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Abstract— The paper investigates the synchronization of a
network of identical linear time-invariant state-space models
under a possibly time-varying and directed interconnection
structure. The main result is the construction of a dynamic
output feedback coupling that achieves synchronization if the
decoupled systems have no exponentially unstable mode and
if the communication graph is uniformly connected. Stronger
conditions are shown to be sufficient – but to some extent, also
necessary – to ensure synchronization with the diffusive static
output coupling often considered in the literature.

I. INTRODUCTION

In these last years, consensus, coordination and synchro-

nization problems have been popular subjects in systems and

control, motivated by many applications in physics, biol-

ogy, and engineering. These problems arise in multi-agent

systems with the collective objective of reaching agreement

about some variables of interest.

In the consensus literature, the emphasis is on the commu-

nication constraints rather than on the individual dynamics:

the agents exchange information according to a commu-

nication graph that is not necessarily complete, nor even

symmetric or time-invariant, but, in the absence of commu-

nication, the agreement variables usually have no dynamics.

It is the exchange of information only that determines the

time-evolution of the variables, aiming at asymptotic syn-

chronization to a common value. The convergence of such

consensus algorithms has attracted a lot of interest in the

recent years and it only requires a weak form of connectivity

for the communication graph [1], [2], [3], [4], [5].

In the synchronization literature, the emphasis is on the

individual dynamics rather than on the communication lim-

itations: the communication graph is often assumed to be

complete (or all-to-all), but in the absence of communi-

cation, the time-evolution of the agents variables can be

oscillatory or even chaotic. The system dynamics can be

modified through the information exchange, and, as in the

consensus problem, the goal of the interconnection is to

reach synchronization to a common solution of the individual

dynamics [6], [7], [8], [9].

Coordination problems encountered in the engineering

world, can often be rephrased as consensus or synchro-
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Computer Science, University of Liège, Belgium. r.sepulchre@ulg.ac.be.
This paper presents research results of the Belgian Network DYSCO (Dy-
namical Systems, Control, and Optimization), funded by the Interuniversity
Attraction Poles Programme, initiated by the Belgian State, Science Policy
Office. The scientific responsibility rests with its author.

nization problems in which both the individual dynamics

and the limited communication aspects play an important

role. Designing interconnection control laws that can ensure

synchronization of relevant variables is therefore a control

problem that has attracted quite some attention in the recent

years [10], [11], [12], [13], [14], [15].

The present paper deals with a fairly general solution of

the synchronization problem in the linear case. Assuming N
identical individual agents dynamics each described by the

linear state-space model (A, B, C), the main result is the

construction of a dynamic output feedback controller that en-

sures exponential synchronization to a solution of the linear

system ẋ = Ax under the following assumptions: (i) A has

no exponentially unstable mode, (ii) (A, B) is stabilizable

and (A, C) is observable, and (iii) the (possibly time-varying

and directed) communication graph is uniformly connected.

Uniform connectedness is a very mild condition. It allows

the communication from one system to another to be indirect,

involving intermediate systems. Also, the required commu-

nication does not need to occur instantaneously but may be

spread over time.

The result can be interpreted as a generalization of clas-

sical consensus algorithms studied in the recent years cor-

responding to the particular case A = 0. The generalization

includes the non-trivial examples of synchronizing harmonic

oscillators or chains of integrators. The dynamic controller

structure proposed in this paper differs from the static

diffusive coupling often considered in the synchronization

literature, which requires more stringent assumptions on the

communication graph. The paper also provides sufficient

conditions for synchronization by static diffusive coupling

and illustrates, on simple examples, that synchronization may

fail under diffusive coupling when the stronger assumptions

on the communication graph are not satisfied.

The paper is organized as follows. In Section II the

notation used throughout the paper is summarized and some

preliminary results are reviewed. In Section III the synchro-

nization problem is introduced and defined. In Section IV the

linear case is studied when state coupling among the systems

is allowed while, in Section V, the output coupling case is

considered. Finally, in Section VI, two-dimensional examples

are reported to illustrate the role of the proposed dynamic

controller in situations where static diffusive coupling fails

to achieve synchronization.

