . . . , L} s.t.
2(ℓ − 1)

L
≤ x + 1 ≤ +

2ℓ

L
,

and otherwise unqL(x) = 1 if x > 1 or unqL(x) =
−1 if x < −1. Note that larger values of the parameter

L correspond to more accurate uniform quantizers unqL.

Moreover note that, if we define m to be the number of

quantization levels we have that m = L + 2.

For L ∈ N, kin ∈ ]0, 1[, and kout ∈ ]1, +∞[, the zoom

in - zoom out uniform coder/decoder has the state space

Ξ = R × R>0, the initial state ξ0 = (0, 1), and the alphabet

A = SL. The coder/decoder state is written as ξ = (x̂−1, f)
and the coder/decoder dynamics are

x̂−1(t + 1) = x̂−1(t) + f(t)α(t),

f(t + 1) =

{

kin f(t), if |α(t)| < 1,

kout f(t), if |α(t)| = 1.

The quantizer and decoder functions are, respectively,

α(t) = unqL

(x(t) − x̂−1(t)

f(t)

)

, x̂(t) = x̂−1(t) + f(t)α(t).

The coder/decoder pair is analyzed as follows. One can

observe that x̂−1(t + 1) = x̂(t), i.e., the first component

of the coder/decoder state contains the estimate of x. The

transmitted messages contain a quantized version of the

estimate error x − x̂−1 scaled by factor f . Accordingly, the

second component of the coder/decoder state f is referred to

as the scaling factor: it grows when |x − x̂−1| ≥ f (“zoom

out step”) and it decreases when |x − x̂−1| < f (“zoom in

step”).

Fig. 1. The uniform quantizer (m = 6).

B. Logarithmic coder

This strategy is presented for example in [9]. Given an

accuracy parameter δ ∈ ]0, 1[ , define the logarithmic set of

quantization levels

Sδ =
{(1 + δ

1 − δ

)ℓ}

ℓ∈Z

∪ {0} ∪
{

−
(1 + δ

1 − δ

)ℓ}

ℓ∈Z

, (4)

and the corresponding logarithmic quantizer (see Figure 2)

lgqδ : R → Sδ by

Fig. 2. The logarithmic quantizer.

lgqδ(x) =
(1 + δ

1 − δ

)ℓ

,

for ℓ ∈ Z s.t.
(1 + δ)ℓ−1

(1 − δ)ℓ
≤ x ≤

(1 + δ)ℓ

(1 − δ)ℓ+1
,

otherwise lgqδ(x) = 0 if x = 0 or lgqδ(x) = − lgqδ(−x) if

x < 0.

Note that smaller values of the parameter δ correspond to

more accurate logarithmic quantizers lgqδ . For δ ∈ ]0, 1[,
the logarithmic coder/decoder is defined by the state space

Ξ = R, initial state ξ0 = 0, the alphabet A = Sδ, and by

the maps

ξ(t + 1) = ξ(t) + α(t)

α(t) = lgqδ(x(t) − ξ(t))

x̂(t) = ξ(t) + α(t).

The coder/decoder pair is analyzed as follows. One can

observe that ξ(t + 1) = x̂(t) for t ∈ N, that is, the

coder/decoder state contains the estimate of the data x. The

transmitted messages contain a quantized version of the

estimate error x − ξ. The estimate x̂ : N → R satisfies

the recursive relation

x̂(t + 1) = x̂(t) + lgqδ (x(t + 1) − x̂(t)) ,

with initial condition x̂(0) = lgqδ (x(0)) determined by

ξ(0) = 0. Finally, define the function r : R → R by

r(y) = lgqδ(y)−y
y for y 6= 0 and r(0) = 0. Some elementary

calculations show that |r(y)| ≤ δ for all y ∈ R. Accordingly,

if we define the trajectory ω : N → [−δ, +δ] by ω(t) =
r(x(t + 1) − x̂(t)), then we obtain that

x̂(t + 1) = x̂(t) + (1 + ω(t))
(

x(t + 1) − x̂(t)
)

. (5)

IV. CONSENSUS ALGORITHM WITH EXCHANGE OF

QUANTIZED INFORMATION

We consider now the average consensus algorithm with the

assumption that the agents can communicate only via digital

channels. Here, we adopt the logarithmic coder/decoder

scheme (3) described in Section III-B; we analyze the zoom

in - zoom out strategy via simulations in Section VI.

