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Abstract— In this paper, the fault detection problem for
a class of discrete-time Markov jump linear system (MJLS)
with partially known transition probabilities is investigated.
The proposed class of systems is more general, which relaxes
the traditional assumption in Markov jump systems that all
the transition probabilities must be completely known. A
residual generator is constructed and the corresponding fault
detection and isolation (FDI) problem is formulated as an
H∞ filtering problem by which the error between residual
and fault are minimized in the H∞ sense. The LMI-based
sufficient conditions for the existence of FDI filter are derived.
A numerical example is given to illustrate the effectiveness and
potential of the developed theoretical results.

I. INTRODUCTION

The past two decades have witnessed the prosperous re-

search on the stochastic hybrid systems, where the so-called

Markov jump systems have kept being a hot topic due to their

widely practical applications in manufacturing system, power

systems, aerospace systems and networked control system

(NCS), etc [1], [3], [7], [11]. For Markov jump systems with

completely known transition probabilities, many problems

have been addressed, see [1], [3]. Some recent burgeoning

extensions considered the uncertain transition probabilities,

which aimed to utilize robust methodologies to deal with

the norm-bounded or polytopic uncertainties presumed in the

transition probabilities, see for example, [4], [9]. Unfortu-

nately, the structure and ”nominal” terms of the considered

uncertain transition probabilities have to be known a priori.

The ideal assumption on the transition probabilities in-

evitably limits the application of the traditional Markov jump

systems theory. In fact, the likelihood to obtain the complete

knowledge on the transition probabilities is questionable and

the cost is probably high. A typical example could be found

in networked control systems (NCS), where the time-varying

delays and random packet loss induced by communication

channels can be modeled as Markov chains, and accordingly

the resulting closed-loop system can be studied by means

of Markov jump systems theory, see for example, [5], [7],

[11]. However, either the variation of delays or the packet

dropouts in almost all types of communication networks are

vague in different running period of networks, all or part of

the elements in the desired transition probabilities matrix are

hardly or costly to obtain. The same problems may arise in
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other practical systems with Markovian jumps. Thus, rather

than the large complexity to measure or estimate all the

transition probabilities, it is significant and necessary from

control perspectives to further study more general Markov

jump systems with partially known transition probabilities.

On another research front line, fault detection and isolation

(FDI) for many dynamic systems have been much investi-

gated, see for example [2], [6]. The key point of FDI is

to construct the residual generator, determine the residual

evaluation function and the threshold, then make judgment

whether an alarm of fault is generated by comparing the val-

ues of the evaluation function with the prescribed threshold.

Usually, the residual generator is realized by formulating FDI

as a filtering problem with some performance index, such

as H∞ filtering, and therefore the FDI filter gains and the

optimal H∞ performance index for the augmented systems

can be obtained by some optimization methods, such as LMI

[8], [12], [13]. Recently, some attention have been drawn to

Markov jump linear systems, with uncertainties [13] or with

time delays [8], [13]. However, unfortunately, the obtained

results are obtained still based on the traditional assumption

of complete knowledge on transition probabilities. Thus

it is more practical and challenging to find a FDI filter

for the underlying systems with partially known transition

probabilities, which motivates us for this study.

In this paper, the problem of fault detection for a class

of discrete-time Markov jump linear systems (MJLS) with

partially known transition probabilities is investigated. More

precisely, the considered systems relax the assumption that

all the transition probabilities have to be completely known,

and cover the traditional MJLS as a special case. The

residual generator is constructed and the FDI problem is

formulated as an H∞ filtering problem such that the error

between residual and fault are minimized in the H∞ sense.

Sufficient conditions for the existence of the FDI filter for

the underlying systems are derived via LMIs. A numerical

example is presented to show the validness and potential of

the developed theoretical results.