II. PRELIMINARIES

A. Notation and Terminology

Throughout the paper we will use the following notation.

Given N vectors x1, x2, . . . , xN we indicate with x the
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stacking of the vectors, i.e. x = [xT
1 , xT

2 , . . . , xT
N ]T . We

denote with IN the diagonal matrix of dimension N and

we define 1N , [1, 1, . . . , 1]T ∈ R
N . Given two matrices A

and B we denote their Kronecker product with A⊗B, for the

definition and basic properties see e.g. [16]. For notational

convenience, we use the convention ÃN = IN ⊗ A and

ÂN = A ⊗ IN .

B. Communication Graphs

Given a set of interconnected systems the communication

topology is encoded through a communication graph. The

convention is that system j receives information from system

i if and only if there is a directed link from node j to node

i in the communication graph. Let G(t) = (V , E(t), Ad(t))
be a time-varying weighted digraph (directed graph) where

V = {v1, . . . , vN} is the set of nodes, E(t) ⊆ V × V is the

set of edges, and Ad(t) is a weighted adjacency matrix with

nonnegative elements akj(t). In the following we assume that

Ad(t) is piece-wise continuous and bounded and akj(t) ∈
{0} ∪ [η, γ], ∀ k, j, for some finite scalars 0 < η ≤ γ and

for all t ≥ 0. Furthermore {vk, vj} ∈ E(t) if and only if

akj(t) ≥ η. The set of neighbors of node vk at time t is

denoted by Nk(t) , {vj ∈ V : akj(t) ≥ η}. A path is a

sequence of vertices such that for each of its vertices vk the

next vertex in the sequence is a neighbor of vk. Assume that

there are no self-cycles i.e. akk(t) = 0, k = 1, . . . , N and

for any t.

The graph Laplacian L(t) associated to the graph G(t) is

defined as

Lkj(t) =

{
∑

i aki(t), j = k
−akj(t), j 6= k.

The in-degree (respectively out-degree) of node vk is defined

as din
k =

∑N

j=1 akj (respectively dout
k =

∑N

j=1 ajk). The

digraph G is said to be balanced if the in-degree and the

out-degree of each node are equal, that is,

∑

j

akj =
∑

j

ajk, k = 1, . . . , N.

Balanced graphs have the particular property that the sym-

metric part of their Laplacian is nonnegative: L + LT ≥ 0
[17]. We recall some definitions that characterize the concept

of connectivity for time-varying graphs.

Definition 1: The digraph G(t) is connected at time t if

there exists a node vk such that all the other nodes of the

graph are connected to vk via a path that follows the direction

of the edges of the digraph.

Definition 2: Consider a graph G(t). A node vk is said

to be connected to node vj (vj 6= vk) in the interval

I = [ta, tb] if there is a path from vk to vj which re-

spects the orientation of the edges for the directed graph

(V ,∪t∈IE(t),
∫

I
Ad(τ)dτ).

Definition 3: G(t) is said to be uniformly connected if

there exists a time horizon T > 0 and an index k such that

for all t all the nodes vj (j 6= k) are connected to node vk

across [t, t + T ].

C. Convergence of consensus algorithms

Consider the continuous dynamics

ẋk =

N
∑

j=1

akj(t)(xj − xk), k = 1, . . . , N. (1)

Using the Laplacian definition, (1) can be equivalently ex-

pressed as

ẋ = −L̂n(t)x, (2)

Algorithm (2) has been widely studied in the literature

and asymptotic convergence to a consensus value holds

under mild assumptions on the communication topology. The

following theorem summarizes the main result in [2].

