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Abstract— In this paper, we investigate the stability problems
and control issues that occur in a reversed-field pinch (RFP)
device, EXTRAP-T2R (T2R), used for research in fusion plasma
physics and general plasma (ionized gas) dynamics. The plant
exhibits, among other things, magnetohydrodynamic instabilities
known as resistive-wall modes (RWMs), growing on a time-scale
set by a surrounding non-perfectly conducting shell. We propose
a novel model that takes into account experimental constraints,
such as the actuators dynamics and control latencies, which lead
to a multivariable time-delay model of the system. The open-
loop field-error characteristics are estimated and a stability
analysis of the resulting closed-loop delay differential equation
(DDE) emphasizes the importance of the delay effects. We
then design a structurally constrained optimal PID controller
by direct eigenvalue optimization (DEO) of this DDE. The
presented results are substantially based on and compared with
experimental data.

I. INTRODUCTION

Control of magnetohydrodynamic (MHD) instabilities in

toroidal devices for magnetic confinement is a crucial issue

for thermonuclear fusion plasmas (high-temperature ionized

gases) [1]. Indeed, advanced plasma confinement scenarios,

as considered for the ITER experiment (a major step towards

industrial fusion reactors) [2], motivate a better understand-

ing of MHD phenomena and their regulation. The reversed-

field pinch (RFP) device T2R, considered in this work, is

particularly well suited for MHD studies in general (one of

the main focuses of this facility) and more specifically for

active control of MHD modes. Continuous research efforts

have been done in this direction [3], [4], [5] based on

physical approaches. We are now addressing the problem

from a control-oriented point of view, highlighting impact

of actuator dynamics to closed-loop stabilization.

T2R, sketched in Fig. 1(a), is a torus equipped with an

equidistributed array of equally shaped 4×32 actuator saddle

coils fully covering the surface outside a resistive wall (and

vacuum container), and a corresponding set of 4×32 sensor

saddle coils inside the wall (with 50% surface coverage).

The coils inputs and outputs are subtracted pairwise in a top-

down and inboard-outboard fashion, effectively implying 64

control and 64 measurement signals.

The MHD instabilities lead to non-symmetric electric

currents within the plasma torus, causing perturbed magnetic

fields outside of the plasma at the position of the surrounding

wall. Complete stabilization would be achieved by an ideally
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conducting wall forcing the boundary magnetic field to

vanish. In practice, eddy currents decay allow perturbed mag-

netic flux to penetrate the wall and hence the MHD instabili-

ties to grow. To counteract this problem, the intelligent-shell

(IS) concept [6] has been devised, to emulate the behavior

of an ideally conducting wall by (decentralized) feedback

control of external current-carrying coils. The RFP type of

toroidal plasma confinement is particularly suited to study

this method and stabilization of multiple independent MHD

instabilities has recently been reported [5]. To emphasize

the significance of IS feedback MHD-stabilization for T2R,

note that the plasma is confined during ∼ 15 − 20 ms only

without IS whereas a sustained plasma current is routinely

achieved for over 90ms with IS (limited by the experiment’s

power supply). There is a strong motivation for developing

this technique also for Tokamak fusion devices [7] (such as

JET and ITER), the configuration mainly pursued today for

magnetic confinement fusion research.

The aim of this paper is to introduce and analyze a new

model for describing T2R dynamics, by explicitly taking

into account the sensors/actuators configuration (aliasing and

additional dynamics) and the control implementation (time-

delays). To the best of the authors’ knowledge, no system-

atic study of controller gain design for T2R IS operation

explicitly including such experimental conditions has been

made. We develop our description of the plant from a

control viewpoint and employ a fixed-structure gain synthesis

approach (presently instantiated for a classic PID) for T2R

IS. Controller gains are directly optimized for a closed-loop

delay differential equation (DDE) model. Experimental re-

sults illustrate the performance improvements in comparison

with the explorative work [3], where PID gains scans and

qualitative applicability of linear models were presented.

