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Abstract— A mathematical model for the scheduling of an-
giogenic inhibitors in combination with a killing agent is
considered as an optimal control problem. Initial results on
the structure of optimal controls are derived.

I. INTRODUCTION

A solid in vivo tumor, after going through an initial state

of avascular growth, at the size of about 2mm in diameter,

starts the process of angiogenesis, i.e., the recruitment of

surrounding host blood vessels in order to facilitate its own

supply of nutrients. In absence of this process (e.g., in

vitro) a tumor ceases its growth. Remarkably, through a

complex bi-directional signaling mechanism, the tumor both

stimulates and also inhibits the growth of endothelial cells

that form the lining of the newly developing capillaries. In

the early seventies J. Folkman [12] introduced the concept

of anti-angiogenic therapy: a cancer treatment that targets

the vasculature of a growing tumor. These treatments bring

in external angiogenic inhibitors to block and in some case

disrupt the growth of endothelial cells. This indirectly effects

the tumor which, ideally, deprived of necessary nutrition,

would regress. Contrary to traditional chemotherapy this

treatment targets the genetically far more stable endothelial

cells rather than the continuously mutating tumor cells.

As a consequence, no clonal resistance to the angiogenic

inhibitors develops in experimental cancer [2], providing a

new hope for the treatment of tumors [14].

However, anti-angiogenic treatment alone only prevents

the tumor from developing its blood vessel support, but does

not directly destroy cancer cells. It seems clear, and this

was confirmed both in vivo and in vitro, that the tumor

has the tendency to grow back once treatment is halted.

Numerous Phase I and II medical studies that have been

and still are being conducted attest to this. More generally,

due to the manifold and serious obstacles that can arise

in cancer treatments, it is common not to limit treatment

options to one form, but to combine different approaches

in the hope of achieving synergistic effects and this also
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includes angiogenic treatments. Thus, combinations of anti-

angiogenesis with traditional chemotherapy are currently

being pursued in clinical trials since this ”simultaneously

targets two compartments, the cancer cells and the vascular

cells that support the tumor” (Dr. Qian, John Hopkins

Kimmel Cancer Center).

Several mathematical models that describe the dynamics

of angiogenesis have been proposed. Some of these aim at

fully reflecting the complexity of the biological processes and

allow for large-scale simulations (e.g., [1]), but then are less

amenable to a mathematical analysis. But also several low-

dimensional models have been formulated. Folkman and his

collaborators Hahnfeldt, Panigrahy, and Hlatky, then at Har-

vard Medical School, developed and biologically validated

a two dimensional model of ordinary differential equations

for the interactions between the tumor volume, p, and the

carrying capacity of the endothelial cells, q [13]. The latter

is defined as the maximum tumor volume sustainable by the

vascular network. Henceforth we also refer to this as the

endothelial support of the tumor for short. Based on this

model, two main modifications of the original model have

been formulated since then, one by Ergun, Camphausen and

Wein from the National Cancer Institute in the U.S. [11], the

other by d’Onofrio (at the European Institute of Oncology in

Milan) and Gandolfi (at National Research Council in Rome)

in [9] and [10] who also gave a mathematical analysis of the

model by Hahnfeldt et al.

In [11] the important problem of how to schedule an a pri-

ori given amount of angiogenic inhibitors in such a way as to

realize the maximum tumor reduction possible was proposed

as an optimal control problem and initially analyzed for the

problem considered there. Complete solutions to both the

original model of [13] as well as its modifications from [9]

and [11] were given in [16]-[18]. A different formulation of

the problem was also considered in [20]. While applications

of optimal control to mathematical models arising in biomed-

ical problems have had a long history with the early focus

on models in cancer chemotherapy, there has been a strong

resurgence of this methodology in the analysis of newer

models. This especially holds for novel treatment approaches

to cancer like anti-angiogenesis discussed above or models

describing the immune response to viruses (e.g., HIV [15])

or cancer and resulting immunotherapies (e.g., [5], [6], [7]),

a second approach currently intensively pursued in medical
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research. In particular, for combination treatments when the

overall interactions are very difficult to gauge a priori, a

theoretical analysis of models can become of practical value.