Theorem 1: Let xk, k = 1, 2, . . . , N , belong to a finite-

dimensional Euclidean space W . Let G(t) be a uniformly

connected digraph and L(t) the corresponding Laplacian

matrix bounded and piecewise continuous in time. Then

the equilibrium sets of consensus states of (1) and (2) are

uniformly exponentially stable. Furthermore the solutions of

(1) and (2) asymptotically converge to a consensus value

1N ⊗ β for some β ∈ W . �

III. THE SYNCHRONIZATION PROBLEM

Consider N identical dynamical systems

ẋk = f(xk, uk)
yk = h(xk), k = 1, . . . , N

(3)

where xk ∈ R
n is the state of the system, uk ∈ R

m is the

control and yk ∈ R
p is the output. We assume that the cou-

pling among the systems involves only the output differences

yk−yj and the controller state differences ξk−ξj . Following

the terminology and notation of Section II, two systems are

coupled at time t if there exists an edge connecting them

in the associated (time-varying) communication graph G(t)
at time t. We will call a control law dynamic if it depends

on an internal (controller) state, otherwise it is called static.

For the systems to be synchronized, the control action (that

will depend on the coupling) must vanish asymptotically

and must force the solutions of the closed-loop systems

to asymptotically converge to a common solution of the

individual systems. This leads to the formulation of the

following problem:

Synchronization Problem: Given N identical systems de-

scribed by the model (3) and a communication graph G(t),
find a (distributed) control law such that the solutions of (3)

asymptotically synchronize to a solution of the open-loop

system ẋ0 = f(t, x0, 0). �

In the present paper we focus the attention on synchroniza-

tion of linear time-invariant systems. Generalizations will be

the subject of future work.

IV. SYNCHRONIZATION OF LINEAR SYSTEMS WITH STATE

FEEDBACK

Consider N identical linear systems, each described by

the linear model

ẋk = Axk + Buk, k = 1, 2, . . . , N, (4)
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where xk ∈ R
n is the state of the system and uk ∈ R

m is

the control vector. For notational convenience it is possible

to rewrite (4) in compact form as

ẋ = ÃNx + B̃Nu. (5)

Theorem 1 can be interpreted as a synchronization result for

linear systems with A = 0 and B = I . A straightforward

generalization is as follows.

Theorem 2: Consider the linear systems (4). Let B be a

n × n nonsingular matrix and assume that all the eigen-

values of A belong to the imaginary axis. Assume that the

communication graph G(t) is uniformly connected and the

corresponding Laplacian matrix L(t) piecewise continuous

and bounded. Then, under the control law

uk = B−1
N

∑

j=1

akj(t)(xj − xk), k = 1, 2, . . . , N, (6)

all solutions of (4) exponentially synchronize to a solution

of the system ẋ0 = Ax0. �

Proof: Consider the closed-loop system

ẋk = Axk +

N
∑

j=1

akj(t)(xj − xk).

The change of variable

zk(t) = e−A(t−t0)xk(t), k = 1, 2, . . . , N (7)

t ≥ t0, leads to

żk = −Ae−A(t−t0)xk + e−A(t−t0)Axk

+e−A(t−t0)
∑N

j=1 akj(t)(xj − xk)

=
∑N

j=1 akj(t)(zj − zk)

or, in compact form,

ż = −L̂n(t) z. (8)

From Theorem 1 the solutions zk(t), k = 1, 2, . . . , N expo-

nentially converge to a common value x0 ∈ R
n as t → ∞,

that is, there exist constants δ1 > 0 and δ2 > 0 such that for

all t0,

||zk(t) − x0|| ≤ δ1e
−δ2(t−t0) ||zk(t0) − x0|| , ∀t > t0. (9)