The paper is organized as follows. First, a model de-

scribing the MHD unstable modes is introduced in section

II and the delay effects on the asymptotic stability of the

corresponding model are analyzed in III. The design of a

control law is presented in IV, and section V is devoted

to experimental results and highlights the performance im-

provements. Some concluding remarks end the paper.

II. MAGNETOHYDRODYNAMIC UNSTABLE

MODES MODEL

The purpose of this section is threefold: first, to outline

the unstable physics, second, to interface the corresponding

model to a configuration of sensors and actuators and, finally,

to introduce an appropriate DDE to be analyzed.
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A. Resistive-wall mode physics in the reversed-field pinch

MHD theory [7], [8], [9] is the underlying physical level-

of-detail employed here, a continuum description intended to

capture behavior of conducting fluid matter, such as plasma

gases and liquid metals. MHD effectively is a simultaneous

application of Navier-Stokes’ and Maxwell’s equations. The

system at hand is approximated by a periodic cylinder1, with

period 2πR, R being the major toroidal radius, and thus

reduced to the minor radial dimension r. The well-known

MHD equations are: momentum ρdv
dt

= j×B−∇p, Ohm’s

law E + v × B = ηj together with Maxwell’s, continuity

and the adiabatic equation of state. For ideal MHD [8]

resistivity η → 0. A flowless v = 0 and ideal equilibrium

j0 × B0 = ∇p0, E0 = 0 is solved for using a standard

current-profile and pressure parameterization [10], defining

a magnetic structure in the plasma region 0 < r < ra,

the plasma column. A vacuum layer isolates the plasma

boundary r = ra from the conducting vessel wall at r = rw.

This wall is modeled thin [11]. Region rw < r < +∞ is

air. An external source is positioned at r = rc > rw (active

coils outside the shell).

Linear stability of perturbations around the nominal equi-

librium is investigated by Fourier spectral decomposition

b(r, t) =
∑

mn bmn(r)ej(tω+mθ+nφ), yielding a discrete

enumeration (m, n) of Fourier eigenmodes bmn(r) with

associated growth-rate γmn = jωmn, after matching of

boundary conditions. Eigenfunction first-order derivative dis-

continuity at r = rw determines modal growth-rate τwγmn =

[
rb′r
br

]rw+
rw− (1(b)). These modes are the resistive-wall modes

(RWMs), growing on the resistive time-scale set by the

magnetic diffusion time τw.

For the magnetic confinement configuration considered

in this paper, the reversed-field pinch (RFP), named for its

characteristic toroidal field reversal near the plasma bound-

ary, it is customary to classify eigenmodes as resonant/non-

resonant and internal/external. Internal modes share helicity

with the equilibrium magnetic field inside the reversal sur-

face, while external modes are reversed in this sense. Ideal

resonant perturbations are zeroed for 0 < r < rs < ra,

rs being the resonant position, as motivated in e.g. [11].

Resistive resonant modes are known as tearing modes (TMs).

They are usually treated by inserting a thin resistive layer at

rs, and they typically seed magnetic islands governed by

nonlinear dynamics [12]. Here, only ideal MHD modes are

considered, modeled by

τmnḃr
mn − τmnγmnbr

mn = MmnImn = br,ext
mn (1)

where br
mn is the radial Fourier component of the perturbed

field, Mmn and Imn respectively a geometric coefficient

and a fourier harmonic for the external active coil current,

while τmn is the mode-specific penetration time. A range

n of unstable modes emerge for m = 1 (Fig. 1(b)). For

a perfectly symmetric resistive wall, RWMs are uncoupled

in ideal MHD regime, and growth rates are real-valued.

1Indeed, a good approximation for large aspect-ratio (R/ra) devices,
such as EXTRAP-T2R: R = 1.24m, ra = 0.183m

Experimental support for model (1) is reported in e.g. [10],

[13], [4].

