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Abstract— A complete type Lyapunov-Krasovskii functional
for neutral type-time delay systems with given cross terms in
the time derivative is presented. The facts that the existance of
this functional is guaranteed for exponentially stable systems
and that it admits a quadratic lower bound allows to propose
new instability conditions for this class of systems.

I. INTRODUCTION

The construction of Lyapunov-Krasovskii functionals with

prescribed time derivative have been addressed in several

works, starting with the contributions of Repin [14] and

Datko [3]. This topic was recently revisited by Kharitonov

and coauthors [9], [15], with the so called functionals of

complete type whose time derivative includes the whole

state of the system. Unlike the functionals of predetermined

form proposed in the literature, if the linear system is

exponentially stable, the functional exists [9]. Moreover,

in contrast with the complete type functional presented by

Huang [6] and Repin [14], that were only shown to admit

cubic lower bounds [5], the complete type functionals admit

a useful quadratic lower bound [9].

Using the negation of the fact that if a system is exponen-

tially stable the existence of the functional is guaranteed and

it admits a quadratic lower bound, it was recently possible

to provide sufficient instability conditions for the case of

retarded linear time delay systems [11].

The instability of functional differential equations has

also been studied in the past years by Hale [4] who states

sufficient conditions for stability and instability based on

Lyapunov functionals, by Barnea [1] who proposes condi-

tions that involve the knowledge of a Lyapunov function

and finally by Buslowicz [2] who gives instability sufficient

delay-dependent conditions derived from the Theorem of

Pontryagin [13].

The aim of our contribution is to extend to the case of

neutral type time delay systems the results on complete type

functional with derivative including special cross terms [10]

and to use them to obtain instability conditions in the spirit

of Ochoa and Mondié [11].

The contribution is organized as follows: some basic

definitions, concepts and previous results on neutral type-

time delay systems are recalled in Section 2. In Section 3

a complete type Lyapunov-Krasovskii functional with given

cross terms in its time derivative is constructed and the

existence of a special quadratic lower bound is established.

Sufficient instability conditions based on the converse idea
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of the existence of a quadratic lower bound of the functional

is presented in Section 4. Illustrative examples are given in

Section 5 and some concluding remarks end this contribution.

II. PRELIMINARIES

In this section some useful basic results are given.

We consider neutral type time delay systems of the form

ẋ(t) − Cẋ(t − h) = Ax(t) + Bx(t − h), (1)

where A,B and C are given n × n constant matrices and

h > 0 is the time delay and the initial condition is

x(θ) = ϕ(θ), − h ≤ θ ≤ 0, ϕ ∈ C1[−h, 0]. (2)

We denote by x(t, ϕ) or x(t) the solution of system (1)

with the initial conditions (2) and xt or xt(ϕ) = {x(t+θ, ϕ)
| θ ∈ [−h, 0]} is the state of the system.

Definition 1: The system (1) is said to be exponentially

stable if there exist γ ≥ 1 and α > 0 such that every solution

x(t, ϕ) satisfies the inequality

‖x(t, ϕ)‖ ≤ γe−αt ‖ϕ‖h ∀t ≥ 0,

where

‖ϕ‖h = sup
θ∈[−h,0]

‖ϕ(θ)‖ .

Remark 2: If C is a Schur matrix, then the asymptotic sta-

bility of system (1) is equivalent to the exponential stability

of the sytem.

Under the assumption that system (1) is exponentially

stable, then the matrix

U(τ) =

∫

∞

0

K⊺(t)WK(t + τ)dt, (3)

is well defined for τ ∈ R and every constant matrix W .

Matrix K(t) is the fundamental matrix of system (1) and

matrix U(τ) is known as the Lyapunov matrix of system (1)

associated to matrix W [15].

A. Lyapunov matrix

It was shown [15] that the Lyapunov matrix satisfies the

following properties

• The dynamic property

U ′(τ) − U ′(τ − h)C = U(τ)A + U(τ − h)B.

• The symmetry property

U(−τ) = U(τ).