Here is an informal description of our proposed scheme.

We envision that along each communication edge we imple-

ment a logarithmic coder/decoder; in other words, each agent
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transmits via a dynamic encoding scheme to all its neighbors

the quantized information regarding its position. Once state

estimates of all node’s neighbors are available, each node

will then implement the average consensus algorithm.

Next, we provide a formal description of the proposed

algorithm. Let P ∈ R
N×N be a stochastic symmetric matrix

with positive diagonal elements and with connected induced

graph GP . Assume there are digital channels along all edges

of GP capable of carrying a countable number of symbols.

Pick an accuracy parameter δ ∈ ]0, 1[ . The consensus

algorithm with dynamic coder/decoder is defined as follows:

Processor states: For each i ∈ {1, . . . , N}, node i has a

state variable xi ∈ R and state estimates x̂j ∈ R of the

states of all neighbors j of i in GP . Furthermore, node

i maintains a copy of x̂i.

Initialization: The state x(0) = [x1(0), . . . , xN (0)]T ∈ R
N

is given as part of the problem. All estimates x̂j(0), for

j ∈ {1, . . . , N}, are initialized to 0.

State iteration: At time t ∈ N, for each i, node i performs

three actions in the following order:

(1) Node i updates its own state by

xi(t) = xi(t − 1) +
N

∑

j=1

Pij (x̂j(t − 1) − x̂i(t − 1)) .

(6)

(2) Node i transmits to all its neighbors the symbol

αi(t) = lgqδ(xi(t) − x̂i(t − 1)).

(3) Node i updates its estimates

x̂j(t) = x̂j(t − 1) + αj(t), (7)

for j being equal to all neighbors of i and to i itself.

Remark 2: Robot i and all its neighbors j maintain in

memory an estimate x̂i of the state xi. We denote all these

estimates by the same symbol because they are all identical:

they are initialized in the same manner and they are updated

through the same equation with the same information. On the

other hand, it would be possible to adopt distinct quantizer

accuracies δij for each communication channel (i, j). In such

a case then we would have to introduce variables x̂ij that

node i and j would maintain for the estimate of xi.

We now analyze the algorithm. First, we write the closed-

loop system in matrix form. Equation (6) is written as

x(t + 1) = x(t) + (P − I)x̂(t). (8)

The N -dimensional vector of state estimates x̂ =
[x̂1, . . . , x̂N ]

T
is updated according to the multiplicative-

noise model in equation (5). In other words, there exist

ωj : N → [−δ, +δ], for j ∈ {1, . . . , N}, such that

x̂j(t + 1) = x̂j(t) + (1 + ωj(t))
(

xj(t + 1) − x̂j(t)
)

,

and, for Ω(t) := diag {ω1(t), . . . , ωN(t)},

x̂(t + 1) = x̂(t) + (I + Ω(t))
(

x(t + 1) − x̂(t)
)

. (9)

Equations (8) and (9) determine the closed-loop system.