(a) Cartoon of RFP magnetic
equilibrium structure, vacuum
vessel, sensor (blue) and actuator
(red) saddle coils.
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(b) Theoretical growth-rates
τwγmn. Integer-n non-resonant
positions (RWMs) are marked
(*) for m = 1.
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(c) Closed-loop schematics. Taps indicate available measurements.

Fig. 1. RFP device 1(a) and RWM spectrum 1(b). All signal
routings 1(c) are 64 parallel channels.

B. MIMO plant modeling by geometric coupling of SISO

dynamics

From Faraday’s and Biot-Savart’s laws and assuming an

ideal integrator on the sensor coil output voltage, the system

dynamics write in the standard state-space form as






ẋ = Ax + Bu + Nv1

z = Mx

y = Cx + v2

(2)

where x ∈ R
2NmNn is the vector of MHD-modes br

mn,

u ∈ R
Nu is the active coil currents, z ⊂ x is the optional

performance vector channel and y denotes time-integrated

sensor voltages, corresponding to a measure of mode x

(time-averaged radial magnetic field). A, B, C, M and N
are matrices of appropriate dimensions, v1 is an exogenous

signal, further detailed in section II-C.2, and v2 is a white

noise signal. State matrix elements are obtained from

Amn,m′n′ ∼γmnδmn,m′n′

Bmn,ij ∼τ−1
mn

∫

Ω

e−ι(mθ+nφ)

(

r̂ ·

∮

lij

dlij × (r − rij)

|r − rij |3

)

dΩ

Cpq,mn ∼

∫

Ω

e+ι(mθ+nφ)fpqApqdΩ

(3)

where mn, ij and pq enumerate Fourier modes, active coils

and sensor coils, respectively, and fpq, Apq are sensor coils

aperture and area functions. The integration set Ω is a full

period of the toroidal surface (θ, φ) ∈ [−π, π[×[−π, π[.
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In the following, state matrices in (2)-(3) are instantiated

for T2R geometry and routing. Note that the consideration

of both intrinsic field-errors and peripheral dynamics is

imperative for simulating open- and closed-loop shots2 [14],

[3].

1) Modes coupling and aliasing of spatial frequencies:

The finite spatial arrays of sensors and actuators fundamen-

tally affect the transition from a single-mode to a multiple-

mode model due to aliasing. It generally renders the sensors

and actuators imprecise, and even introduce a bias. Aliasing

also has an important impact on the closed-loop control, as

a zero on the output could in reality be a combination of

non-zero modes
∑

mn bmn, deceptively summing to a small

number. The traditional IS regulator [6] consequently drives

the output to zero but does so happily ignorant of individual

mode amplitudes. This is a fairly recent appreciation of the

need for further development of control systems for MHD

experiments [15], [14]. Indeed, IS operation typically excites

higher mode numbers, which are, supposedly, stable and

mainly transient.

TABLE I

CHARACTERISTIC TIMES FOR CURRENT SETUP OF T2R.

Symbol Value/order Description/comment

τw ∼ 10ms Resistive wall time

τmn . 1
2
τw Actual model mode time

τMHD ∼ 1µs Internal MHD activity/fluctuations
τd 100 µs Digital sampling time, controller cycle
τh ∼ 100 µs Control latency, dead time
τCPU < 100 µs Algorithm-dependent part of τh

τa 8 µs Active amplifier first-order time
τc 1ms Active coil L/R-time
τA&D ∼ 1µs ADC/DAC settle, ns/µs respectively

2) Actuators dynamics, latencies and PID control: Con-

sideration of the actuators dynamics and control latency is

essential for a realistic description of the control problem,

as detailed in [3]. Table I suggests3 that we can consider a

(lumped) active amplifier and an active coil model together

with a dead-time τh in series with RWM dynamics. Using

a first-order description, the system input usys(t) is inferred

from the digital control signal uDAC(t) through a relation-

ship

usys(t) ≈
1

τcs + 1

κ

τas + 1
uDAC(t − τh) (4)

Introducing the system (Aξ, Bξ, Cξ) to describe the previous

dynamics, the resulting state-space matrices (Ā, B̄, C̄) are

obtained as

Ā =

(

A BCξ

0 Aξ

)

, B̄ =

(

0
Bξ

)

, C̄ = ( C 0 )

The closed-loop dynamics, using a PID controller, is

obtained as follows. The state considered is x̃ = (xT qT )T ,

which includes the integrator state q(t) =
∫ t

−∞
e(τ)dτ ,

2One single experiment is known as a shot. Open- and closed-loop here
specifically refers to RWMs.