• The algebraic property

−W = A⊺U(0) + U(0)A − A⊺U⊺(h)C − C⊺U(h)A+

+ B⊺U(h) + U⊺(h)B − B⊺U(0)C − C⊺U(0)B.
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B. Lyapunov-Krasovskii functionals of complete type

Given a functional of the form

w(xt) =x⊺(t)W0x(t) + x⊺(t − h)W1x(t − h)+ (4)

+

∫ 0

−h

x⊺(t − θ)W2x(t − θ)dθ,

where W0,W1 and W2 are positive definite matrices, then the

system (1) is exponentially stable if there exists a functional

v(xt) such that

d

dt
v(xt) = −w(xt)

along the solutions of the system. The functional v(xt),
called of complete type, is given in the following statement:

Theorem 3: [15] Let system (1) be exponentially stable,

then the complete type functional

v(xt)=v0(xt,W )+

∫ 0

−h

x⊺(t+θ) [W1 +(h+θ)W2] x(t+θ)dθ,

is such that
d

dt
v(xt) = −w(xt).

Here,

v0(xt,W ) = x⊺(t)[U(0) − C⊺U(h) − U⊺(h)C+ (5)

+C⊺U(0)C]x(t) + 2x⊺(t)

∫ 0

−h

[U⊺(h + θ) − C⊺U⊺(θ)]×

× [Bx(t + θ) + Cẋ(t + θ)] dθ +

∫ 0

−h

∫ 0

−h

[Bx(t + θ1)+

+Cẋ(t+θ1)]
⊺U(θ1−θ2) [Bx(t+θ2)+Cẋ(t+θ2)] dθ1dθ2,

and W = W0 + W1 + hW2.

III. FUNCTIONALS OF COMPLETE TYPE WITH A

GIVEN CROSS TERM

This section is devoted to the construction of a complete

type Lyapunov-Krasovkii functional that includes a cross

term in its time derivative. We assume that system (1) is

exponentially stable.

We are looking for functionals of complete type that

satisfies
dvc(xt)

dt
= −wc(xt), (6)

where

wc(xt) =
[

x⊺(t) x⊺(t − h)
]

×
[

W0 PB − A⊺PC

B⊺P − C⊺PA W1

] [

x(t)
x(t − h)

]

+

+

∫ 0

−h

x⊺(t + θ)W2x(t + θ)dθ,

with P a symmetric matrix such that

[

W0 PB − A⊺PC

B⊺P − C⊺PA W1

]

> 0.

Notice that wc(xt) can be expressed as wc(xt) = w(xt)+
w̃c(xt), where w(xt) is given by (4) and w̃c(xt) corresponds

to the cross terms, namely

w̃c(xt) =x⊺(t − h)B⊺Px(t) − x⊺(t − h)C⊺PAx(t)+

x⊺(t)PBx(t − h) − x⊺(t)A⊺PCx(t − h)

Substituting into w̃c(xt) Ax(t) by ẋ(t)−Cẋ(t−h)−Bx(t−
h) and Bx(t − h) by ẋ(t) − Cẋ(t − h) − Ax(t) gives

w̃c(xt) = ẋ⊺Px(t) + x⊺(t)P ẋ(t) − ẋ⊺(t − h)C⊺Px(t)−

− x⊺(t − h)C⊺P ẋ(t) − ẋ⊺(t)PCx(t − h)−

− x⊺(t)PCẋ(t − h) + ẋ⊺(t − h)C⊺PCx(t − h)+

+ x⊺(t − h)C⊺PCẋ(t − h) − x⊺(t)A⊺Px(t)−

− x⊺(t)PAx(t) + x⊺(t − h)C⊺PBx(t − h)+

+ x⊺(t − h)B⊺PCx(t − h),

or

w̃c(xt) = − x⊺(t) [A⊺P + PA]x(t) + x⊺(t − h)×

× [C⊺PB + B⊺PC] x(t − h) +
d

dt
x⊺(t)Px(t)−

−
d

dt
x⊺(t)PCx(t − h) −

d

dt
x⊺(t − h)C⊺Px(t)+

+
d

dt
x⊺(t − h)C⊺PCx(t − h).