Notation: The notation used in this paper is fairly stan-

dard. The superscript “T” stands for matrix transposition,

R
n denotes the n dimensional Euclidean space, the nota-

tion |·| refers to the Euclidean vector norm. l2[0,∞) is

the space of square summable infinite sequence and for

w = {w(k)} ∈ l2[0,∞), its norm is given by ‖w‖
2

=
√

∑∞

k=0
|w(k)|2 . For notation (Ω,F ,P), Ω represents the

sample space, F is the σ-algebra of subsets of the sam-

ple space and P is the probability measure on F . E [·]
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stands for the mathematical expectation and for sequence

e = {e(k)} ∈ l2 ((Ω,F ,P), [0,∞)) , its norm is given by

‖e‖E2
=

√

E
[

∑∞

k=0
|e(k)|2

]

. In addition, in symmetric

block matrices or long matrix expressions, we use * as an

ellipsis for the terms that are introduced by symmetry and

diag{· · · } stands for a block-diagonal matrix. Matrices, if

their dimensions are not explicitly stated, are assumed to

be compatible for algebraic operations. The notation P > 0
(≥ 0) means P is a symmetric and positive (semi-positive)

definite matrix. I and 0 represent respectively, identity matrix

and zero matrix.

II. PROBLEM FORMULATION AND PRELIMINARY

RESULTS

Fix the probability space (Ω,F ,P) and consider the

following class of discrete-time Markov jump linear systems:

x(k + 1) = A(rk)x(k) + B(rk)u(k)

+E(rk)d(k) + F (rk)f(k)

y(k) = C(rk)x(k) + D(rk)d(k) + G(rk)f(k)(1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

u is the

known input, d(k) ∈ R
d is the unknown input, f(k) ∈ R

f is

the fault to be detected. u(k), d(k) and f(k) aare assumed

to belong to l2[0,∞). y(k) ∈ R
y is the output vector, {rk,

k ≥ 0} is a discrete-time homogeneous Markov chain, which

takes values in a finite set I , {1, ..., N} with a transition

probabilities matrix Λ = {πij} namely, for rk = i, rk+1 = j,

one has

Pr(rk+1 = j|rk = i) = πij

where πij ≥ 0 ∀ i, j ∈ I, and
∑N

j=1
πij = 1. When rk =

i ∈ I, the system matrices of the ith mode are denoted by

Ai, Bi, Ci, Di, Ei, Fi and Gi, which are considered here

to be known real constant with appropriate dimensions.

In addition, the transition probabilities of the jumping

process {rk, k ≥ 0} in this paper are assumed to be partially

accessible, i.e., some elements in matrix Λ are unknown.

For instance, for system (1) with 5 operation modes, the

transition probability matrix may be as:












π11 ? π13 ? π15

? ? ? π24 π25

π31 π32 π33 ? ?
? ? π43 π44 ?
? π52 ? π54 ?













where ”?” represents the unaccessible elements. For notation

clarity, ∀i ∈ I, we denote that

Ii
K , {j : πij is known}, Ii

UK , {j : πij is unknown},
(2)

Also, we denote πi
K

,
∑

j∈Ii

K

πij throughout the paper.

Remark 1: In literature, the transition probabilities of the

Markov chain {rk, k ≥ 0} are generally assumed to be

completely known (Ii
UK

= ∅, Ii
K

= I) or completely

unknown (Ii
K

= ∅, Ii
UK

= I). Therefore, the transition

probability matrix considered in this paper is more natural

to the Markov jump systems and hence covers the previous

two cases. Note that the transition probabilities with poly-

topic or norm-bounded uncertainties can still be viewed as

completely known in the sense of this paper.

Here, we are interested in designing a FDI filter for the

underlying system, its desired structure is considered to be:

xF (k + 1) = AF (rk)xF (k) + BF (rk)y(k)

r(k) = CF (rk)xF (k) + DF (rk)y(k) (3)

where xF (k) ∈ R
n, r(k) ∈ R

f is the so-called residual,

and AF (rk), BF (rk), CF (rk) and DF (rk), ∀rk ∈ I are

the matrices with compatible dimensions to be determined.

The FDI filter with the above structure is assumed to jump

synchronously with the modes in system (1).