In the original coordinates, this means
∣

∣

∣

∣xk(t) − eA(t−t0)x0

∣

∣

∣

∣≤ δ1

∣

∣

∣

∣eA(t−t0
∣

∣

∣

∣

×e−δ2(t−t0) ||xk(t0) − x0|| ,
(10)

for every t > t0. Because all the eigenvalues of the matrix

A lie on the imaginary axis, there exists a constant δ3 > 0
such that

∣

∣

∣

∣

∣

∣
xk(t) − eA(t−t0)x0

∣

∣

∣

∣

∣

∣
≤ δ1e

−δ3(t−t0) ||xk(t0) − x0|| ,

(11)

for every t > t0, which proves that all solutions exponentially

synchronize to a solution of the open loop system. �

Remark 1: The result is of course unchanged if A also

possesses eigenvalues with a negative real part. Exponentially

stable modes synchronize to zero, even in the absence of

coupling. In contrast, the situation of systems with some

eigenvalues with a positive real part can be addressed in

a similar way but it requires that the graph connectivity is

sufficiently strong to dominate the instability of the system.

This is clear from the last part of the proof of Theorem 2

where the exponential synchronization in the z coordinates

must dominate the divergence of the unstable modes of A.

�

The assumption of a square (nonsingular) matrix B in

Theorem 2 can be weakened to a stabilizability assumption

on the pair (A, B). For an arbitrary stabilizing feedback

matrix K , consider the (dynamic) control law

ξ̇ =
(

ÃN + B̃NK̃N

)

ξ + L̂n(t)(x − ξ),

u = K̃Nξ
(12)

which leads to the closed-loop system

ẋ = ÃNx + B̃NK̃Nξ (13a)

ξ̇ =
(

ÃN + B̃NK̃N

)

ξ + L̂n(t)(x − ξ). (13b)

Theorem 3: Consider the system (4). Assume that all the

eigenvalues of A belong to the closed left-half complex

plane. Assume that the pair (A, B) stabilizable and let K
a stabilizing matrix such that A + BK is Hurwitz. Assume

that the graph is uniformly connected and the Laplacian is

piecewise continuous and bounded. Then the solutions of

(13) exponentially synchronize to a solution of the open loop

system ẋ0 = Ax0. �

Proof: With the the change of variable sk = xk − ξk we

can rewrite (13b) as

ṡ = ÃNs − L̂n(t)s,

and the closed-loop dynamics write

ẋ =
(

ÃN + B̃NK̃N

)

x + B̃NK̃Ns (14a)

ṡ = ÃNs − L̂n(t)s. (14b)

Observe that the two systems (14a) and (14b) are decoupled.

Since the hypotheses of Theorem 2 are satisfied for the sub-

system (14b), its solutions exponentially synchronize to a

solution of ṡ0 = As0. The subsystem (13b) is therefore

an exponentially stable system driven by an input L̂n(t)s(t)
that exponentially converges to zero. As a consequence, its

solution ξ(t) exponentially converges to zero, which implies

that the solutions of (13a) exponentially synchronize to a

solution of ẋ0 = Ax0. �

Remark 2: In the present paper we focus on time-

invariant linear systems in continuous time. However, the

results here presented, are easily extendable to discrete-time

systems and periodic systems. For the interested reader these

generalizations are discussed in [18]. �

V. SYNCHRONIZATION OF LINEAR SYSTEMS WITH

OUTPUT FEEDBACK

Consider a group of N identical linear systems described

by the linear model

ẋk = Axk + Buk,
yk = Cxk

k = 1, 2, . . . , N, (15)
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where xk ∈ R
n is the state of the system, uk ∈ R

m is the

control vector, and yk ∈ R
p is the output. For notational

convenience it is possible to rewrite (15) in compact form as

ẋ = ÃNx + B̃Nu

y = C̃Ny.
(16)

The state feedback controller of Theorem 3 is easily

extended to an output feedback controller if we assume

observability of the pair (A, C). Pick an observer matrix

H such that A + HC is Hurwitz and consider the output

feedback controller

ξ̇ =
(

ÃN + B̃NK̃N

)

ξ + L̂n(t)(x̂ − ξ)

˙̂x = ÃN x̂ + B̃Nu + H̃N (ŷ − y)

u = K̃Nξ

ŷ = C̃N x̂,

(17)

where observability is assumed and H is a suitable observer

matrix. The convergence analysis is similar to the one for

Theorem 2 and is mainly based on the observation that the

estimation error is decoupled from the consensus dynamics.

