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Abstract— This paper studies robotic sensor networks perform-
ing coverage optimization tasks with area constraints. The
network coverage of the environment is a function of the
robot locations and the partition of the space. The area of
the region assigned to each robot is constrained to be a pre-
specified amount. We characterize the optimal configurations
as center generalized Voronoi configurations. The generalized
Voronoi partition depends on a set of weights, one per robot,
assigned to the network. We design a Jacobi iterative algorithm
to find the weight assignment whose corresponding generalized
Voronoi partition satisfies the area constraints. This algorithm
is distributed over the generalized Delaunay graph. We also
design the “move-to-center-and-compute-weight” coordination
algorithm that steers the robotic network towards the set of
center generalized Voronoi configurations while monotonically
optimizing coverage. Various simulations illustrate our results.

I. INTRODUCTION

This paper studies a class of locational optimization problems

subject to area constraints. Our objective is to design dis-

tributed coordination algorithms for robotic sensor networks

that (i) guarantee optimal quality-of-service, i.e., optimize

the agent location and the partitioning of the environment,

and (ii) satisfy a desired set of constraints imposed on the

areas of the regions assigned to the agents.

Our study is motivated by applications in milling, mine

sweeping, and minimum servicing time problems. Consider

the following sample scenario. Given an environment of

interest, we represent the likelihood of a customer appearing

at specific locations by a density function. Ideally, one would

like to partition the environment into regions of the same

area and, at the same time, minimize the expected time

an agent has to travel to service a location. Initially, the

location of the customers might be unknown, and this can

be reflected in the density function. As agents move within

the environment, the density function can be updated in a

way that reflects both the location and the time required to

service the newly-discovered customers. It is our belief that

coordination algorithms that address these scenarios can be

designed building on the results presented in this paper.

Literature review: The discipline of facility location [1], [2]

studies locational optimization problems and looks at optimal

resource placement and optimal space partitioning. The no-

tion of Voronoi partition, or generalized versions of it, plays

an important role in locational optimization. The work [3]

considers centroidal Voronoi partitions, [4] considers power

diagrams, [5] considers additively-weighted Voronoi parti-

tions, and [6] considers multiplicatively-weighted Voronoi

partitions. From a computational geometric perspective, an
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important research issue is the design of efficient algorithms

that, given a fixed set of locations, compute partitions of the

space into regions of prescribed areas [4], [5], [6]. Among

these, the equitable case (i.e., all areas being equal) is of

special importance as it represents a balanced distribution of

the overall load. In the context of robotic sensor networks,

this work builds on [7], where distributed algorithms based

on centroidal Voronoi partitions are presented, and [8], where

limited-range interactions are considered. Voronoi partitions

are also employed in [9], [10], [11]. Other works on coverage

problems include [12], [13].

Statement of contributions: The contributions of the paper

pertain both the analysis of a broad class of constrained

locational optimization problems and the design of coor-

dination algorithms for robotic sensor networks. Regarding

analysis, we study the notion of generalized Voronoi partition

associated with a given performance function. We pay special

attention to the properties of the map that, given a fixed set

of agent locations, maps a set of weights to the areas of the

corresponding regions. We characterize the Jacobian of this

map as the Laplacian corresponding to a weighted version

of the generalized Delaunay graph induced by the Voronoi

partition. This characterization allows us to prove that, given

any network configuration and any performance function,

there exists a weight assignment that makes the regions of the

generalized Voronoi partition have a prescribed set of areas.

A second set of results deal with the analysis of the solutions

of the area-constrained locational optimization problems. We

show that the generalized Voronoi partition is optimal among

all partitions satisfying the area constraints. We also charac-

terize the critical points of the optimization problem as center

generalized Voronoi configurations. Regarding design, we

provide two distributed algorithms over the generalized De-

launay graph. We design the “move-to-center-and-compute-

weight” coordination algorithm to steer the network agents

towards the set of center Voronoi configurations. At the

same time, the evolution of the network under this algorithm

monotonically optimizes the coverage of the environment.

We also design a Jacobi iterative algorithm to solve the

problem of finding the weight assignment that makes the

generalized Voronoi partition satisfy the area constraints.