Because of the exponential stability assumption for system

(1), the integration from 0 to ∞ of expression (6) gives

vc(xt) = − x⊺(t)Px(t) − x⊺(t − h)C⊺PCx(t − h)+

+ x⊺(t − h)C⊺Px(t) + x⊺(t)PCx(t − h)+

+

∫

∞

0

x⊺(t) [W0 − A⊺P − PA] x(t)dt+

+

∫

∞

0

x⊺(t − h) [W1 + C⊺PB + B⊺PC]×

x(t − h)dt +

∫

∞

0

∫ 0

−h

x⊺(t + θ)W2x(t + θ)dθdt.

If we define

W =W0 + W1 + hW2 − A⊺P − PA+

+ C⊺PB + B⊺PC, (7)

functional vc(xt) appears as

vc(xt) =v0(xt,W )− (8)

− x⊺(t)Px(t) − x⊺(t − h)C⊺PCx(t − h)+

+ x⊺(t − h)C⊺Px(t) + x⊺(t)PCx(t − h)+

+

∫ 0

−h

x⊺(t + θ) [W1 + C⊺PB + B⊺PC +

+(h + θ)W2] x(t + θ)dθ.

Now, we prove that the functional vc(xt) admits quadratic

upper and lower bounds.

Lemma 4: The functional (8) admits a quadratic lower

bound of the form

α ‖x(t) − Cx(t − h)‖
2
≤ vc(xt).
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Proof: Let us define the functional

ṽc(xt) = vc(xt) − α ‖x(t) − Cx(t − h)‖
2
.

Its time derivative is of the form

d

dt
ṽc(xt) = − wc(xt) − 2α [x(t) − Cx(t − h)]

⊺
×

[Ax(t) + Bx(t − h)] ,

equivalently,

d

dt
ṽc(xt) = −

[

x(t) x(t − h)
]

L(α)

[

x(t)
x(t − h)

]

−

−

∫ 0

−h

x⊺(t + θ)W2x(t + θ)dθ,

with

L(α) =

[

W0 PB − A⊺PC

B⊺P − C⊺PA W1

]

+

+ α

[

A + A⊺ B − C⊺A

B⊺ − A⊺C −CB − B⊺C⊺

]

.

Let α0 > 0 be the first positive value for which the deter-

minant of the matrix pencil L(α) vanishes for the first time.

Since L(0) is positive definite, then for α∗ ∈ [0, α0), L(α∗)
is also positive definite. Under these assumption w̃c(xt) ≥ 0
for t ≥ 0 and it follows that

ṽc(xt) =

∫

∞

0

w̃c(xt) ≥ 0,

and the result follows.

Lemma 5: The functional (8) admits a quadratic upper

bound of the form

vc(xt) ≤ ρ

{

‖x(t)‖
2

+ ‖x(t − h)‖
2

+

∫ 0

−h

‖x(t + θ)‖
2
dθ

}

.

Proof: Let

µ = max
τ∈[0,h]

‖U(τ,W )‖ ,

where W is given by (7). Then the majorization of vc(xt)
appears as

vc(xt) ≤ρ1 ‖x(t)‖
2
+ρ2 ‖x(t−h)‖

2
+ρ3

∫ 0

−h

‖x(t+θ)‖
2
dθ+

+ ρ4

∫ 0

−h

‖ẋ(t + θ)‖
2
dθ,

where

ρ1 = ‖U(0)‖ + 2 ‖C‖ ‖U(h)‖ + ‖C‖
2
‖U(0)‖ +

+µh ‖B‖ + µh ‖C‖ + µh ‖B‖ ‖C‖ + µh ‖C‖
2

+

+ ‖P‖ + ‖C‖ ‖P‖

ρ2 = ‖C‖ ‖P‖ + ‖C‖
2
‖P‖

ρ3 = µ ‖B‖ + µ ‖B‖ ‖C‖ + µh ‖B‖
2

+ µh ‖B‖ ‖C‖ +

+
∥

∥W̄1

∥

∥ + h ‖W2‖

ρ4 = 2µ ‖C‖ + µh ‖B‖ ‖C‖ + µh ‖C‖
2
.