All these models for anti-angiogenic therapy mentioned

above are for monotherapy only and few models have been

formulated for combination therapy and none so far has been

analyzed mathematically. In [11] a model was presented and

analyzed that combined the action of angiogenic inhibitors

with radiotherapy. In the paper here, as suggested in [8], we

consider the original model formulated by Hahnfeldt et al.

[13] with a linear killing term added to the dynamics for the

tumor growth. This is a reasonable first approximation to

describe a cytotoxic killing agent in chemotherapy without

considering cell-cycle specificity or it could also be consid-

ered a first crude approach to model radiotherapy ignoring

the quadratic effects. Mathematically the problem now is a

multi-control problem and this leads to a significantly more

complex structure of possible optimal controls. In this paper

we present some initial results towards a synthesis of optimal

controls for these combination therapies.

II. MATHEMATICAL MODEL FOR ANTI-ANGIOGENIC

TREATMENT WITH A KILLING TERM

The underlying mathematical model was developed and

biologically validated by Hahnfeldt, Panigrahy, Folkman and

Hlatky [13] and has the primary tumor volume, p, and

the carrying capacity of the vasculature, q, as its principal

variables. A Gompertzian growth function with variable

carrying capacity represented by q is taken for tumor growth,

ṗ = −ξp ln

(

p

q

)

(1)

where ξ denotes a tumor growth parameter, and based on an

analysis of the underlying consumption-diffusion equation in

[13] the following dynamics for the endothelial support was

proposed

q̇ = bp−
(

µ+ dp
2

3

)

q −Guq. (2)

This dynamics arises as a balance between stimulatory and

inhibitory effects. Stimulation is modelled proportional to the

tumor volume, bp, with b a constant labelled for “birth”, and

inhibition consists of loss to the endothelial cells through

natural causes (death etc.), µq, and inhibitory effects of

the tumor given by dp
2

3 q with d a constant labelled for

“death”. The power 2

3
arises since inhibitors need to be

released through the surface of the tumor. Generally µ is

small compared to the factors and thus often is neglected

(µ = 0). The variable u represents a control in the system

and corresponds to the concentration of the inhibitors while

G is a constant that represents the anti-angiogenic killing

parameter. In the version of the model considered here

concentration and dosage of the inhibitors are identified and

pharmacokinetic equations are not included.

In addition to an angiogenic inhibitor we now also con-

sider a killing term (e.g., a cytotoxic agent in chemotherapy

or a simplified model for radiotherapy) and thus modify the

equation for tumor growth accordingly as

ṗ = −ξp ln

(

p

q

)

− Fpv (3)

with v a second control, the concentration/dosage of a killing

agent and F a tumor killing parameter. We then consider the

following optimal control problem:

[OC] For a free terminal time T , minimize the objective

J(u) = p(T ) subject to the dynamics

ṗ = −ξp ln

(

p

q

)

− Fpv, p(0) = p0, (4)

q̇ = bp−
(

µ+ dp
2

3

)

q −Guq, q(0) = q0, (5)

ẏ = u, y(0) = 0, (6)

ż = v, z(0) = 0, (7)

over all piecewise continuous functions u :
[0, T ] → [0, a] and v : [0, T ] → [0, c] for which

the corresponding trajectory satisfies y(T ) ≤ A and

z(T ) ≤ C.

It can be shown that for any admissible controls u and

v and for arbitrary positive initial conditions p0 and q0 the

corresponding solution (p, q) exists for all times t ≥ 0 and

both p and q remain positive. Thus it is not necessary to

impose this as a constraint.

The solution to problem [OC] answers the question how

to schedule a priori given amounts A of angiogenic inhibitors

and C of killing agents to achieve the maximum tumor

reduction and T gives the time when this tumor reduction

is being achieved. From a practical point this often is the

medically more relevant question to answer since resources

are limited and side effects need to be kept under control.

From a mathematical side, once the structure of solutions

to this problem is understood, it is normally not difficult to

modify the analysis to consider a fixed therapy interval Tth

or rather than specifying the upper limit C on the cytotoxic

agent include this as a penalty term in the objective.