This algorithm is of interest by itself, as it constitutes an

efficient approach from a dynamical systems perspective to a

classical computational geometric problem. Because of space

constraints, all proofs are omitted.

Notation: We denote by int (U) the interior of a set U ⊂
R

n. Unless otherwise noted, vectors are always understood

as column vectors. Let 1n = (1, . . . , 1)T ∈ R
n and 0n =

(0, . . . , 0)T ∈ R
n. Let {e1, . . . , en} denote the canonical

basis of R
n. We let diag (Rn) = {(a, . . . , a) ∈ R

n | a ∈

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuB12.3

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1018



R}. Of special interest to us is the orthogonal decomposition

R
n = diag (Rn) ⊕ diag (Rn)

⊥
, with associated projections

π1 : R
n → diag (Rn) and π2 : R

n → diag (Rn)
⊥

. Note that

π1(x) =
1

T
nx

n
1n, π2(x) = x − π1(x). (1)

The diagonal set diag (Rn) is 1-dimensional, and hence

diag (Rn)
n−1

is (n − 1)-dimensional.

II. PRELIMINARIES

In this section we gather some preliminary notions on graph

theory and computational geometry.

A. Notions from graph theory

Here we present some basic graph-theoretic notions [14],

[15]. An (undirected) graph consists of a vertex set V and

of a set E of unordered pairs of vertices. For v1, v2 ∈ V
distinct, (v1, v2) denotes an undirected edge between v1 and

v2. A path in a graph is an ordered sequence of vertices

such that any two consecutive vertices in the sequence are

an edge of the graph. A graph is connected if there exists a

path between any two vertices.

A weighted graph is a triplet G = (V,E,A) where V and E
are a graph and where A ∈ R

n×n
≥0 is a weighted adjacency

matrix with the following properties: for i, j ∈ {1, . . . , n},

the entry aij > 0 if (vi, vj) is an edge of G, and aij = 0
otherwise. In other words, the scalars aij , for all (vi, vj) ∈
E, are a set of weights for the edges of G. The weighted

Laplacian is the matrix defined by

L = diag (A1n) − A.

The Laplacian matrix has several important properties: L
is symmetric, all eigenvalues are nonnegative, and 0 is an

eigenvalue of L with eigenvector 1n. In addition, G is

connected if and only if rank (L) = n − 1.

A proximity graph [16], [8] is a generalization of the notion

of graph that captures the fact that, in some situations,

the edges of the graph change as the vertices move. More

formally, given a set P = {p1, . . . , pn} ⊂ R
d of n distinct

points, the proximity graph G at P , denoted by G(P), is an

undirected graph with vertex set P and with edge set EG(P).
A graph G can be interpreted as a proximity graph whose

edge set does not depend on the specific configuration P .

B. Generalized Voronoi partitions

Here we discuss the notion of Voronoi partition and some

generalizations following [17], [2]. Let Q be a convex set in

R
d. The Voronoi partition V(P ) = {V1(P ), . . . , Vn(P )} of

Q associated to P = (p1, . . . , pn) ∈ Qn is defined by

Vi(P ) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖}. (2)

The collection V(P ) partitions Q into sets whose interiors are

pairwise disjoint. Note that each Voronoi region is convex.

Let f : R → R be a strictly increasing func-

tion. The generalized Voronoi partition V(P, ω; f) =

{V1(P, ω; f), . . . , Vn(P, ω; f)} of Q associated to P =
(p1, . . . , pn) ∈ Qn and ω = (w1, . . . , wn) ∈ R

n is

Vi(P, ω; f) (3)

= {q ∈ Q | f(‖q − pi‖) − wi ≤ f(‖q − pj‖) − wj}.

In general, the generalized Voronoi regions are neither con-

vex nor star-shaped. The collection V(P, ω; f) partitions Q
into sets whose interiors are pairwise disjoint. Depending

on the selection of weights and agent locations, Vi(P, ω; f)
might be empty for some i. Indeed, Vi(P, ω; f) = ∅ if there

exist i, j ∈ {1, . . . , n} such that

wj − wi > f(‖pi − pj‖) − f(0). (4)

The generalized Voronoi partition induces the generalized

Delaunay proximity graph GV . The vertices of GV are

{(p1, w1), . . . , (pn, wn)} and its edges are determined as

follows: (pi, wi) and (pj , wj) are neighbors if and only

if their respective Voronoi regions intersect Vi(P, ω; f) ∩
Vj(P, ω; f) 6= ∅. We use the shorthand notation

∆ij(P, ω; f) = Vi(P, ω; f) ∩ Vj(P, ω; f),

for convenience. The graph GV is undirected and, if all

Voronoi regions are non-empty, it is connected.