Theorem 4: Assume that the open-loop system (4) is

stabilizable and observable and that all the eigenvalues of

A belong to the closed left-half complex plane. Assume that

the communication graph is uniformly connected and the

Laplacian is piecewise continuous and bounded. Then for

any gain matrices K and H such that A+BK and A+HC
are Hurwitz, the solutions of (5) with the dynamic controller

(17) exponentially synchronize to a solution of ẋ0 = Ax0.

�

Proof: Define sk = x̂k−ξk and ek = xk− x̂k, and rewrite

the closed loop system as

ẋ =
(

ÃN + B̃NK̃N

)

x + B̃NK̃N (e + s)

ṡ = ÃNs − L̂ns

ė =
(

ÃN + H̃N C̃N

)

e.

This system is the cascade of the closed-loop system ana-

lyzed in the proof of Theorem 3 with an exponentially stable

estimation error dynamics, which proves the result. �

Theorem 4 provides a general synchronization result for

linear systems but the solution requires a dynamic con-

troller. For the sake of comparison, we provide a set of

sufficient conditions to prove synchronization under a simple

static output feedback (diffusive) interconnection. These suf-

ficient conditions assume a passivity property for the system

(A, B, C), that is, the existence of a symmetric positive

definite matrix P > 0 that verifies

PA + AT P ≤ 0, BT P = C. (18)

Passity conditions have been considered previously in [19]

(where it is assumed that the communication topology is

bidirectional and strongly connected) and in [8] (where syn-

chronization is studied for a class of (nonlinear) oscillators

assuming that the communication topology is time-invariant

and balanced). Assumptions A1 and A2 below lead to a time-

varying extension of the results in [8] and [19] in the special

case of linear systems.

Theorem 5: Consider systems (15) equipped with the

static output feedback control laws

uk =

N
∑

j=1

akj(t)(yj − yk).

Let the graph Laplacian matrix L(t) be piecewise contin-

uous and bounded. Then exponential synchronization to a

solution of ẋ0 = Ax0 is achieved under either one of the

following assumptions: A1. The system (A, B, C) is passive

and observable, the communication graph is connected and

balanced at each time;

A2. The system (A, B, C) is passive and observable, the

communication graph is symmetric, i.e. the Laplacian ma-

trix can be factorized as L = DDT (t), and the pair

(ÃN , D̂T
p C̃N ) is uniformly observable. �

Proof: Supppose first that assumption A1 holds and con-

sider the matrix P solution of (18).

Consider the Lyapunov function

V (x) =
1

2
(Π̂nx)T P̃N (Π̂nx), (19)

the derivative along the solutions of the closed loop system

is

V̇ (x) =
1

2
ẋT Π̂nP̃N Π̂nÃNx +

1

2
xT Π̂nP̃N Π̂nÃN ẋ. (20)

By using the commutation property of Kronecker products

(see e.g. [16]) and the passivity relation (18) we obtain

V̇ (x) =
1

2
xT Π̂n(P̃N ÃN + ÃT

N P̃N )Π̂nx

−xT C̃T
NΠpL̂

sym
p (t)Π̂py

≤ −yT Π̂pL̂
sym
p (t)Π̂py.

(21)

Because the graph is balanced, the matrix Lsym(t) , (L(t)+
LT (t))/2 is positive semi-definite for each t and

(Π̂py)T L̂sym
p (t)Π̂py ≥ λ∗

2

∣

∣

∣

∣

∣

∣
Π̂py

∣

∣

∣

∣

∣

∣

2

,

where λ∗

2 = inft λ2(t), and λ2(t) is the algebraic connectiv-

ity of the graph at time t. Note that λ∗

2 > 0 because the graph

is connected at each time t and the values of the adjacency

matrix related to the connected components are assumed to

be bounded away from zero (see Section II). This allows to

rewrite (21) as

V̇ (x) ≤ −λ∗

2

∣

∣

∣

∣

∣

∣
Π̂py

∣

∣

∣

∣

∣

∣

2

, λ∗

2 > 0. (22)