Denoting x̃(k) , [ xT (k) xT
F (k) ]T , e(k) , r(k) −

f(k) and augmenting the model of (1) to include (3), we

can obtain the following augmented system:

x̃(k + 1) = Ã(rk)x̃(k) + B̃(rk)w(k)

e(k) = C̃(rk)x̃(k) + D̃(rk)w(k) (4)

where w(k) =
[

uT (k) dT (k) fT (k)
]T

and

Ã(rk) =

[

A(rk) 0
BF (rk)C(rk) AF (rk)

]

,

B̃(rk) =

[

B(rk) E(rk) F (rk)
0 BF (rk)D(rk) BF (rk)G(rk)

]

,

C̃(rk) =
[

DF (rk)C(rk) CF (rk)
]

,

D̃(rk) =
[

0 DF (rk)D(rk) DF (rk)G(rk) − I
]

.

Obviously, the resulting system (4) is also a Markov jump

linear system with partially known transition probabilities

(2). Now, to present the main objective of this paper more

precisely, we also introduce the following definitions for

system (4), which are essential for the later development.

Definition 1: System (4) is said to be stochastically stable

if for w(k) ≡ 0, k ≥ 0 and every initial condition x̃0 ∈ R
n

and r0 ∈ I, the following holds:

E
{

∑∞

k=0
‖x̃(k)‖2 |x̃0, r0

}

< ∞
Definition 2: Given a scalar γ > 0, system (4) is said to

be stochastically stable and has an H∞ performance index γ

if it is stochastically stable and under zero initial condition,

‖e‖E2
< γ ‖w‖

2
holds for all nonzero w(k) ∈ l2[0,∞).

Therefore, our objective in this paper is to determine ma-

trices {AF (rk), BF (rk), CF (rk),DF (rk)} of the FDI filter

such that the augmented system (4) is stochastically stable

and has a guaranteed H∞ performance index. Note that the

original system (1) will be assumed to be stable in the sequel,

see [13], [8], as an usual precondition in the fault detection

problems. Furthermore, as commonly adopted in literature,

the fault f(k) can be deteted by the following steps.

• Select a residual evaluation function J(r) =
√

∑k0+L

k=k0
rT (k)r(k), where k0 denotes the initial eval-

uation time instant and L denotes the evaluation time

steps.

• Select a threshold Jth = supd∈l2,f=0 E [J(r)] .
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• Test:

J(r) > Jth =⇒ with faults =⇒ alarm (5)

J(r) < Jth =⇒ no faults (6)

Before ending the section, we give the following lemma

for system (4), which will be used in the proof of our main

results.

Lemma 1: [3] System (4) is stochastically stable with a

prescribed H∞ performance index γ > 0 if and only if

there exists a set of symmetric and positive-definite matrices

Pi, i ∈ I satisfying

Ξi ,









−P̄i 0 P̄iÃi P̄iB̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









< 0 (7)

where P̄i ,
∑

j∈I
πijPj .

III. MAIN RESULTS

In this section, based on Lemma 1, we will first give

two H∞ bounded real lemmas (BRLs) for the underlying

augmented system (4), and further give the design of the

FDI filter for system (1).

A. H∞ BRLs:

The following lemma presents a bounded H∞ perfor-

mance criterion for system (4) with the partially known

transition probabilities (2).

Lemma 2: Consider system (4) with partially known tran-

sition probabilities (2) and let γ > 0 be a given constant. If

there exist matrices Pi > 0, ∀i ∈ I such that








−Pi
K

0 Pi
K
Ãi Pi

K
B̃i

∗ −πi
K
I πi

K
C̃i πi

K
D̃i

∗ ∗ −πi
K
Pi 0

∗ ∗ ∗ −πi
K
γ2I









< 0, (8)









−Pj 0 PjÃi PjB̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









< 0,∀j ∈ Ii
UK (9)

where Pi
K

,
∑

j∈Ii

K

πijPj , then the augmented system (4)

is stochastically stable with an H∞ performance index γ.