Since
∫ 0

−h

‖ẋ(t + θ)‖
2
dθ = ‖x(t)‖

2
− ‖x(t − h)‖

2
,

then

vc(xt) ≤ (ρ1 − ρ4) ‖x(t)‖
2

+ (ρ2 − ρ4) ‖x(t − h)‖
2
+

+ ρ3

∫ 0

−h

‖x(t + θ)‖
2
dθ,

or

vc(xt) ≤ ρ∗1 ‖x(t)‖
2
+ρ∗2 ‖x(t−h)‖

2
+ρ3

∫ 0

−h

‖x(t+θ)‖
2
dθ.

If we select ρ such that ρ ≥ max{ρ∗1, ρ
∗

2, ρ3} then

vc(xt) ≤ ρ

{

‖x(t)‖
2
+‖x(t − h)‖

2
+

∫ 0

−h

‖x(t + θ)‖
2
dθ

}

.

which ends the proof of the lemma.

Remark 6: The functional vc(xt) also satisfies the follow-

ing upper bound

vc(xt) ≤ ρ∗ ‖xt‖
2
h ,

where ρ∗ = ρ(2 + h).
The following lemma provides a less restrictive quadratic

lower bound.

Lemma 7: Let system (1) be exponentially stable and let

symmetric matrices W0,W1 and W2 and a symmetric matrix

P such that
[

W0 PB − A⊺PC

B⊺P − C⊺PA W1

]

> 0

be given. Then, the functional vc(xt) admits a quadratic

lower bound of the form

vc(xt) ≥ α

{

‖x(t) − Cx (t − h)‖
2

+

∫ 0

−h

‖x (t + θ)‖
2
dθ

}

,

for some α ∈ (0, α0], where α0 > 0 is the first positive value

for which the determinant of the matrix pencil

L(α) =

[

W0 PB − A⊺PC

B⊺P − C⊺PA W1

]

+

+ α

[

A + A⊺ + I B − C⊺A

B⊺ − A⊺C −CB − B⊺C⊺ − I

]

,

vanishes for the first time.

Proof: Let us define the functional

ṽc (xt) =vc(xt) − α
[

‖x(t) − Cx(t − h)‖
2
+ (9)

+

∫ 0

−h

‖x(t + θ)‖
2
dθ

]

.

Its time derivative is of the form

dṽc (xt)

dt
= −wc(xt) − 2α [x(t) − Cx(t − h)]

⊺
[

Ax(t)

+Bx(t − h)
]

− α ‖x(t)‖
2

+ α ‖x(t − h)‖
2

= −w̃c(xt),

where w̃c(xt) can be expressed as

w̃c(xt) =
[

x(t) x(t − h)
]

L(α)

[

x(t)
x(t − h)

]

+

+

∫ 0

−h

x⊺(t + θ)W2x(t + θ)dθ.
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Here

L(α) =

[

W0 PB − A⊺PC

B⊺P − C⊺PA W1

]

+

+ α

[

A + A⊺ + I B − C⊺A

B⊺ − A⊺C −C⊺B − B⊺C − I

]

.

Since L(0) is positive definite then L(α) > 0 for α ∈ [0, α0)
implies that

w̃c(xt) ≥ 0,

then
dṽc (xt)

dt
= −w̃c(xt) ≤ 0.

Integrating the above inequality gives
∫

∞

0

dṽc (xt)

dt
= −

∫

∞

0

w̃c(xt) ≤ 0.

The results follows from the stability assumption on system

(1) and definition (9).

Remark 8: The functional vc(xt) can be completely deter-

mined by computing the Lyapunov matrix U(τ), τ ∈ [−h, 0].
Equation (3) cannot be used for the construction of matrix

U(τ). In [12], a semi-analytic procedure and a piece-wise

linear approximation are proposed for the computation of

Lyapunov matrix U(τ).

IV. INSTABILITY CONDITION

The main result of this contribution is based on the idea

of writting the converse of Lemma 7.