III. NECESSARY CONDITIONS FOR OPTIMALITY

Let (u∗, v∗) be optimal controls defined over the interval

[0, T ] with corresponding trajectory (p∗, q∗, y∗, z∗). Similar

to the monotherapy problem analyzed in [17], there exist

degenerate initial conditions when the optimal solution is

given by T = 0. The reason for this lies in the fact that

for p < q exp
(

−Fc
ξ

)

, no matter what control is being

used, the cancer volume p increases. Hence, if the initial

condition lies in this region and if the overall amounts A

and C are too small for the system to reach the region

p > q exp
(

−Fc
ξ

)

, then the smallest value for p along

any solution is always given by the initial condition p0 and

mathematically the optimal solution simply is T = 0. Other

less degenerate situations are possible as well. For reasons

of space, throughout this paper we simply assume that the

optimal solutions have the property that T > 0 and that all

available inhibitors respectively cytotoxic agents are being

used up, y(T ) = A and z(T ) = C. In this case we call the
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initial condition well-posed for the optimal control problem

[OC]. It is not difficult to determine which initial conditions

are well-posed (these are basic reachability questions,) but

we shall not discuss this here.

For a well-posed initial condition the first-order necessary

conditions for optimality of the controls u∗ and v∗ given by

the Pontryagin Maximum Principle (for a recent textbook on

the subject, see, e.g., [4]) state that there exist a constant

λ0 ≥ 0 and an absolutely continuous co-vector, λ : [0, T ] →
(R4)∗, (which we write as row-vector) such that (λ0, λ(t)) 6=
(0, 0) for all t ∈ [0, T ], satisfying the adjoint equations with

transversality condition,

λ̇1 = λ1

(

ξ

(

1 + ln

(

p∗(t)

q∗(t)

))

+ Fv∗(t)

)

(8)

+ λ2

(

2

3
d
q∗(t)

p
1

3

∗ (t)
− b

)

, λ1(T ) = λ0,

λ̇2 = −ξλ1

p∗(t)

q∗(t)
+ λ2(µ+ dp

2

3

∗ (t) +Gu∗(t)), (9)

λ2(T ) = 0,

λ̇3 = 0, and λ̇4 = 0 (10)

such that the optimal controls u∗(t) and v∗(t) minimize the

Hamiltonian H ,

H = −λ1

(

ξp ln

(

p

q

)

+ Fpv

)

+ λ3u+ λ4v (11)

+ λ2

(

bp−
(

µ+ dp
2

3

)

q −Guq
)

along (λ0, λ(t), p∗(t), q∗(t), y∗(t), z∗(t)) over the control set

[0, a] × [0, c] and the minimum value is given by 0.

We call a pair ((p, q, y, z), (u, v)) consisting of an admis-

sible pair of controls (u, v) and its corresponding trajectory

(p, q, y, z) for which there exist multipliers (λ0, λ) such that

the conditions of the Maximum Principle are satisfied an

extremal (pair) and the triple ((p, q, y, z), (u, v), (λ0, λ)) is

an extremal lift (to the cotangent bundle). Extremals with

λ0 = 0 are called abnormal while those with a positive

multiplier λ0 are called normal. In this case we always take

λ0 = 1.

Lemma 3.1: For well-posed initial conditions (p0, q0) ex-

tremals are normal.

Proof. If λ0 = 0, then by the adjoint equation both λ1 and

λ2 vanish identically. Since the multipliers λ3 and λ4 are

constant and the controls are non-negative, the condition that

H = λ3u+λ4v ≡ 0 implies that at least one of the controls

must be identically zero and thus the initial condition is ill-

posed. �

The controls are determined through the minimum con-

dition on the Hamiltonian H . Since H is linear in u and

v and the control sets are compact intervals their values are

determined by the values of the so-called switching functions

Φ1 and Φ2 introduced above,

Φ1(t) = λ3 − λ2(t)Gq∗(t), (12)

Φ2(t) = λ4 − λ1(t)Fp∗(t), (13)

and are given by

u∗(t) =

{

0 if Φ1(t) > 0
a if Φ1(t) < 0

. (14)

and

v∗(t) =

{

0 if Φ2(t) > 0
c if Φ2(t) < 0

. (15)

A priori the controls are not determined by the minimum

condition at times when Φi(τ) = 0. Clearly, if Φi(τ) = 0,

but Φ̇i(τ) 6= 0, then the control has a switch between the end-

points of the corresponding control interval at time τ . On the

other extreme, if Φi(t) ≡ 0 on an open interval I , then also

all derivatives of Φi(t) vanish on I and this may determine

the control. Controls of this kind are called singular while

we refer to the constant controls as bang controls. Optimal

controls then need to be synthesized from these candidates

through an analysis of the switching function.