Integrating (22) over the interval [t0, t0 + T ] where T > 0
is arbitrary, we obtain

∫ t0+T

t0

V̇ dt ≤ −λ∗

2

∫ t0+T

t0

∣

∣

∣

∣

∣

∣
Π̂py

∣

∣

∣

∣

∣

∣

2

dt

≤ −γλ∗

2

∣

∣

∣

∣

∣

∣
Π̂nx(t0)

∣

∣

∣

∣

∣

∣

2

, γ > 0,

(23)

for all x(t0), where the last inequality follows from the ob-

servability condition of the pair (A, C). We conclude from a

standard Lyapunov argument that the solutions exponentially

synchronize.
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Assume that assumption A2 holds. First observe that from

the symmetry of the communication graph the Laplacian

matrix can be factorized as L(t) = DDT (t). Uniform

observability of the pair (ÃN , D̂T
p C̃N ) means that for all

t0 > 0 there exist positive constants T and α (independent

from t0) such that
∫ t0+T

t0

Φ̃N (t, t0)
T C̃T

N D̂pD̂
T
p (τ)C̃N Φ̃N (t, t0)dt ≥ αInN ,

(24)

where Φ(t, τ) is the transition matrix. This implies that the

system

ẋ = ÃNx

z = D̂T
p (t)C̃Nx,

(25)

is uniformly observable. Applying output injection to system

(25) we obtain

ẋ = ÃNx − K(t)D̃T
p C̃Nx

z = D̂T
p (t)C̃Nx.

(26)

Choose K(t) , P̃−1
N C̃T

N D̂T
p (t) and observe that, since L(t)

is bounded, K(t) belongs to L2(t, t + T ). Then output

injection preserves observability (see [20] and references

therein) and the system

ẋ = Ãx − B̃N D̂T
p D̂p(t)C̃Nx

z = D̂T
p (t)C̃Nx

(27)

is still uniformly observable (here we have also used the

passivity condition C̃N = B̃T
N P̃N ). Therefore for all t0 > 0

there exist positive constants T and β (independent from t0)

such that for every x(0) 6= 0
∫ t0+T

t0

||z||2 dt =

∫ t0+T

t0

y(t)T D̂pD̂
T
p (t)y(t)dt ≥ β. (28)

Consider the Lyapunov function (19). Integrating its time

derivative over the interval [t0, t0 + T ] where T > 0 is

arbitrary we obtain

∫ t0+T

t0

V̇ dt ≤ −

∫ t0+T

t0

∣

∣

∣

∣

∣

∣
Π̂pD̂pD̂

T
p (t)y

∣

∣

∣

∣

∣

∣

2

dt

≤ −σ
∣

∣

∣

∣

∣

∣
Π̂nx(t0)

∣

∣

∣

∣

∣

∣

2

, σ > 0.

We conclude from standard Lyapunov results that the solu-

tions asymptotically synchronize. �

VI. EXAMPLES

The conditions of Theorem 5 are only sufficient conditions

for exponential synchronization under diffusive coupling.

We provide two simple examples to illustrate that these

conditions are not far from being necessary when considering

time-varying and directed graphs and that the internal model

of the dynamic controller (12) plays an important role in

such situations.

Example 1: Synchronization of harmonic oscillators

Consider a group of N harmonic oscillators

ẋ1k = x2k

ẋ2k = −x1k + uk,
(29)

Fig. 1. The time-varying communication topology used in Example 1 and
Example 2.
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Fig. 2. First component of the solutions of the closed loop harmonic
oscillators by using the dynamic control law (to the left) and the static
control law (31) (to the right). The dynamic control ensures exponential
synchronization. In contrast, synchronization is not observed with the
diffusive interconnection.

for k = 1, 2, . . . , N , which corresponds to system (4) with

A =

(

0 1
−1 0

)

, B =

(

0
1

)

.