Proof. Note that (7) can be rewritten as

Ξi =











−∑

j∈Ii

K

πijPj 0

∗ −
(

∑

j∈Ii

K

πij

)

I

∗ ∗
∗ ∗

∑

j∈Ii

K

πijPjÃi

∑

j∈Ii

K

πijPjB̃i
∑

j∈Ii

K

πijC̃i

∑

j∈Ii

K

πijD̃i

−∑

j∈Ii

K

πijPi 0

∗ −
(

∑

j∈Ii

K

πij

)

γ2I













+
∑

j∈Ii

UK

πij









−Pj 0 PjÃi PjB̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









=









−Pi
K

0 Pi
K
Ãi Pi

K
B̃i

∗ −πi
K
I πi

K
C̃i πiD̃i

∗ ∗ −πi
K
Pi 0

∗ ∗ ∗ −πi
K
γ2I









+
∑

j∈Ii

UK

πij









−Pj 0 PjÃi PjB̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









Therefore, inequalities (8) and (9) guarantee Ξi < 0 (obvi-

ously, no knowledge on πij , ∀j ∈ Ii
UK

is required in (8) and

(9)), this completes the proof. �

Remark 2: Although Lemma 2 gives a bounded real

lemma (BRL) for the MJLS with partially known transition

probabilities, it is hard to apply it to obtain the desired

reduced-order model here due to the cross coupling of matrix

product terms among different system operation modes, as

shown in (8) and (9). To overcome this difficulty, the tech-

nique using slack matrix developed in [10] can be adopted

here to obtain the following improved criterion for system

(4).

Lemma 3: Consider system (4) with partially known tran-

sition probabilities (2) and let γ > 0 be a given constant. If

there exist matrices Pi > 0, and Ri, ∀i ∈ I such that









Υj − Ri − RT
i 0 RiÃi RiB̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









< 0 (10)

where if πi
K

= 0,Υj , Pj , j ∈ Ii
UK

otherwise,

{

Υj , 1

πi

K

Pi
K
, ∀j ∈ Ii

K

Υj , Pj , ∀j ∈ Ii
UK

(11)

and Pi
K

=
∑

j∈Ii

K

πijPj , then the augmented system (4) is

stochastically stable with an H∞ performance index γ.

Proof. First of all, by Lemma 3, we conclude that system

(4) is stochastically stable with an H∞ performance index

γ if inequalities (8) and (9) hold. Notice that if πi
K

= 0, the

conditions (8)-(9) will be reduced to (9). Then, for πi
K
6= 0,

(8) can be rewritten as:









− 1

πi

K

Pi
K

0 1

πi

K

Pi
K
Ãi

1

πi

K

Pi
K
B̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









< 0. (12)

On the other hand, for an arbitrary matrix Ri,∀i ∈ I , we

have the following facts:

(
1

πi
K

Pi
K − Ri)

T

(

1

πi
K

Pi
K

)−1

(
1

πi
K

Pi
K − Ri) ≥ 0,

(Pj − Ri)
T P−1

j (Pj − Ri) ≥ 0,

then by using (11), one has

Υj − Ri − RT
i ≥ −RT

i Υ
−1

j Ri.
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Furthermore, from (10), we can obtain that








−RT
i Υ

−1

j Ri 0 RiÃi RiB̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









< 0

Performing now a congruence transformation using

diag{R−1

i Υj , I, I, I} yields (12) and (9) for j ∈ Ii
K

and

j ∈ Ii
UK

, respectively (note that Ri is invertible if it satisfies

(10)). This completes the proof. �

B. H∞ FDI filter design:

As an application of Lemma 3, the following Theorem

presents sufficient conditions for the existence of an admis-

sible H∞ FDI filter with the form of (3).

Theorem 1: Consider system (1) with partially known

transition probabilities (2) and let γ > 0 be a given constant.