Lemma II.1 (Properties of generalized Voronoi partition)

For f : R → R strictly increasing and locations

p1, . . . , pn ∈ Q, the generalized Voronoi partition (3) of Q is

(i) equal to the Voronoi partition (2) if w1 = · · · = wn;

(ii) invariant under weight translations ω =
(w1, . . . , wn) 7→ ω + a1n = (w1 + a, . . . , wn + a),
a ∈ R, i.e., for i ∈ {1, . . . , n},

Vi(P, ω + a1n; f) = Vi(P, ω; f);

(iii) monotonic in the set of weights, i.e.,

for any i ∈ {1, . . . , n} and any ω =
(w1, . . . , wi−1, wi, wi+1, . . . , wn), ω′ =
(w1, . . . , wi−1, w

′
i, wi+1, . . . , wn) ∈ R

n with w′
i ≥ wi,

Vi(P, ω; f) ⊆ Vi(P, ω′; f),

Vj(P, ω′; f) ⊆ Vj(P, ω; f), j 6= i.

The generalized Voronoi partition takes different forms de-

pending on the performance function. Examples include:

a) Quadratic performance: for f(x) = x2, the generalized

Voronoi partition is the power diagram. The boundary of

Vi(P, ω; f) is composed of straight segments. For each

Voronoi neighbor pj , there is a segment that belongs to the

bisector line between pi and pj , displaced towards either pj

or pi depending on whether wi is larger than wj . The Voronoi

regions are convex sets. Figure 1(a) shows an example.

b) Linear performance: for f(x) = x, the generalized

Voronoi partition is the additively-weighted Voronoi parti-

tion. The boundary of Vi(P, ω; f) is composed of hyperbolic

segments. For each Voronoi neighbor pj , there is a hyperbolic

segment of the hyperbola with foci pi and pj , and semimajor

axis |wi −wj |. If wi > wj , then ∆ij(P, ω; f) belongs to the

branch of the hyperbola closest to pj , and if wi < wj , then
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(a) (b)

Fig. 1. Power diagram (a) and additively weighted Voronoi partition (b)
defined by 8 randomly deployed agents with randomly assigned weights.

∆ij(P, ω; f) belongs to the branch of the hyperbola closest

to pi. If wi = wj , then the hyperbola is just the bisector line

defined by pi and pj . The Voronoi regions are star-shaped

sets. Figure 1(b) shows an example.

c) Logarithmic performance: for f(x) = log x, the gen-

eralized Voronoi partition is the multiplicatively-weighted

Voronoi partition. The boundary of Vi(P, ω; f) is composed

of circular segments. For each Voronoi neighbor pj , there is

a circular segment of the circle with center e2wi

e2wi−e
2wj

pj +
e
2wj

e
2wj −e2wi

pi and radius e
wi+wj

|e2wi−e
2wj |

‖pj − pi‖. If wi = wj ,

then the circle has infinite radius, i.e., is the bisector line

defined by pi and pj . The Voronoi regions are non-empty

and might contain holes. In general, they are neither convex

nor connected.

III. PROBLEM STATEMENT

This section presents the area-constrained locational opti-

mization problem. We start by briefly discussing the uncon-

strained optimization problem. Although the solution to this

problem is known, it serves as a useful introduction to the

problem of interest in this paper.

Let Q be a convex set in R
d. Consider n agents evolving in

Q with positions p1, . . . , pn. Consider the function

H(p1, . . . , pn,W1, . . . ,Wn) =

n∑

i=1

∫

Wi

f(‖q − pi‖)φ(q)dq,

where W1, . . . ,Wn is a partition of the environment Q, f :
R → R is a strictly increasing function modeling sensing

performance, and φ : Q → R is a density function.