Lemma 9: If there exists an initial condition

x(θ) = ϕ(θ), − h ≤ θ ≤ 0, ϕ ∈ C1[−h, 0]

such that the functional vc(xt), defined in (8), satisfies the

inequality

vc(xt) < α

{

‖ϕ(0)−Cϕ (−h)‖
2
+

∫ 0

−h

‖ϕ (θ)‖
2
dθ

}

(10)

where α is the first positive value for which the matrix pencil

L(α) =

[

W0 PB − A⊺PC

B⊺P − C⊺PA W1

]

+

+ α

[

A + A⊺ + I B − C⊺A

B⊺ − A⊺C −C⊺B − B⊺C − I

]

,

vanishes for the first time for matrices W0,W1 and W2 that

satisfies W = W0+W1+hW2−A⊺P−PA+C⊺PB+B⊺PC

and
[

W0 PB − A⊺PC

B⊺P − C⊺PA W1

]

> 0,

then system (1) is unstable.

The above conditions cannot be checked by direct com-

putations because it is written in terms of a general initial

conditions. However it is sufficient to find just one special

initial condition ϕ(θ) to prove the instability of system (1).

To this aim we consider one of the simplest case: we assume

that the initial function is of the form

ϕ(θ) = ϕ(0), θ ∈ [−h, 0] . (11)

Lemma 10: Let a positive definite matrix W be given and

let U(τ) be the Lyapunov matrix of system (1), then if

U(0) − C⊺U(h) − U⊺(h)C + C⊺U(0)C − P − C⊺PC+

+C⊺P + PC + hW̄1 +
h2

2
W2 + Γ1B + B⊺Γ1−

− [C⊺Γ2B + B⊺Γ2C] + B⊺Γ3B − α̂I < 0, (12)

where

α̂ = α0[‖I − C‖2 + h]

Γ1 =

∫ 0

−h

U⊺(h + θ)dθ

Γ2 =

∫ 0

−h

U⊺(θ)dθ

Γ3 =

∫ 0

−h

∫ 0

−h

U⊺(θ1 − θ2)dθ1dθ2,

and α0 is the first positive value for which the determinant

of the matrix pencil L(α) vanishes for some positive definite

matrices W0,W1 and W2 satisfying

W =W0 + W1 + hW2 − A⊺P − PA+

+ C⊺PB + B⊺PC,

and
[

W0 PB − A⊺PC

B⊺P − C⊺PA W1

]

> 0,

then system (1) is unstable.

Proof: For initial conditions of the form (11) the

functional vc(xt) given by (8) is

vc(ϕ) =ϕ⊺(0)
[

U(0) + C⊺U(h) − U⊺(h)C + C⊺U(0)C−

− P − C⊺PC + C⊺P + PC
]

ϕ(0)+

+ 2ϕ⊺(0)

∫ 0

−h

[U⊺(h + θ) − C⊺U⊺(θ)] dθBϕ(0)+

+ ϕ⊺(0)B⊺

∫ 0

−h

∫ 0

−h

U(θ1 − θ2)dθ1dθ2Bϕ(0)+

+ ϕ⊺(0)

∫ 0

−h

[

W̄1 + (h + θ)W2

]

dθϕ(0).

Then the left hand side of (10) can be written in terms of

Γ1,2,3 as:

vc(ϕ) =ϕ⊺(0)
[

U(0) + C⊺U(h) − U⊺(h)C + C⊺U(0)C−

− P − C⊺PC + C⊺P + PC + Γ1B + B⊺Γ1+

+ C⊺Γ2 + Γ2C + B⊺Γ3B + hW1 +
h2

2
W2

]

ϕ(0).

The right hand side of inequality (10) appears as

ϕ⊺(0) [α‖I − C‖ + h]ϕ⊺(0)

and expression (12) follows from defining

α̂ = α0 [‖I − C‖ + h] .
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A. Proposed Methodology

Here we propose a methodology to verify the instability

conditions of Lemma 10.

• Using the piece-wise linear approximation or the semi-

analytic procedure proposed in [12], compute the Lya-

punov Matrix U(τ), τ ∈ [−h, 0] for W > 0.