If there exist matrices P1i > 0, Yi > 0 and P3i > 0,∀i ∈ I,

and matrices P2i, Xi, Zi, Afi, Bfi, Cfi, Dfi, ∀i ∈ I, such

that
















Υ1j Υ2j 0 Υ4i Afi Υ6i

∗ Υ3j 0 Υ5i Afi Υ7i

∗ ∗ −I DfiCi Cfi Υ8i

∗ ∗ ∗ −P1i −P2i 0
∗ ∗ ∗ ∗ −P3i 0
∗ ∗ ∗ ∗ ∗ −γ2I

















< 0 (13)

where

Υ4i , XiAi + BfiCi

Υ5i , ZiAi + BfiCi

Υ6i ,
[

XiBi XiEi + BfiDi XiFi + BfiGi

]

Υ7i ,
[

ZiBi ZiEi + BfiDi ZiFi + BfiGi

]

Υ8i ,
[

0 DfiDi DfiGi − I
]

and if πi
K

= 0, Υ1j , P1j−Xi−XT
i , Υ2j , P2j−Yi−ZT

i ,

Υ3j , P3j − Yi − Y T
i , j ∈ Ii

UK
, otherwise,



























Υ1j , 1

πi

K

P1i
K

, 1

πi

K

∑

j∈Ii

K

πijP1j − Xi − XT
i

Υ2j , 1

πi

K

P2i
K

= 1

πi

K

∑

j∈Ii

K

πijP2j − Yi − ZT
i

Υ3j , 1

πi

K

P3i
K

= 1

πi

K

∑

j∈Ii

K

πijP3j − Yi − Y T
i

(14)







Υ1j , P1j − Xi − XT
i

Υ2j , P2j − Yi − ZT
i

Υ3j , P3j − Yi − Y T
i

, ∀ j ∈ Ii
UK (15)

then, there exists a FDI filter such that the resulting system

(4) is stochastically stable with an H∞ performance index

γ. Moreover, if a feasible solution exists, the gains of an

admissible FDI filter in the form of (3) are given by

AFi = Y −1

i Afi, BFi = Y −1

i Bfi, CFi = Cfi,DFi = Dfi.

(16)

Proof. Consider system (4) and assume the matrices Pi, and

Ri in Lemma 3 to have the following forms:

Pi ,

[

P1i P2i

∗ P3i

]

, Ri ,

[

Xi Yi

Zi Yi

]

then we have

Pi
K ,

∑

j∈Ii

K

πijPj =
∑

j∈Ii

K

πij

[

P1j P2j

∗ P3j

]

,

[

P1i
K

P2i
K

∗ P3i
K

]

Further define matrix variables

Afi = YiAFi, Bfi = YiBFi, Cfi = CFi, Dfi = DFi

Υj ,

[

Υ1j Υ2j

∗ Υ3j

]

where Υ1j , Υ2j and Υ3j are defined in (14) and (15) for j ∈
Ii
K

and j ∈ Ii
UK

, respectively, one can readily obtain (13) by

replacing Ãi, B̃i, C̃i, D̃i,Υj , Pi and Ri into (10), namely, if

(13) holds, the augmented system (4) will be stochastically

stable with an H∞ performance. Meanwhile, if a solution of

(13) exists, the parameters of admissible filter are given by

(16). This completes the proof. �

Remark 3: By setting δ = γ2 and minimizing δ subject to

(13), we can obtain the optimal H∞ performance index γ∗

(by γ =
√

δ) and the corresponding filter gains as well. Also,

it can be deduced from (13) that, given different degree of

unknown elements in the transition probabilities matrix, the

optimal γ∗ achieved for system (4) and the corresponding

filter should be different, which we will illustrate via a

numerical example in the next section.