Calculations of the derivatives of the switching functions

simplify significantly within the framework of geometric

optimal control theory and we therefore now write the state

as a 4-dimensional vector x = (p, q, y, z)T and express the

dynamics in the form

ẋ = f(x) + ug1(x) + vg2(x) (16)

where

f(x) =













−ξp ln
(

p
q

)

bp−
(

µ+ dp
2

3

)

q

0
0













, (17)

g1(x) =









0
−Gq

1
0









, and g2(x) =









−Fp
0
0
1









. (18)

Following differential geometric conventions we denote the

canonical basis vectors by ∂
∂p

= (1, 0, 0, 0)T , ∂
∂q

=

(0, 1, 0, 0)T etc. This allows to write these vector fields and

their brackets in a space saving form, e.g.,

g1(x) = −Gq
∂

∂q
+

∂

∂y
, g2(x) = −Fp

∂

∂p
+

∂

∂z
. (19)

The derivatives of the switching function can easily be

computed using the following well-known result that can be

verified by a direct calculation.

Proposition 3.1: Let h be a continuously differentiable

vector field and define Ψ(t) = 〈λ(t), h(x(t))〉. Then the

derivative of Ψ along a solution to the system equation (16)

for control u and a solution λ to the corresponding adjoint

equations (8)-(10) is given by

Ψ̇(t) = 〈λ(t), [f + ug1 + vg2, h](x(t))〉 , (20)

where [f, h] denotes the Lie bracket of the vector fields

f and h. Recall that the Lie bracket is computed in local

coordinates as [f, h](x) = Dh(x)f(x) − Df(x)h(x) with

Df denoting the matrix of the partial derivatives of f . �
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IV. ANALYSIS OF SINGULAR CONTROLS

In this notation the switching functions are given as

Φ1(t) = 〈λ(t), g1 (x(t))〉 , Φ2(t) = 〈λ(t), g2 (x(t))〉 ,

and hence

Φ̇1(t) = 〈λ(t), [f + vg2, g1] (x(t))〉 ,

Φ̇2(t) = 〈λ(t), [f + ug1, g2] (x(t))〉 .

An elementary calculation verifies that g1 and g2 commute,

[g1, g2] ≡ 0, and thus this simplifies to

Φ̇1(t) = 〈λ(t), [f, g1] (z(t))〉 , (21)

Φ̇2(t) = 〈λ(t), [f, g2] (z(t))〉 . (22)

As a consequence we have that

Lemma 4.1: The controls u and v cannot both be singular

on an open interval I simultaneously .

Proof. Direct computations verify that

[f, g1](x) = Gp

(

ξ
∂

∂p
− b

∂

∂q

)

and

[f, g2](x) = Fp

(

−ξ
∂

∂p
+

(

b−
2

3
dp−

1

3 q

)

∂

∂q

)

= −
F

G
[f, g1](x) −

2

3
Fdp

2

3 q
∂

∂q
.

It follows that the four vector fields g1, g2, [f, g1], and [f, g2]
are linearly independent everywhere. But the multiplier λ is

non-zero since λ1 and λ2 satisfy a homogeneous linear ODE

with non-zero terminal condition and thus λ cannot vanish

against all four vector fields at any time. �

It is not difficult to see that this implies that if one of

the controls is singular on an interval I , then the other

control has isolated switchings on I . Because of space

restrictions here we only consider the more relevant case

of u-singular controls and assume that Φ1(t) ≡ 0 on an

open interval I = (α, β) and that v is constant. Hence

Φ̇1(t) = 〈λ(t), [f, g1] (x(t))〉 ≡ 0 and

Φ̈1(t) = 〈λ(t), [f + ug1 + vg2, [f, g1]] (x(t))〉 ≡ 0. (23)

Except for the extra fourth coordinate which is 0 the vector

fields f and g1 are the same ones as for the case of

monotherapy considered in [17] and a direct calculation

verifies that

[g1, [f, g1]](x(t)) = −G2bp
∂

∂q
. (24)

so that

〈λ(t), [g1, [f, g1]](x(t))〉 = −λ2(t)G
2bp.