• Compute matrices Γ1,2,3 by using a numerical integra-

tion method.

• Solve for W0,W1 > 0 and P = P ⊺ the maximum

eigenvalue problem for the following LMI’s

−

[

W0 PB − A⊺PC

B⊺P − C⊺PA W1

]

<

< α

[

A + A⊺ + I B − C⊺A

B⊺ − A⊺C −C⊺B − B⊺C − I

]

, (13)

W > W0 +W1−A⊺P −PA+C⊺PB +B⊺PC, (14)

and compute

W2 =
1

h
[W − W0 − W1 + A⊺P + PA−

− C⊺PB − B⊺PC].

• If condition (12) is satisfied when the matrices

W1,W2, P, U(0), U(h),Γ1,2,3 are substituted then the

system is unstable.

Remark 11: If condition (12) is not satisfied for some

matrices W1,W2, P, U(0), U(h),Γ1,2,3, we cannot conclude

on the instability or stability of the system.

V. EXAMPLES

Example 12: Consider the following scalar neutral type-

time delay system

ẋ(t) = ax(t) + bx(t − h) + cẋ(t − h). (15)

It was shown in [2] that system (15) is unstable if the

following inequality holds

(−a − b)(1 − c − ah) ≤ 0.

Let us select a = 1, b = −2 and c = 0.2. We first compute

the Lyapunov function u(τ) (see Fig. 1) for w = 1 using

the piece-wise linear approximation procedure introduced

in [12] and we obtain the values u(0) = −0.098203 and

u(h) = 0.164779. Computing the values of Γ1,2,3 with

the trapezoidal rule, we get Γ1 = Γ2 = −0.304519 and

Γ = −0.858073.

Solving the maximum eigenvalue problem for LMI’s (13)

and (14) we obtain α = 0.55445, w0 = 0.007478, w1 =
0.888127, w2 = 8.17614 × 10−4 and p = −0.03669. For

these values, condition (12) is satisfied and we conclude that

system (15) is unstable.

Now let us consider the two dimensional example intro-

duced in [7].

Example 13: Consider the neutral type time delay system

ẋ(t) − Cẋ(t − h) = Ax(t) + Bx(t − h), (16)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

τ

u(τ)

Fig. 1. Piece-wise linear approximation of the Lyapunov function u(τ)

where

A =

[

−2 0
0 −0.9

]

, B =

[

−1 0
−1 −1

]

, C =

[

0.1 0
0 0.1

]

.

In [8] it was shown that system (16) is unstable for h >

6.03. Let us select h = 7. Using the semi-analytic procedure

introduced in [12] we compute the Lyapunov matrix U(τ)
for W = I (see Fig. (2)) and we obtain the values

0 1 2 3 4 5 6 7
−6

−4

−2

0

2

4

6

τ

U(τ)

 

 

U11(τ)

U21(τ)

U12(τ)

U22(τ)

Fig. 2. Lyapunov matrix U(τ)

U(0) =

[

−4.7017 −4.9355
−4.9355 −5.3852

]

U(h) =

[

4.5181 3.5643
5.3252 5.2837

]

.

Solving the maximum eigenvalue problem for LMI’S (13)

and (14) we get α = 0.33319 and matrices

W0 =

[

0.9997 −0.000013
−0.000013 0.65469

]

W1 =

[

0.7261 0.0111
0.0111 0.6165

]

W2 =

[

0.07801 −0.0067
−0.0067 0.0387

]

P =

[

−0.3347 0.00088
0.00088 −0.3391

]

.

Finally Γ1,2,3 are obtained by direct computations and we

can directly check that condition (12) is satisfied hence

system (16) is unstable.

It is worth to mention that for the stable case, that is, for

h = 0.5, one cannot find matrices W0,W1,W2 and P such

that inequality (12) holds.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC07.2

5290



VI. CONCLUSIONS

A complete type Lyapunov-Krasovskii functional with

given cross terms in its time derivative is presented. It

is shown that, if the system is exponentially stable, the

functional exists and it admits a quadratic lower bound. The

converse idea leads to sufficient instability conditions stated

in terms of LMI’s.
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