IV. NUMERICAL EXAMPLE

Consider the MJLS (1) with four operation modes and the

following data:

A1 =









0.1 0 1 0
0 0.1 0 0.5
0 0 0.2 0
0 0 0 0.1









,

A2 =









0.3 0 −1 0
−0.1 0.2 0 −0.5

0 0 −0.2 0
0 0 0 −0.5









,

A3 =









0.2 0 1 0
0 0.3 0 0.4
0 0 0.1 0
0 0 0 −0.1









,

A4 =









0.1 0 −1 0
−0.2 0.2 0 −0.1

0 0 −0.2 0
0 0 0 −0.3









,

B1 = B2 = B3 = B4 =
[

0.5 0.1 0.2 0.3
]T

,

C1 = C2 = C3 = C4 =

[

1 0.1 0 1
0 0.8 1 0

]

,

E1 = E2 = E3 = E4 =
[

0.08 0.1 0.5 0.3
]T

,
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TABLE I

DIFFERENT TRANSITION PROBABILITIES MATRICES

Completely known Partly unknown (case I)

1 2 3 4
1 0.3 0.2 0.1 0.4
2 0.3 0.2 0.3 0.2
3 0.1 0.1 0.5 0.3
4 0.2 0.2 0.1 0.5

1 2 3 4
1 0.3 0.2 0.1 0.4
2 ? ? 0.3 0.2
3 0.1 0.1 0.5 0.3
4 0.2 ? ? ?

Partly unknown (case II) Completely unknown

1 2 3 4
1 0.3 ? 0.1 ?
2 ? ? 0.3 0.2
3 ? 0.1 ? 0.3
4 0.2 ? ? ?

1 2 3 4
1 ? ? ? ?
2 ? ? ? ?
3 ? ? ? ?
4 ? ? ? ?

TABLE II

COMPUTATION RESULTS FOR DIFFERENT CASES

Transition probabilities γ∗ L

Completely known 0.1406 4
partially known (Case I) 0.2133 4
partially known (Case II) 0.3234 6

Completely unknown 0.4430 7

D1 = D2 = D3 = D4 =

[

0.8
0.4

]

,

F1 = F2 = F3 = F4 =
[

1 −1 1 −1
]T

,

G1 = G2 = G3 = G4 =

[

−1
0.9

]

.

The four cases for the transition probability matrix will be

considered in this example as shown in Table 1.

Here, for k = 0, 1, ..., 300, the unknown input d(k) is

simulated by white noise signal with amplitude less than 0.5
(given in Fig. 1). The known input u(k) is given by step

signal with amplitude 0.3. The fault signal is set up as

f(k) =

{

0.8, for k = 100, 101, ..., 200
0, others

By solving the convex problem in (13), the optimal H∞

performance indices and the corresponding FDI filter are

obtained for the four different transition probability cases.

The corresponding results are listed in Table 2. We omit the

filter gains for simplicity.

Now, consider the transition probability matrix with com-

pletely known elements as the practical one for other three

cases in Table 1, we can generate a possible evolution

of system modes as shown in Fig. 2. Accordingly, Fig.

3 shows the generated residual signals r(k), and Fig. 4

presents the evolution of J(r) =
√

∑k

l=0
rT (l)r(l) for

both faulty case and fault-free case, respectively, for four

different transition probability matrices in Table 1. Then,

based on the path in Fig. 2 and the selected threshold

Jth = supd∈l2,f=0 E

[

√

∑300

k=0
rT (k)r(k)

]

, the time steps

L for the fault detection by the evaluation function J(r) =
√

∑L

k=0
rT (k)r(k) and test (5)-(6) can be calculated and

also given in Table 2. Obviously, it is seen from Table 2

that the more transition probability knowledge we have, the

better H∞ performance index the augmented system can

achieve and the less times are needed for the fault detection.

Therefore, a tradeoff can be actually built in practice between

the complexity to obtain transition probabilities and the

performance benefits and efficience of detection by means

of our ideas and approaches.

V. CONCLUSIONS

The fault detection problem for discrete-time MJLS with

partially known transition probabilities is investigated in this

paper. The underlying systems are more general than the

traditional MJLS, where all the transition probabilities are

assumed to be completely known. The LMI-based sufficient

conditions of FDI filter is obtained, and a tradeoff can

be observed between the complexity of obtaining all the

transition probabilities and the time steps to detect the fault.
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Fig. 1. Unknown input d(k)
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Fig. 3. Generated residual r(k)
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Fig. 4. Evolution of J(r) =
√

∑

k

l=0
rT (l)r(l)
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