The assumptions of Theorem 2 are satisfied: A is Lyapunov

stable and (A, B) is stabilizable. Choosing the stabilizing

gain K = (0 − 1), the dynamic control law (12) yields the

closed-loop system

ẋ1k = x2k

ẋ2k = −x1k − ξ2k

ξ̇1k = ξ2k +
∑N

j=1 akj(t)(ξ1j − ξ1k + x1k − x1j)

ξ̇2k = −ξ1k − ξ2k +
∑N

j=1 akj(t)(ξ2j − ξ2k + x2k − x2j).
(30)

Theorem 3 ensures exponential synchronization of the

oscillators to a solution of the harmonic oscillator if the

graph is uniformly connected. Fig. 2 illustrates the simulation

of a group of 4 oscillators coupled according to the time-

varying communication topology shown in Fig. 1 (the period

T is set to 7 sec). The dynamic control ensures exponential

synchronization. In contrast, synchronization is not observed

with the diffusive interconnection

uk =
N

∑

j=1

akj(t)(x2j − x2k). (31)

The system (A, B, C) is nevertheless passive, meaning that

stronger assumptions on the communication graph would

ensure synchronization with the diffusive coupling (31). We
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Fig. 3. First component of the solutions of the closed loop double
integrators by using the dynamic control law (to the left) and the static
control law (34) (to the right). The dynamic control ensures exponential
synchronization. In contrast synchronization is not observed with the diffu-
sive interconnection.

mention the recent result [15] that proves (in discrete-time)

synchronization of harmonic oscillators with diffusive cou-

pling under the assumption that the graph is time-invariant

and connected. The following example illustrates an analog

scenario with unstable dynamics.

Example 2: Consensus for double integrators

Consider a group of N double integrators

ẋ1k = x2k

ẋ2k = uk,
(32)

for k = 1, 2, . . . , N , which corresponds to system (4) with

A =

(

0 1
0 0

)

, B =

(

0
1

)

.

The assumptions of Theorem 2 are satisfied: the two eigen-

values of A are at zero and (A, B) is stabilizable. Choosing

the stabilizing gain K = (−1 −1), the dynamic control law

(12) yields closed-loop system

ẋ1k = x2k

ẋ2k = −ξ1k − ξ2k

ξ̇1k = ξ2k +
∑N

j=1 akj(t)(ξ1j − ξ1k + x1k − x1j)

ξ̇2k = −ξ1k − ξ2k +
∑N

j=1 akj(t)(ξ2j − ξ2k + x2k − x2j).
(33)

Theorem 3 ensures exponential synchronization to a so-

lution of the double integrator if the graph is uniformly

connected. Fig. 3 illustrates the simulation of a group of

4 double integrators coupled according to the time-varying

communication topology shown in Fig. 1 (the period T
is set to 2 sec). The dynamic control ensures exponential

synchronization. In contrast, synchronization is not observed

with the diffusive interconnection

uk =

N
∑

j=1

akj(t)(yj − yk), yk = x1k + x2k. (34)

The matrix A−αBC is nevertheless stable for every α > 0,

suggesting that stronger assumptions on the communication

graph would ensure synchronization.

VII. CONCLUSION AND FUTURE WORK

In this paper the problem of synchronizing a network of

identical linear systems described by the state-space model

(A, B, C) under general interconnection topologies has been

addressed. A dynamic controller ensuring exponential con-

vergence of the solutions to a synchronized solution of the

decoupled systems is provided assuming that (i) A has no

exponentially unstable mode, (ii) (A, B) is stabilizable and

(A, C) is observable, and (iii) the communication graph is

uniformly connected. Stronger conditions are shown to be

sufficient (and, to some extent, also necessary) to ensure

synchronization with the often considered static diffusive

output coupling. The extension of the proposed technique

for synchronization of nonlinear systems is the subject of

ongoing work.
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