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Abstract— Necessary and sufficient Lyapunov characteriza-
tions of a particular type of asymptotic stability in hybrid
dynamical systems are given. This type involves uniform bounds
on the amount of ordinary time, but not the number of jumps,
it takes solutions to converge to the asymptotically stable
set. Connections of this asymptotic stability concept to Zeno
behavior are explored. Necessary and sufficient conditions for
Zeno and uniform Zeno stability are shown.

I. INTRODUCTION

Hybrid systems are rich in dynamical phenomena not
encountered in classical dynamical systems. One such phe-
nomenon, which has captured the attention of many re-
searchers, is Zeno behavior. For a description see, for exam-
ple, [25], [12]. Roughly speaking, Zeno solutions to a hybrid
system are those that experience an infinite number of jumps
in a finite amount of ordinary time. The existence of such
solutions brings up questions like “How does one simulate
Zeno solutions?” [17], [18] and “(How) should one try to get
past Zeno times?” [3], [26], [8], [6]. An additional line of
research aims to characterize when Zeno behavior is present
or not present in a hybrid system. Work in this direction
includes [21], [16], [24], [4], [1], [11], [5], [2], [19].

Most of the results that characterize Zeno behavior revolve
around so-called Zeno equilibria, which are asymptotically
stable points that attract Zeno solutions. When Zeno so-
lutions are linked to asymptotic stability, like in [5], it is
natural to consider Lyapunov characterizations of Zeno-type
convergence. This was done in the recent work [19] and it
is also the nature of our work here. Our results are inspired
by [19, Theorem 1] which provides Lyapunov-like sufficient
conditions for the existence of Zeno behavior, leading to
necessary and sufficient conditions for Zeno behavior in
a class of Lagrangian hybrid systems. Based on recent
converse Lyapunov theorems for hybrid systems [9], [10],
we provide necessary and sufficient Lyapunov conditions
for a certain type of uniform Zeno asymptotic stability. We
will show that the Lyapunov-like sufficient conditions in [19,
Theorem 1] imply the Lyapunov conditions we enumerate.

Our necessary and sufficient Lyapunov conditions address
asymptotically stable compact sets for which the solutions’
length of ordinary time required to converge to the set
decreases to zero uniformly as the initial conditions approach
the set. (We call this “uniformly small ordinary time”, i.e.,
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USOT, stability.) We relate the Lyapunov characterization
of USOT stability to Zeno behavior, including “truly” or
“genuinely” Zeno behavior. There is a strong connection
between USOT stability and finite-time asymptotic stability
in purely continuous-time setting. As in that setting (see, for
example, [22]), we use ordinary time as a component in the
construction of smooth Lyapunov functions.

In what follows, we review the hybrid systems framework
used here and certain aspects of stability theory for such
systems. Then we present our necessary and sufficient con-
ditions for USOT stability. Next, we relate USOT stability
to Zeno behaviors. At the end of the paper, we relate our
Lyapunov conditions to those used in [19, Theorem 1].

II. BACKGROUND

A. Hybrid systems

Let F,G : Rn ⇒ Rn be set-valued mappings and C,D ⊂
Rn be sets. We consider hybrid systems of the form

H :
{

ẋ ∈ F (x) x ∈ C ,

x+ ∈ G(x) x ∈ D .
(1)

For more background on hybrid systems in this framework,
including a description of how to view hybrid automata in
this framework, see [7], [13], and [14].

A subset E ⊂ R≥0×N is a compact hybrid time domain if
E =

⋃J−1
j=0 ([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ... ≤ tJ . It is a hybrid time domain if
for all (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ...J}) is a compact
hybrid time domain. Equivalently, E is a hybrid time domain
if E is a union of a finite or infinite sequence of intervals
[tj , tj+1]×{j}, with the “last” interval possibly of the form
[tj , T ) with T finite or T = +∞. A hybrid arc is a function φ
whose domain domφ is a hybrid time domain and such that
for each j ∈ N, t→ φ(t, j) is locally absolutely continuous
on Ij := {t | (t, j) ∈ domφ}. A hybrid arc φ is complete if
its domain, domφ, is unbounded.

A hybrid arc φ is a solution to the hybrid system H if
φ(0, 0) ∈ C ∪D and

(S1) for all j ∈ N such that the interval Ij has nonempty
interior and for almost all t ∈ Ij ,

φ(t, j) ∈ C, φ̇(t, j) ∈ F (φ(t, j));

(S2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ D, φ(t, j + 1) ∈ G(φ(t, j)).