Next, we define the estimate error e = x̂ − x ∈ R
N . By

straightforward calculations we can rewrite the close-loop

system in terms of the quantities x and e, for t ∈ Z≥0, as
[

x(t + 1)
e(t + 1)

]

=

[

I 0
0 Ω(t)

] [

P P − I
P − I P − 2I

] [

x(t)
e(t)

]

. (10)

Initial conditions are x(0) and e(0) = −x(0). We state now

the main properties of our quantized consensus algorithm.
Theorem 3: Assume P ∈ R

N×N satisfies Assumption 1

and define δ̄ ∈ R by

δ̄ := (1 + λmin(P )) / (3 − λmin(P )) . (11)

The solution t 7→ (x(t), e(t)) of the consensus algorithm

with dynamic coder/decoder satisfies:

(i) the state average is preserved by the algorithm, that is,
1
N

∑N
i=1 xi(t) = 1

N

∑N
i=1 xi(0) for all t ∈ N;

(ii) if 0 < δ < δ̄, then the state variables converge to their

average value and the estimate error vanishes, that is,

lim
t→∞

x(t) = xa(0)1, lim
t→∞

e(t) = 0.

where xa(0) = 1
N 1

T x(0).

Remark 4: Consider the sequence of circulant matrices

PN ∈ R
N×N defined by

PN =















1
3

1
3 0 0 · · · 0 0 1

3
1
3

1
3

1
3 0 · · · 0 0 0

0 1
3

1
3

1
3 · · · 0 0 0

...
...

...
... · · ·

...
...

...
1
3 0 0 0 · · · 0 1

3
1
3















. (12)

For this sequence of symmetric stochastic matrices we have

that λmin(PN ) = 1
3 − 2

3 cos
(

2π
N

⌊

N
2

⌋)

. Hence λmin(PN ) ≥
− 1

3 , implying therefore that δ̄ ≥ 1
5 for all N . This shows that

δ̄ is uniformly bounded away from 0. This is a remarkable

property of scalability on the dimension of the network.

However the fact that the critical accuracy sufficient to guar-

antee convergence is independent on the network dimension

is more general than what seen in the above example. Indeed,

assume that PN ∈ R
N×N is a sequence of matrices of

increasing size, where each PN satisfies Assumption 1 and

where each PN has all the diagonal elements greater than

a positive real number p̄. Then, by Gershgorin’s Theorem

[10], we have that λmin(PN ) ≥ −1+ 2p̄ and hence δ̄ ≥ p̄
2−p̄

for all N . It follows that the critical accuracy sufficient to

guarantee convergence is bounded away from zero uniformly

on the dimension of the network. �

V. EXPONENTIAL CONVERGENCE

The objective of this section is to understand, by means

of a Lyapunov analysis, how much the quantization affects

the performance of the consensus algorithm. We start by

introducing some definitions. A function f : N → R

converges to 0 exponentially fast if there exist a constant

C > 0 and another constant ξ ∈ [0, 1[ such that |f(t)| ≤
Cξt, for all t; the infimum among all numbers ξ ∈ [0, 1[
satisfying the exponential convergence property is called the

exponential convergence factor of f . In other words, the

exponential convergence factor of f is given by

lim sup
t→∞

|f(t)|
1
t .
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Consider first the system (2). To quantify the speed of con-

vergence of (2) toward consensus, we introduce the variable

x̄(t) := x(t) − xa(0)1.

Clearly, limt→∞ x(t) = xa(0)1 if and only if

limt→∞ x̄(t) = 0. It is easy to see that the variable x̄
satisfies the same recursive equation of the variable x, i.e.,

x̄(t + 1) = P x̄(t). (13)

Moreover note that 1
T x̄(t) = 0, for all t ≥ 0. We

define the exponential convergence factor of x̄(t), for a

given initial condition x̄0 ∈< 1 >⊥, to be ρ(P, x̄0) :=
lim supt→∞ ||x̄(t)||

1
t . We can get rid of the initial condi-

tion and define the exponential convergence factor of the

system (2) as follows

ρ(P ) := sup
x̄0∈<1>⊥

ρ(P, x̄0) (14)

Consider now the positive semidefinite matrix I −P . Notice

that

ρ(P, x̄0) = lim sup
t→∞

(x̄(t)T (I − P )x̄(t))
1
2t

and so we can characterize the speed of convergence to 0
of the variable x̄ by studying the exponential convergence

factor of the Lyapunov function x̄(t)T (I − P )x̄(t).
Theorem 5: Consider (13) with P ∈ R