A. The 1-center problem

Consider the optimization of H when there is only one agent

in the environment. The function takes the form

H1(p) =

∫

Q

f(‖q − p‖)φ(q)dq.

It is not difficult to see that if f strictly convex, then H1 is

strictly convex, and the next result follows.

Lemma III.1 (Minimizer of H1 is geometric center of Q)

For Q convex, there is a unique minimizer Cntr(Q) of H1.

Observe that the dependence of the minimizer of H1 on the

set Q is continuous, i.e., small changes in Q induce small

changes in the optimal agent location Cntr(Q). If Q is not

convex, then the center might not be unique. However, the

continuous dependence of the minimizers of H1 on Q still

holds. The minimizer depends on the performance function.

The following are some relevant cases:

d) Quadratic performance: for f(x) = x2, the gradient

of H1 is

∂H1

∂p
= 2

(
p

∫

Q

φ(q)dq −

∫

Q

qφ(q)dq
)
.

The minimizer of H1 is the center of mass of Q,

CM(Q) =

∫
Q

qφ(q)dq
∫

Q
φ(q)dq

.

e) Linear performance: for f(x) = x, the gradient of H1 is

∂H1

∂p
=

∫

Q

p − q

‖p − q‖
φ(q)dq. (5)

The minimizer of H1 is the unique point that makes (5)

vanish. In general, the minimizer does not have an analytic

expression. In the discrete version of this problem, the

minimizer is called the Weber or Fermat-Torricelli point [18].

f) Logarithmic performance: for f(x) = log x, the gradient

of H1 is

∂H1

∂p
=

∫

Q

p − q

‖p − q‖2
φ(q)dq. (6)

The minimizer of H1 is the unique point that makes (6)

vanish. In general, it does not have an analytic expression.

B. The unconstrained locational optimization problem

Consider now the multicenter optimization problem where

we seek to minimize the value of H among all possible agent

locations and all possible partitions of Q,

minimize H(p1, . . . , pn,W1, . . . ,Wn). (7)

If we fix the partition W1, . . . ,Wn of Q, then the problem

of optimizing H consists of solving n 1-center optimization

problems, one per individual agent. Therefore, Lemma III.1

implies that for fixed W1, . . . ,Wn, the optimal agent loca-

tions are Cntr(W1), . . . , Cntr(Wn), respectively.

Interestingly enough, for fixed agent locations p1, . . . , pn ∈
Q, the optimal partition of Q does not depend on the specific

performance function [3], [7]. In general, the optimal parti-

tion is the Voronoi partition V(p1, . . . , pn) defined by (2).

Therefore, we have the following result.

Lemma III.2 (Critical points of H are center Voronoi

configurations) A solution p∗1, . . . , p
∗
n,W ∗

1 , . . . ,W ∗
n of (7) is

a center Voronoi configuration of Q, i.e., for i ∈ {1, . . . , n},

p∗i = Cntr(W ∗
i ), W ∗

i = Vi(P
∗).

C. The area-constrained locational optimization problem

Next, we consider an area-constrained multicenter optimiza-

tion problem. We seek to minimize the value of H among

all possible agent locations and all possible partitions of Q,

but with the constraint that the (generalized) area of each

region must be a pre-specified amount. Formally, a feasible
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collection of areas is a set {a1, . . . , an} ⊂ R>0 satisfying∑n

i=1 ai =
∫

Q
φ(q)dq = areaφ(Q). We then set

minimize H(p1, . . . , pn,W1, . . . ,Wn), (8a)

subject to

∫

Wi

φ(q)dq = ai, i ∈ {1, . . . , n}. (8b)

A case of particular interest is the equitable partition case,

when all areas are the same, i.e.,

ai =
1

n

∫

Q

φ(q)dq, i ∈ {1, . . . , n}.

IV. ANALYSIS OF AREA-CONSTRAINED LOCATIONAL

OPTIMIZATION

In this section, we characterize the optimal solution of (8).

For a fixed partition W1, . . . ,Wn of Q, the optimal agent

locations depend on the performance function in the same

way as for the unconstrained optimization problem, cf. Sec-

tion III-B. The problem of optimizing H consists of solving

n 1-center optimization problems. Therefore, Lemma III.1

implies that for fixed W1, . . . ,Wn, the optimal agent loca-

tions are Cntr(W1), . . . , Cntr(Wn), respectively.