Along an optimal u-singular control the multipliers λ2 and

λ3 must be positive: For, λ3 is constant and the fact that the

switching function Φ1(t) = λ3 − λ2(t)Gq(t) vanishes on I

implies that λ2 and λ3 have the same sign on I . But if λ3 <

0, then the Legendre-Clebsch condition for minimality of the

singular control (with v constant) is violated (e.g., [3]) and

the degenerate case λ3 = 0 is not possible since this would

imply λ2(t) ≡ 0 on I and then by the adjoint equation also

λ1(t) ≡ 0 on I which is not possible. Thus along an optimal

u-singular control we have that 〈λ(t), [g1, [f, g1]](x(t))〉 < 0
and the singular control can be expressed as

u∗(t) = −
〈λ(t), [f + vg2, [f, g1]](x(t))〉

〈λ(t), [g1, [f, g1]](x(t))〉
.

Another computation shows that

[g2, [f, g1]](x(t)) = FGbp
∂

∂q
= −

F

G
[g1, [f, g1]](x(t))

(25)

and we can therefore write

u∗(t) = −
〈λ(t), [f, [f, g1]](x(t))〉

〈λ(t), [g1, [f, g1]](x(t))〉
+
F

G
v.

The first term in this expression is exactly the singular control

for the monotherapy case computed in [17] and we can sim-

ply draw on these results to determine the singular controls.

It follows from those calculations that [f, [f, g1]] lies in the

linear span of the vector fields [f, g1] and [g1, [f, g1]],

[f, [f, g1]](x) =

(

ξ + b
p

q

)

[f, g1](x) − ψ[g1, [f, g1]](x)

(26)

with

ψ(p, q) =
1

G

(

ξ ln

(

p

q

)

+ b
p

q
+

2

3
ξ
d

b

q

p
1

3

−
(

µ+ dp
2

3

)

)

.

(27)

Overall we therefore have shown the following result:

Proposition 4.1: If the optimal control u∗ is singular on

an open interval I and v∗ is constant, then

u∗(t) = ψ(p∗(t), q∗(t)) +
F

G
v∗. (28)

�

Note that the necessary condition H ≡ 0 of the Maximum

Principle implies in addition that

〈λ(t), f (x(t)) + vg2(x(t))〉 ≡ 0 (29)

and thus the multiplier λ(t) must vanish against the three

vector fields f + vg2, g1 and [f, g1]. This now leads to

qualitatively very different structures depending on whether

v = 0 or v = c > 0.

Case 1: If v ≡ 0 on I , then naturally the problem reduces

to the monotherapy situation analyzed in [17]. In this case

the vector fields f , g1 and [f, g1] all have zero last coordinate

and span the (p, q, y)-subspace. The only vectors orthogonal

to all of these are (0, 0, 0, λ4). But along a singular arc the

component λ2 must be positive and thus it follows that the

vector fields f , g1 and [f, g1] must be linearly dependent

along the singular arc. Hence, although formulated in R
4, this

case reduces to the three-dimensional problem considered in

[17]. Under the natural condition that

Ga > b− µ > 0,

that is, in principle the maximum dosage of outside inhibitors

is able to overcome the net effect of stimulation through
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the tumor minus natural death terms (the coefficient b is

generally much larger then µ and the second inequality is

not a realistic restriction) we thus have the following result:

Proposition 4.2: [17] If an optimal control u∗ is singular

on an interval (α, β) and v ≡ 0 on (α, β), then the

corresponding trajectory (p∗, q∗) lies on a uniquely singular

curve S. Defining new variables (p, r) with r = p
q

, this curve

S can be parameterized in the form

p2 +

(

b

d
r(ln r − 1) +

µ

d

)3

= 0 (30)

with r in some interval [r1, r2] ⊂ (0,∞). The singular

control keeps the system on the singular curve and is given

as a feedback function of r in the form

usin(r) =
1

G

[(

1

3
ξ + br

)

ln r +
2

3
ξ
(

1 −
µ

br

)

]

. (31)