N×N satisfing

Assumption 1. Then the function t 7→ (x̄(t)T (I−P )x̄(t))1/2,

defined along any trajectory t 7→ x̄(t), converges expo-

nentially fast to 0. Moreover, the factor ρ(P ), defined in

equation (14), satisfies

ρ(P ) = max {λmax(P ),−λmin(P )} .
This concludes the analysis of the algorithm (2). In the

sequel of this section, we provide a similar analysis of the

system (10). For the sake of the notational simplicity, let

z(t) :=
[

xT (t) eT (t)
]T

and

A(t) :=

[

I 0
0 Ω(t)

] [

P P − I
P − I P − 2I

]

.

Clearly z(0) =
[

x(0)T e(0)T
]

. To perform a Lyapunov

analysis of (10), it is convenient to introduce the variable

z̄(t) =

[

I − 1
N 11

T 0
0 I

]

z(t).

Clearly, condition (ii) of Theorem 3 holds true if and only if

limt→∞ z̄(t) = 0. It is straightforward to see that z̄ satisfies

the same recursive equation of z(t), i.e.,

z̄(t + 1) = A(t)z̄(t) (15)

and that
[

1
T

0
T
]T

z̄(t) = 0 for all t ≥ 0. Consider now the

matrix L ∈ R
2N×2N defined as

L =

[

I − P 0
0 γI

]

.

For each γ > 0 define ρ̃ (P, δ, γ; z̄0, {A(t)}
∞
t=0) :=

lim supt→∞(z̄(t)T Lz̄(t))
1
2t . We can get rid of the initial

conditions z̄0 and the sequences {A(t)}∞t=0 by considering

ρ̃(P, δ, γ) := sup
z̄0,{A(t)}∞

t=0

ρ̃ (P, δ, γ; z̄0, {A(t)}∞t=0) (16)

It can be shown that ρ̃(P, δ, γ) is independent of γ and for

this reason we denote it as ρ̃(P, δ).
We characterize now ρ̃(P, δ, γ). To this aim, consider the

following semidefinite programming problem

β̄(P, δ, γ) :=
max β

such that RT
1 LR1 − L ≤ −βL

(17)

We have the following result.

Theorem 6: Consider (15) with the matrix P satisfying

Assumption 1. Let δ̄ be as in (11) and let δ ∈ R be

such that 0 ≤ δ < δ̄. Moreover let γ ∈ R be such that

γ > 0, and let β̄(P, δ, γ) be as in (17). Then, the function

t → (z̄(t)T Lz̄(t))1/2, defined along any trajectory t → z̄(t)
converges exponentially fast to 0 and the factor ρ̃(P, δ),
defined in equation (16), satisfies

ρ̃(P, δ) ≤
(

1 − β̄(P, δ, γ)
)1/2

.
In general, assigned P and the value of the accuracy param-

eter δ, one could be interested in determining the maximum

value of β̄, as function of γ. Clearly, the best bound on

ρ̃(P, δ) corresponds to to the maximum value of β̄, i.e.,

ρ̃(P, δ) ≤
(

1 − β̄opt(P, δ)
)1/2

where β̄opt(P, δ) := maxγ>0 β̄(P, δ, γ). We illustrate this

discussion in the following example.

Example 7: In this example we consider a connected

random geometric graph generated by choosing N = 30
points at random in the unit square, and then placing an

edge between each pair of pints at distance less than 0.4. The

matrix P is built using the Metropolis weights [11]. In Figure

3, we depict the behavior of
(

1 − β̄opt(P, δ)
)1/2

as a function

of δ. The dotted line represents the value of ρ(P ), that is, the
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δ

ρ(P)=0.9386

Fig. 3. Behavior of
`

1 − β̄opt(P, δ)
´

1/2
.

convergence factor of the ideal algorithm (13). Notice that

the convergence factor
(

1 − β̄opt(P, δ)
)1/2

depends smoothly

on the accuracy parameter δ and satisfies

lim
δ→0+

(

1 − β̄opt(P, δ)
)1/2

= ρ(P ).