3Neglecting τA&D and quantization.

tyk−1 yk yk+1

uk−1 uk uk+1

τd

τh

ysys(t)

uDAC(t − τh)

τCPU

Fig. 2. Delay from control system. Note τh, dependent of control
algorithm, possibly greater than τd but obviously τCPU < τd for a
working system. Sample frequency fs = 1/τd. Input yk sampled
from sensor coils, output uk is the DAC-output subsequently fed
to the active coil amplifiers as augmented system input.

where e(t) = y(t) is the error (the reference is zero). Mod-

eling the derivative action by finite time-difference renders

the controller

uDAC(t) = Kpe(t) + Kiq(t) + τ−1
d Kd(e(t) − e(t − τd))

The closed-loop dynamics is consequently obtained as

˙̃x(t) = A0x̃(t) + A1(θ)x̃(t − τh)

+A2(θ)x̃(t − τh − τd) + Ev1(t) (5)

where the control parameters θ = (Kp, Ki, Kd) enter

affinely and

A0 =

(

Ā 0
C̄ 0

)

, A1(θ) =

(

B̄(Kp + Kd/τd)C̄ B̄Ki

0 0

)

A2(θ) =

(

B̄(−Kd/τd)C̄ 0
0 0

)

, E =

(

N̄
0

)

(6)

Note that the gain matrices have a diagonal form Kη = kηI ,

where kη is a scalar and η ∈ {p, i, d} for the IS scheme.

C. Open-loop error estimation and parameter identification

Here, see Fig. 1(c), an error field v1 estimate is obtained

from experimental data via model-based filtering of open-

loop (in the sense of RWM-control) shots, while actuators

Gact(s) are found by straighforward parametric identifica-

tion. The controller cycle time τd is set at a nominal value

τd = 100µs.
1) Actuators dynamics identification: In order to identify

the actuator dynamics (4), we consider the transfer chan-

nels i: uij
DAC(t) 7→ uij

sys(t), for each experiment j. The

amplifiers’ time constants τ ij
a are fixed and we identify the

remaining parameters ρij .
= {τ ij

c , τ ij
h , κij}. Following the

approach presented in the previous section (MIMO model

built from a set of SISO dynamics), we determine the optimal

averaged model ρ∗ = 〈〈ρij∗〉i〉j . This model averages the

optimal parameters ρij∗ = arg minρij J ij that minimize the

error functional

J2(ρij) =
1

T

∫ T

0

(

uij
sys(τ) − uij

sim(τ, ρij)
)2

dτ

where usys is the experimental data and usim is the model

output, for each transfer channel.

A real-time PRBS (pseudorandom binary sequence) gen-

erator [16] was implemented to produce 64× parallel SISO
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identification inputs. This generator spent ∼ 5 µs per cycle

of τCPU and can thus be considered to yield an identi-

fication of minimum latency. The optimal set of parame-

ters ρij∗ is obtained by minimizing J(ρij) with a Quasi-

Newton method initialized from a nominal guess ρij
0 =

(1ms, 100µs, 4A/V). The overall average model ρ∗ was

found to be (τ∗
c , τ∗

h , κ∗) = (0.989ms, 77.7µs, 3.96A/V) by

residual minimization. A finite difference gradient approxi-

mations and a scaling of the decision variables to the order

of unity led to a rapid convergence (1-14 iterations ∀i, j) of

the numerical scheme.