Given fixed agent locations p1, . . . , pn ∈ Q, our objective is

to determine the optimal partition of Q with respect to H. We

show that, unlike for the problem (7), the optimal partition

depends on the performance function. In order to do this, we

will find it useful to characterize the properties of the areas

of the generalized Voronoi regions. We discuss this next.

A. Weights-to-areas assignment

Here, we study the properties of the map that assigns to a set

of weights the corresponding set of areas of the generalized

Voronoi regions. Let p1, . . . , pn ∈ Q be fixed agent locations.

Consider the neighborhood of diag (Rn) defined by

U = {ω ∈ R
n | |wi − wj | ≤ f(‖pi − pj‖) − f(0)

for all i, j ∈ {1, . . . , n}}.

The weights-to-areas map M : U ⊂ R
n → R

n is defined by

M(ω) =
(∫

V1(P,ω;f)

φ(q)dq, . . . ,

∫

Vn(P,ω;f)

φ(q)dq
)
,

where P = (p1, . . . , pn). Note that, if ω 6∈ U , then, according

to (4), at least there is one empty generalized Voronoi region.

We begin by establishing some important properties of M.

Proposition IV.1 (Properties of the weights-to-areas map)

Let p1, . . . , pn ∈ Q. The map M : U ⊂ R
n → R

n is

invariant under translations and its range belongs to the

(n − 1)-dimensional space {m ∈ R
n
≥0 | 1

T m = 1}.

Moreover, M is gradient, i.e., ∇F = −M, where

F : R
n → R is defined by

F (ω) =

n∑

j=1

∫

Vj(P,ω;f)

(
f(‖q − pj‖) − wj

)
φ(q)dq.

Using Proposition IV.1, one can derive various interesting

properties of the Jacobian of M. We state them next.

Proposition IV.2 (The Jacobian of the weights-to-areas

map is the Laplacian of the weighted generalized Delau-

nay graph) Let p1, . . . , pn ∈ Q and let J(M) denote the

Jacobian matrix of M : U ⊂ R
n → R

n. Then,

(i) J(M) is symmetric;

(ii) 1n is an eigenvector of J(M) with eigenvalue 0;

(iii) The rank of J(M) on int (U) is n − 1.

Therefore, the Jacobian matrix of M is the Laplacian of the

generalized Delaunay graph whose edges are weighted as

aij =
∂Mi

∂wj

,

if i and j are Delaunay neighbors, and aij = 0 otherwise.

Since M is invariant under translations, cf. Proposition IV.1,

we define the equivalence relation ∼ on R
n:

x ∼ y if and only if there exists (a, . . . , a) ∈
diag (Rn) such that x = (a, . . . , a) + y.

Under this relation, any ω ∈ R
n and its projection onto

diag (Rn)
⊥

are related, since there exists (a, . . . , a) =
π1(ω) ∈ diag (Rn) such that ω = π1(ω)+π2(ω). Therefore,

we identify the quotient space R
n/ ∼ with diag (Rn)

⊥
by

means of the linear projection π2.

ω 7→ π2(ω) = ω − π1(x). (9)

The equivalence relation ∼ allows us to state a particularly

useful property of M in an elegant way.

Corollary IV.3 Let p1, . . . , pn ∈ Q. The map M : U ⊂
R

n → R
n induces a local diffeomorphism M̃ : U/ ∼≡

R
n−1 → {m ∈ R

n
≥0 | 1T m = 1}.

We are now ready to establish that, given any network

configuration and any feasible collection of areas, there exists

a set of weights such that the associated generalized Voronoi

partition satisfies the area constraints.

Proposition IV.4 (Existence of weight assignment that

makes generalized Voronoi partition satisfy area con-

straints) Let p1, . . . , pn ∈ Q and let {a1, . . . , an} ⊂ R>0

be a feasible collection of areas. Then there exists a set of

weights ω = {w1, . . . , wn} ⊂ R such that
∫

Vi(P,ω;f)

φ(q)dq = ai, i ∈ {1, . . . , n}.