There exists exactly one connected arc on the singular curve

S along which the singular control is admissible, i.e., satisfies

the bounds 0 ≤ usin(r) ≤ a. This arc is defined over an

interval [r∗ℓ , r
∗

u] where r∗ℓ and r∗u are the unique solutions to

the equations usin(r∗ℓ ) = 0 and usin(r∗u) = a. At these points

the singular control saturates at the control limits u = 0 and

u = a. �

Figs. 1 and 2 illustrate the proposition for the follow-

ing parameter values taken from [13] that were obtained

by fitting experimental data for the case of Lewis lung

carcinomas implanted in mice: The variables p and q are

volumes measured in mm3; ξ = 0.192
ln 10

= 0.084 per day

(adjusted to the natural logarithm), b = 5.85 per day,

d = 0.00873 per mm2 per day, G = 0.15 kg per mg

of dose per day with concentration in mg of dose per kg,

and for illustrative purposes we chose a small positive value

for µ, µ = 0.02 per day. Since we identify dosage and

concentration, both a and A are in units of concentration and

just for illustrative purposes we picked a = 75 and A = 300.

Fig. 1 shows the plot for the singular control defined by

(31) also indicating the values r∗ℓ and r∗u where the control

saturates at usin(r) = 0 and usin(r) = a. Fig. 2 shows the

graph of the singular curve given by formula (30). Saturation

restricts the admissible part to the curve that is marked with a

solid line in Fig. 2. The qualitative structures shown in these

figures are generally valid for arbitrary parameter values both

for the control and the singular curve. With decreasing values

for the upper control limit a the admissible portion shrinks,

but it is always preserved.

Case 2: If v ≡ c > 0 on I , there exists an up to multiples

unique multiplier λ that is orthogonal to the vector fields

f + cg2, g1 and [f, g1]. Thus now there are no restraints on

the locus of where the singular control is admissible and the

singular control is a feedback in (p, q)-space. Fig. 3 below

shows the admissible portion of this feedback control for the

parameter values given earlier.

V. COMPARISON OF SINGULAR PROTOCOLS WITH

REALIZABLE BANG-BANG STRATEGIES

It then becomes necessary to synthesize optimal controls

from all possible candidates including partially singular
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Fig. 2. The admissible singular curve S for v = 0

pieces. For the monotherapy analyzed in [17] the singular

arc was the center piece anchoring this synthesis. A typical

optimal control followed the control u = a (for initial

conditions with a low q0-value also u = 0 is possible) until

it reached the singular arc and then followed the singular

arc until all inhibitors had been exhausted. Here, with the

complexity of the 2-control system the structure becomes

more complicated and the full synthesis is still under in-

vestigation. Below we include two graphs that compare two

types of candidates for optimal controls for different initial

conditions. The blue trajectories correspond to simply using

both controls from the beginning at full doses until they run

out (for the monotherapy this is a rather good sub-optimal

strategy); the red trajectory corresponds to giving full dose

of the control v, the cytotoxic agent, until the drugs are

exhausted while the angiogenic inhibitors, the control u, at

the beginning follows the singular regimen computed above

and then when the cytotoxic agents are exhausted follows

the optimal control for the monotherapy problem. In both

cases the tumor volume is at 12, 000 mm3 initially and the

endothelial support initially is at 6, 000 mm3 in Fig. 4 and

at 12, 000 mm3 in Fig. 5. It is seen from the graphs that the

full dose strategy does better for the higher q0-value while

the singular regimen is the better strategy for the smaller

endothelial support.

VI. CONCLUSION

We presented some preliminary results about optimal con-

trols for a mathematical model that combines anti-angiogenic
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Fig. 3. The admissible portion of the singular flow in u for v = c
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Fig. 4. A comparison of full-dose with singular protocols for p0 = 12, 000
and q0 = 6, 000

therapy with a chemotherapeutic killing agent. Mathemati-

cally this becomes a multi-control problem and the structure

of a synthesis of optimal controls is significantly more

complex than in the monotherapy case. Singular controls,

especially u-singular controls for the angiogenic inhibitors,

will again be part of this synthesis, but its full structure in the

sense of a regular synthesis [19] still needs to be worked out.

From this point of view, also the mathematically simpler, but

biologically intriguing problem of chemotherapeutic agents

that have an anti-angiogenic effect is of interest. In this case

the mathematical problem again is single-input with u(t) an

increasing function of v(t).
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