A solution φ is maximal if there does not exist a solution
ψ with domφ ⊂ domψ, domφ 6= domψ, φ(t, j) = ψ(t, j)
for all (t, j) ∈ domφ. Complete solutions are maximal.
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Structural properties of solutions to H, like (appropriately
understood) sequential compactness of the space of solutions
and outer/upper semicontinuous dependence of solutions
on initial conditions, were established in [14] under the
following assumptions (simplified slightly for this paper):1

Assumption 2.1:
(A1) C and D are closed subsets of Rn;
(A2) F : Rn ⇒ Rn is outer semicontinuous and locally

bounded, and F (x) is nonempty and convex for all
x ∈ C;

(A3) G : Rn ⇒ Rn is outer semicontinuous and locally
bounded, and G(x) is nonempty for all x ∈ D.

B. Asymptotic stability, robustness, and Lyapunov functions
The work [14] included results on uniformity of asymp-

totic stability and its robustness, and made possible the
general converse Lyapunov theorems for hybrid systems in
[9], [10]. We recall key results from these papers below. First,
a definition: compact set A ∈ Rn is pre-asymptotically stable
(pre-AS) for the hybrid system (1) if:
(a) for each ε > 0 there exists δ > 0 such that, for

each solution φ to (1) with |φ(0, 0)|A ≤ δ one has
|φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;

(b) each solution φ to (1) is bounded, and if it is complete,
then also |φ(t, j)|A → 0 as t+ j →∞, (t, j) ∈ domφ.

Above and in what follows, with some abuse of notation we
write | · |A for the distance from the set A, in the Euclidean
norm. That norm itself will be denoted by | · |.

Note that the definition of pre-asymptotic stability does
not insist on completeness of solutions. This is motivated
by the fact that Lyapunov inequalities have no bearing on
completeness (or even existence) of solutions. Not insisting
on completeness also justifies adding the prefix “pre” to
the name. Also note that, to simplify the presentation, we
are implicitly using global pre-asymptotic stability, in that
each solution must satisfy (b). (Recall that there are no
solutions from points outside C ∪D.) Local pre-asymptotic
stability can be converted to global pre-asymptotic stability
by intersecting C and D with any compact subset of the
basin of attraction. Otherwise, behavior on the entire basin
of attraction can be considered, like in [10].

When discussing robustness of pre-asymptotic stability of
a compact set A, by an admissible perturbation radius we
will understand any continuous function ρ : Rn → R≥0

that is positive on Rn \ A. A compact set A is robustly
pre-asymptotically stable for the hybrid system (1) if there
exists an admissible perturbation radius ρ such that A is pre-
asymptotically stable for the hybrid system

Hρ :
{

ẋ ∈ Fρ(x) x ∈ Cρ,

x+ ∈ Gρ(x), x ∈ Dρ,

given by the data

Fρ(x) = conF (x+ ρ(x)B) + ρ(x)B,
1The set-valued map F : Rn ⇒ Rn is outer semicontinuous if for every

convergent sequence of xi’s and every convergent sequence of yi ∈ F (xi),
lim yi ∈ F (lim xi). F is locally bounded if for every compact K ⊂ Rn

there exists a compact K′ ⊂ Rn such that F (K) ⊂ K′. Similarly for G.

Cρ = {x |x+ ρ(x)B ∩ C 6= ∅} ,

Gρ(x) =
⋃

y∈G(x+ρ(x)B)

y + ρ(y)B,

Dρ = {x |x+ ρ(x)B ∩D 6= ∅} .

Results of [14], [10] imply that pre-asymptotic stability is
automatically robust.

Theorem 2.2: Under Assumption 2.1, a compact set A ⊂
Rn is pre-asymptotically stable for (1) if and only if it is
robustly pre-asymptotically stable.

Results of [9], [10] imply the following theorem.
Theorem 2.3: Under Assumption 2.1, a compact set A ⊂

Rn is pre-asymptotically stable for (1) if and only if there
exists a continuously differentiable function V : Rn → R≥0

and functions α1, α2 ∈ K∞ such that

α1 (|x|A) ≤ V (x) ≤ α2 (|x|A) ∀x ∈ Rn,

〈∇V (x), f〉 ≤ −V (x) ∀ x ∈ C, f ∈ F (x),

V (g) ≤ e−1V (x) ∀ x ∈ D, g ∈ G(x).