The identification data set shows channel-by-channel vari-

ations and all the computations involving the full MIMO

model (2) consequently use the individual channel averages

〈ρi,j〉j , except for the time-delay, which is set identical for

all channels. A worst-case τh (using maximum τCPU ) ex-

ceeding 200 µs is consistent with recorded data for particular

channels.

2) Error-field estimation and filtering: To estimate the

error-field time-evolution, a set of open-loop shots are an-

alyzed in the scope of model (2). A standard Kalman Filter

(KF, e.g. [17]) is formed from (2) by adding placeholder

states that represent the error-field τsẋs + xs = 0. More

precisely, the KF estimates the state vector for






˙̃x =

(

A N
0 −τ−1

s I

)

x̃ +

(

B
0

)

u + v′

1

y =
(

C 0
)

x̃ + v2

(7)

where x̃(t)
.
= (x(t)T xs(t)

T )T , and v′
1 and v2 are white

noise. The filter takes (u(t)T y(t)T )T as inputs and outputs

the state-estimate ˆ̃x = (x̂T (t) x̂T
s (t))T . Note that the esti-

mated error field x̂s(t) has a specific physical interpretation

as it corresponds to a driving term for inter alia RWM-

instabilities. The KF is tuned for very fast error-state x̂s

due to the fact that an error in the growth-rate γtrue
mn =

γnominal
mn + γ

(1)
mn(t) affects in principle v1. This is expressed

by the relation

τmnḃr
mn = τmn

{

γmn + γ(1)
mn(t)

}

br
mn + br,err

mn + br,act
mn

= τmnγmnbr
mn + br,err

mn,eff + br,act
mn

which implies that the effective error br,err
mn,eff ≡

τmnγ
(1)
mn(t)br

mn + br,err
mn , associated with v1 in the model

considered, depends on the mode amplitude itself. The

discretized augmented model (7) is used for offline smooth-

ing with the well-known Rauch-Tung-Striebel [17] forward-

backward algorithm.

III. STABILITY ANALYSIS AND DELAY EFFECTS

Consider the (asymptotic) stability of the DDE-class (5).

The corresponding characteristic equation of (5) reads as (for

n = 2)

det ∆(s) = det

(

sI −A0 −
n
∑

i=1

Aie
−sτi

)

= 0 (8)

It is well-known that (8) has an infinite number of roots s =
λj and that (5) has a point spectrum. Furthermore, since the

set {λj : det∆(λj) = 0, Re(λj) > a} with a real is finite

(see, e.g., [18] and the references therein), it follows that the

stability problem is reduced to analyze the location of the

rightmost characteristic roots with respect to the imaginary

axis (see, for instance, [19] for numerical computations).

The continuity properties of the spectral abscissa with

respect to the system parameters (including the delays)

allows a better understanding of the effects induced by the

parameters’ change on the stability of the system. Without

entering into details, such properties will be exploited in the

sequel. For the sake of brevity, we will discuss some of the

properties of our delay system without giving a complete

characterization of the stability regions in the corresponding

parameter space. This issue will be detailed in future works.

A. Mode-control and perfect decoupling; SISO dynamics

Consider here a fictitious situation where perfect actuators

and sensors are available (in a no-aliasing sense; infinite

array of vanishing-size coils). Ideally, we could then, ac-

cording to (1), measure and affect each Fourier mode (m, n)
independently, achieving perfect decoupling and effectively

reducing the dynamics to a SISO system with actuator delay:

Gmn(s) =
1

τmns − τmnγmn

1

τcs + 1

1

τas + 1
e−sτh (9)

readily converted to a closed-loop description (5) with Ai ∈
R

4×4. A static mode-control (MC) decoupling controller

would typically be computed by taking SVD pseudoinverses

of (3), and it can be demonstrated that doing this produce

aliased side-bands on the inverse approximations [14]. IS op-

eration, considered here is “far-from-perfect” mode-control,

but the underlying SISO dynamics (1) is fundamentally

important, and is considered a benchmark case. Fig. 3(a)
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Fig. 3. Stability and time-delay impact on RWM dynamics.

shows stability contours (maxj Re(λj) = 0) for τh =
{100 − 400µs} in RWM parameter space (τ, γ), for fixed

PID gains4 θold = (−10.4,−1040,−0.0026).
In Fig. 3(a) Resonant-field amplification (RFA) regions

[13] are indicated, an effect related to the error-field, as

modeled in (7).