Proposition IV.4, together with Corollary IV.3, states that,

up to translations, the set of weights ω such that M(ω) =
(a1, . . . , an) is locally unique, that is, there exists a neigh-

borhood of ω in R
n where no other set of weights (other

than those equivalent to ω by translation) are mapped to

(a1, . . . , an) under M.

B. Optimality of the generalized Voronoi partition

Next, we show that, for fixed agent locations, the optimal

partition for the area-constrained locational optimization

problem (8) is the generalized Voronoi partition.

Proposition IV.5 (Generalized Voronoi partition is H-

optimal among all partitions that satisfy area constraints)
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Let p1, . . . , pn ∈ Q be fixed agent locations and let

{a1, . . . , an} ⊂ R>0 be a feasible collection of areas. Let

ω ∈ R
n be such that M(ω) = (a1, . . . , an). Then, the

generalized Voronoi partition V(P, ω; f) optimizes H among

all partitions satisfying the area constraints (8b).

We are now ready to state the analogue result to Lemma III.2

for the area-constrained problem.

Corollary IV.6 (Critical points of H with area con-

straints are center generalized Voronoi partitions) A

solution p∗1, . . . , p
∗
n,W ∗

1 , . . . ,W ∗
n of (8) is a center gener-

alized Voronoi configuration of Q, i.e., there exists a weight

assignment ω∗ ∈ R
n such that, for i ∈ {1, . . . , n},

p∗i = Cntr(W ∗
i ), W ∗

i = Vi(P
∗, ω∗; f).

V. AREA-CONSTRAINED LOCATIONAL OPTIMIZATION

VIA DISTRIBUTED COORDINATION

Here, we investigate distributed algorithmic solutions to the

area-constrained locational optimization problem (8).

A. The “move-to-center-and-compute-weight” algorithm

Our strategy to solve (8) is to make each agent go to the

center of its own generalized Voronoi region while, at the

same time, the individual agent weights are tuned to satisfy

the area constraints. Let us formalize this approach.

For a feasible collection of areas {a1, . . . , an} ⊂ R>0,

Proposition IV.4 guarantees that there exists a map A :
Qn → R

n, assigning agent locations to weights, that satisfies

M(A(p1, . . . , pn)) = (a1, . . . , an).

Moreover, the weight assignment can be selected so that

A is continuous. The “move-to-center-and-compute-weight”

algorithm is the discrete-time map T : Qn → Qn defined by

T(p1, . . . , pn) (10)

= (Cntr(V1(P,A(P ); f)), . . . , Cntr(Vn(P,A(P ); f))).

The map T is continuous because A is, the Voronoi parti-

tion (3) changes continuously with the agent locations, and

the solution to the 1-center problem changes continuously

with the set. Provided A is distributed over the generalized

Delaunay graph, i.e., agent i only needs to interact with its

neighbors in the graph to compute its weight, then T is also

distributed over the generalized Delaunay graph.

Proposition V.1 (Asymptotic convergence of “move-to-

center-and-compute-weight” algorithm) The trajectories

of the discrete-time coordination algorithm T converge

asymptotically to the set of center generalized Voronoi con-

figurations of Q, while monotonically decreasing H.

From Corollary IV.6, we know that the solutions of the

area-constrained locational optimization problem are gener-

alized center Voronoi configurations. Proposition V.1 guar-

antees that the “move-to-center-and-compute-weight” algo-

rithm steers the network towards this desirable set.

B. Jacobi iterative algorithm for weight assignment

In general, an explicit expression of the weight-assignment

map A is not available. Equivalently, it is not possible in

general to obtain an explicit expression for an inverse of the

map M. Our approach to this problem is to synthesize a

distributed Jacobi iterative algorithm that numerically finds

an appropriate weight assignment.

Given p1, . . . , pn ∈ Q and a feasible collection of areas

{a1, . . . , an} ⊂ R>0, define g : R
n → R by

g(w1, . . . , wn) = M(w1, . . . , wn) − (a1, . . . , an).

From Proposition IV.1, we know that g is the gradient vector

field corresponding to the function G : R
n → R,

G(ω) = −F (ω) −
n∑

i=1

wiai.