An interesting characterization of ρ̃ can be provided when

considering a family of matrices {PN} of increasing size

whose maximum eigenvalue converges to 1. It is worth

noting that this situation is encountered in many practical

situations [12], [2], [13]. We formalize this situation as

follows.
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Assumption 8 (Vanishing spectral gap): Assume we have

a sequence of symmetric stochastic matrices {PN} ⊂ R
N×N

satisfying Assumption 1 and the following conditions

(i) λmin(PN ) > c for some c ∈ ]−1, 1[ and for all N ∈ N;

(ii) λmax(PN ) = 1 − ǫ(N) + o(ǫ(N)) as N → ∞,

where ǫ : N → R is a positive function such that

limN→∞ ǫ(N) = 0.

According to Theorem 5, as N → ∞, we have that

ρ (PN ) = 1 − ǫ(N) + o (ǫ(N)). In considering the quan-

tized version of the consensus algorithm, together with the

sequence {PN}, we have also to fix the sequence {δN}. For

simplicity, in the following we will assume that, {δN} is a

constant sequence, i.e., δN = δ with suitable δ such that

δ < 1+c
3−c which ensures the stability for all N .

Theorem 9: Let {PN} ⊂ R
N×N be a family of matrices

of increasing size satisfying Assumptions 1 and 8. Let δ ∈ R

be such that δ < 1+c
3−c . Then, as N → ∞, we have that

ρ̃(PN , δ) ≤ 1−

(

1 −
1 + c + δ2(c − 3)

4(1 − δ2)

)

ǫ(N)+ o (ǫ(N)) .

Notice that the coefficient in from of ǫ(N) is negative.

Indeed, it can be seen that that coefficient is negative if and

only if δ2 < (3 − c)/(1 + c) and this is true since we have

chosen δ < (1 + c)/(3 − c) and since δ < 1.

VI. NUMERICAL SIMULATIONS

In this section we provide some numerical results illus-

trating the performance of the Zoom in -Zoom out strategy.

We consider the same connected random geometric graph of

Example 7. We assume that the initial conditions has been

randomly generated inside the interval [−100, 100]. For all

the experiments, we set the parameters kin and kout to the

values 1/2 and 2 respectively, and initialized the scaling

factor f of each agent to the value 50. Moreover we run

simulations for two different values of m, m = 5 and

m = 10. The results obtained are reported in Figure 4.

The variable plotted is the normalized Euclidean norm of

the vector x̄(t) := x(t) − xa(0)1, that is,

s(t) =
1

N
‖x̄(t)‖1/2.

Note that, as depicted in Figure 4, also the zoom in- zoom out

uniform coder- decoder strategy seems to be very efficient in

achieving the consensus. In particular it is remarkable that

this strategy works well even if the uniform quantizer has

few quantization levels (m = 5). Finally it is worth observing

that, as seen in Example 7, also in this case the performance

degrades smoothly as the quantization becomes coarser.

VII. CONCLUSIONS

In this paper we presented a new approach solving the

average consensus problem in presence of only quantized

exchanges of information. In particular we considered two

strategies, one based on logarithmic quantizers, and the

other one based on a zooming in-zooming out strategy.

We studied them with theoretical and experimental results

proving that using these schemes the quantized average

consensus problem can be efficiently solved. Additionally,

we show that the convergence factors depend smoothly on

the accuracy parameter of the quantizer and that, remarkably,
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Fig. 4. Zoom in- zoom out strategy

that the critical quantizer accuracy sufficient to guarantee

convergence is independent from the network dimension.

A field of future research will be to look for encoding

and decoding methods which are able to solve the average

problem also with noisy digital channels.
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