4When quoting numerical gains: kη correspond to dimensionless loop-
gains (negative), related to (positive) experiment settings kη = βKη [3],
with a nominal conversion factor β = −6.5 × 10−2.
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B. Spectrum dependence on τh; MIMO and SISO cases

We now consider the dependence of the spectral abscissa

with respect to the parameter τh. This is done by fixing

the gains (Kp, Ki, Kd) = (146, 57000, 0.085) and the delay

τd = 100µs for IS operation on full MIMO model (5). The

impact of the delay τh is thereby highlighted for a given set

of parameters. Computing the rightmost closed-loop roots,

critical crossing of the imaginary axis occurs at τh ≈ 201µs.
This can be compared with the SISO analog, Fig. 3(b), where

instability occurs at τh ≈ 225µs. The set of modes was in

both cases K = {1, 3} × {−24, . . . ,+23}. In conclusion,

multivariable effects are not negligible.

IV. MODEL-BASED CONTROL AND DELAY

COMPENSATION

Our aim is to select PID gains for DDE (5) that ensure

stability and minimize the closed-loop spectral abscissa. The

PID in the actual experiment control system (IS) is regarded

as fixed, imposing a structural constraint on the optimization

problem. A fixed-order/fixed-structure controller synthesis

approach is utilized to find gains for T2R IS operation. The

method, as instantiated in this work, concerns model (5),

i.e. it handles time-delays explicitly, which has a significant

practical benefit: developing control algorithms with varying

computational complexity (varying τCPU ) implies varying

τh, which can be accounted for.

It is recognized that other widely spread iterative tuning

techniques such as [20] also could be applied for this

particular problem. This is subject for the sequel.

A. Direct eigenvalue optimization (DEO)

The asymptotic damping maximization of (5) is formu-

lated as minimizing the spectral abscissa of the characteristic

equation [18] with

θ∗ = arg min
θ

max
λ

{Re (λ) : det ∆(λ, θ) = 0}

This problem is generally both nonconvex and nonsmooth,

which motivates a hybrid SISO/MIMO method. The gen-

eral MIMO problem size (5) is typically large; e.g. a set

(m, n) ∈ K = M×N = {1, 3} × {−16, . . . ,+15} results

in Ai ∈ R
384×384. However, for IS, each coil measures a

linear combination of fundamental dynamics (1) over K,

but does not discriminate between modes. This relates to

the previously discussed hypothesis that the MIMO model

can be approximated by a set of SISO systems. The MIMO

optimization problem is then approximated to the problem

of minimizing the maximum SISO spectral abscissas over K
with

θ̃∗ = arg min
θ

max
k∈K

max
λ

{Re (λ) : det ∆k(λ, θ) = 0} (10)

where ∆k denotes the characteristic matrix (∈ R
4×4) for

(5) for a single mode k = (m, n). We employ the re-

cently developed gradient-sampling (GS) method [21], a

robustified steepest-descent method suitable for nonsmooth

optimization, to solve (10) using finite difference gradient

approximations.

We investigate two different parameterizations of the con-

troller, implicitly assigning the closed-loop performance and

control-input norm, respectively by:

a) varying kp and searching for the optimal θ̃∗ = (k∗
i , k∗

d)
for a nominal τh, and

b) varying τh and determining the full optimal PID θ̃∗ =
(k∗

p, k∗
i , k∗

d).

The mode-sets are considered for a) − b) were K1 =
{1, 3}×{−16, . . . ,+15} and K2 = {1, 3}×{−24, . . . ,+23}
respectively. In a) τh = 77.7µs, which corresponds to the

minimum actuator latency.