We look for ω ∈ R
n such that

g(ω) = 0n. (11)

Alternatively, we look for a weight assignment that optimizes

the value of G. There are multiple methods that can be used

to this end, see e.g., [19]. Here, we use the Jacobi algorithm

ωk+1 = ωk

− γ diag

(
∂g1

∂w1
(ωk), . . . ,

∂gn

∂wn

(ωk)

)−1

g(ωk), (12)

for k ≥ 0, where diag (v) ∈ R
n×n is the diagonal

matrix with the components of the vector v ∈ R
n in the

diagonal. Here, γ > 0 is a parameter that can be chosen

to guarantee convergence. Note that the Jacobian of g and

M are the same, that is, J(g) = J(M). Therefore, from

Proposition IV.2, we can state that the Jacobi algorithm is

distributed over the generalized Delaunay graph. In other

words, agent i only needs to interact with its neighbors in

the graph to compute the ith entry of ωk+1 as prescribed

by (12). The following result states that the Jacobi algorithm

converges to a weight assignment that satisfies (11) and is a

consequence of [19, Section 3.2].

Proposition V.2 (Convergence of Jacobi algorithm to de-

sired weight assignment) For any initial condition ω0 ∈
R

n, there exists γ∗ such that if 0 < γ < γ∗, then the

sequence {ωk ∈ R
n | k ∈ Z≥0} generated by the Jacobi

algorithm (12) satisfies limk→+∞ g(ωk) = 0.

C. Simulations

We present simulations of the Jacobi iterative algorithm (12)

in Figure 2 and of the “move-to-center-and-compute-weight”

algorithm (10) in Figure 3 for the linear performance

case, f(x) = x. Each algorithm has been implemented in

Mathematica R© as a main, centralized program that makes use

of a library of routines for the computation of generalized

Voronoi cells, line and area integrals, and geometric centers.

As previously noted, both algorithms are distributed over

the generalized Delaunay graph, i.e., each agent only needs

to interact with its neighbors in the graph to execute the

algorithms. On average, if all weights are similar, this means

that each agent interacts with six neighbors [2].
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Fig. 2. Two executions of the Jacobi iterative algorithm (12). The location
and initial weight assignment of the 8 agents in the square [0, 4] × [0, 4]
is as in Figure 1(b), and the density is constant and equal to 1. The Jacobi
algorithm is run with γ = .3. In the upper case, the target areas are ai = 2,
i ∈ {1, . . . , 8}. In the lower case, the target areas are ai = 1 if i is even,
and ai = 3 if i is odd. (a) and (c) show the final additively weighted Voronoi
partitions obtained by the Jacobi algorithm in each case, whereas (b) and
(d) show the corresponding evolution of the areas during the execution. In
both cases, after 40 iterations, the executions are very close to the solution.

(a) (b) (c)

Fig. 3. Execution of the “move-to-center-and-compute-weight” algo-
rithm (10). (a) shows the initial network configuration, (b) shows the evo-
lution of the algorithm, and (c) shows the final center generalized Voronoi
configuration attained after 80 iterations of T. All figures show the contour

plot of φ = 1 + 2 e−(x−3)2−(y−1)2 + 2 e−(x−2)2−(y−3)2 . The feasible
collection of areas that constrain the partition are ai = areaφ(Q)/16 for
i even, and ai = 3areaφ(Q)/16 for i odd.

VI. CONCLUSIONS

We have studied the area-constrained locational problem,

where a group of robots seeks to optimize an appropriate

notion of environmental coverage by partitioning the space

into regions that have a pre-specified area. We have char-

acterized the critical points of this optimization problem

as center generalized Voronoi configurations. We have also

designed a distributed coordination algorithm that steers the

network towards this desirable set while at the same time

monotonically optimizing the aggregate objective function.

We have also obtained a distributed algorithm that, given

a network configuration and a feasible collection of areas,

computes a weight assignment whose associated generalized

Voronoi configuration satisfies the constraints.

Future work will explore the area-constrained locational

problem under limited-range interactions and time-dependent

density functions. Limited-range interactions occur naturally

in wireless sensor networks. Time-dependent density func-

tions can model changing conditions in the environment. We

are particularly interested in servicing problems where agents

need to spend a fixed amount of time taking care of locations

distributed throughout the environment.
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