B. Optimization results
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Fig. 4. Closed-loop spectrum optimization.

Gain design strategy a), where the optimal (k∗
i , k∗

d) are

obtained with preset values of kp and τh, is illustrated in

Fig. 4, which depicts the rightmost values of the closed-

loop spectrum for a fixed kp in (ki, kd)-space (the optimum

corresponding to the darkest region). The bold dotted line

corresponds to the evolution of (k∗
i , k∗

d) when kp varies

(going left when the magnitude of kp is increased). The red

line in the upper left corner is the stability boundary and

the rectangle in upper-right corner is the region of uniformly

randomized initializations for the GS method.

Comparable numerical values were obtained for gain de-

sign strategy b). A few optimal settings are seen in table II.

For b) the minimum objective value is increased (spectral

abscissa traveling rightwards) as the time-delay increases, as

expected.

The optimization algorithm was numerically robust on

problems a), b). All runs converged, normally within 10−30
iterations, from randomized starting controllers. Multiple

runs were taken for each controller, yielding identical results

(within reasonable numerical accuracy).

V. EXPERIMENTAL RESULTS

The new control approach presented in the previous sec-

tions motivated new series of experiments on T2R: shot num-

bers #20743−#20755 and #20824−#20838. Experimen-

tal plasma equilibrium conditions were set with a toroidal

plasma current Ip ≈ 85 kA, a shot length τp =∼ 50− 70 ms
and reversal and pinch parameter values (typically used to

characterize RFP equilibria [8]) (F,Θ) ≈ (−0.27, 1.72).
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TABLE II

T2R EXPERIMENTAL RESULTS.

[Jy ] = (mT)2 × 10−3 , [Ju] = (A)2 × 103 .

Shot# Kp Ki Kd Jy Ju Remark
20743 150 16000 0.05 1.04 1.66 old gain 1
20744 160 16000 0.04 1.14 1.80 old gain 2
20746 106 37500 0.061 0.581 2.12 series a)
20747 126 47500 0.073 0.808 1.94 a)
20827 150 16000 0.05 1.12 1.60 old gain 1
20833 119.6 46800 0.065 0.680 1.77 b)
20835 106.8 39860 0.058 0.645 1.64 b)

We only consider strict IS performance in terms of plant

output, and introduce a suitable scalar measure to compare

experimental (and simulated) performance.

A. Generic measure of experimental performance

The overall controller performance is summarized with the

general quadratic measure

Jx(θ̃) ≡
1

t1 − t0

∫ t1

t0

xT (τ, θ̃)Qxx(τ, θ̃)dτ (11)

where x = ysys or usys, and θ̃ the controller setting. We do

not consider any specific channel weighting (Qy = Qu =
I ∈ R

64×64) and the integral is approximated by trapezoidal

summation of non-filtered sampled data. The nature of T2R

shots [3] suggests a split of the timespan [t0, t1] into two

parts, corresponding to the transient (first 10 ms) and steady-

state behaviors (between 10 and ∼ 50 ms).

B. Performance improvements

The performance improvements are summarized in Table

II for the steady-state interval 10−45ms, using cost function

(11). The optimized controllers a) and b) clearly reveal a

significant 44% (1 − 0.581/1.04) reduction of average field

energy at the sensors during steady-state period. This is

at the expense of a higher input power, increased by 28%
(2.12/1.66 − 1). Furthermore, simulations with the MIMO

model, as driven by the identified v1 of section II-C.2, reveal

that the old PID coefficients are significantly suboptimal in

both full model (2) and experiment compared to the new PID

coefficients.

VI. CONCLUSIONS

A new model for MHD instabilities in T2R, explicitly

including important geometrical and engineering aspects was

presented. Direct closed-loop PID gain optimization for the

corresponding DDE model was shown to provide useful

results for experimental IS feedback in a RFP fusion research

device. Simulations and experiments for the T2R device have

shown some qualitative agreement, further indicating the

applicability of the model to real experimental conditions.

In short, results strongly encourage future work, theoretically

and experimentally, in both physical modeling and multivari-

able control.
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