III. NECESSARY AND SUFFICIENT LYAPUNOV
CONDITIONS FOR UNIFORMLY SMALL ORDINARY TIME

PRE-ASYMPTOTIC STABILITY

This section analyzes a particular type of pre-asymptotic
stability, in which the “ordinary time” it takes a solution to
reach a pre-AS compact set A decreases to zero with initial
conditions approaching A. A detailed definition is below. It
will be convenient to use the following object: given a set
X ⊂ Rn and a hybrid arc φ, let

TX(φ) := sup {t | ∃j s.t. (t, j) ∈ domφ, φ(t, j) ∈ X} .

Definition 3.1: [USOT pre-AS] A compact set A ⊂ Rn

is called uniformly small ordinary time pre-asymptotically
stable for the hybrid system H if the following hold:

(i) A pre-asymptotically stable, and
(ii) for each ε > 0 there exists δ > 0 such that ev-

ery solution φ to H with |φ(0, 0)|A ≤ δ satisfies
TRn\A(φ) ≤ ε.

We start with a set of Lyapunov-Krasovskii-LaSalle con-
ditions that are sufficient for USOT pre-AS. We note that
sufficient conditions of a very different nature, relying on
homogeneity properties of the data of a hybrid system, are
presented in a companion paper [15].

Proposition 3.2: Suppose that H satisfies Assumption 2.1
and let A ⊂ Rn be compact. The set A is USOT pre-AS if
there exist σ > 0, p ∈ [0, 1), a continuous function V :
Rn → R that is continuously differentiable on an open set
containing C \ A and functions α1, α2 ∈ K∞ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ C ∪D ∪G(D)

〈∇V (x), f〉 ≤ −σV (x)p ∀x ∈ C \ A , f ∈ F (x) ,
V (g) ≤ V (x) ∀x ∈ D , g ∈ G(x) ,

and every discrete and complete solution (i.e., one with
domain {0} × N) converges to A.
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The necessary Lyapunov conditions for USOT pre-AS in
the theorem below constitute our main result. The conditions
are also sufficient, but stronger than those in Proposition 3.2
since the Lyapunov function decreases at jumps.

Theorem 3.3: [Lyapunov characterization of USOT pre-
AS] Suppose that a hybrid system H satisfies Assumption
2.1. For a compact set A ⊂ Rn to be USOT pre-AS for H
it is both necessary and sufficient that there exist a function
V : Rn → R≥0 that is continuously differentiable on Rn \A
and functions α1, α2, α3 ∈ K∞ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ Rn

〈∇V (x), f〉 ≤ −1 ∀x ∈ C\A , f ∈ F (x)
V (g)− V (x) ≤ −α3(V (x)) ∀x ∈ D , g ∈ G(x) .

Example 3.4: [The ubiquitous bouncing ball] Consider
the hybrid system with data

F (x) =
[
x2

−g

]
, C =

{
x ∈ R2 : x1 ≥ 0

}
,

G(x) =
[

0
−γx2

]
, D =

{
x ∈ R2 : x1 = 0 , x2 ≤ 0

}
,

where g > 0, γ ∈ [0, 1). Let k >
√

2(1 + γ)/(1− γ) and let
V be continuously differentiable on R2 \ {0} and such that,
for all x in D and an open set containing C \ {0},

V (x) = g−1

(
x2 + k

√
1
2
x2

2 + gx1

)
.

This choice is inspired by [19]. It is simple to verify that it
satisfies the condition on f in Theorem 3.3. The condition
on G comes from the lower bound on k which gives γ|x2|+
kγ|x2|√

2
< −|x2|+ k|x2|√

2
for all x2 6= 0.

Proving the necessity part of Theorem 3.3 includes show-
ing that USOT pre-AS is a robust property. That is, if a
compact set is USOT pre-AS for H, then there exist an
admissible perturbation radius ρ such that A is also USOT
pre-AS for Hρ. One could ask whether “finite ordinary time
pre-asymptotic stability” is also robust. This turns out to be
false, as the following example illustrates.

Example 3.5: In the xy-plane, consider a hybrid system
H with

F (x, y) = (y, 0), C = {(x, y) | y ≥ x ≥ 0},

G(x, y) = (0, x− y), D = {(x, y) |x ≥ y ≥ 0}.

Then A = (0, 0) is pre-AS. Moreover, every solution to H
reaches A in finite amount of hybrid time, and consequently,
in finite amount of ordinary time. Indeed, solutions starting
in C may flow for up to one unit of time, after which they
jump to A. Solutions from D jump either to A, or to (0, y)
with y > 0, after which they flow for one unit of time and
jump to A. In particular, TR2\A(φ) ≤ 1 for each solution φ
to H. However, there are solutions starting arbitrarily close
to A with TR2\A(φ) = 1, so A is not USOT pre-AS.

Now consider an arbitrary admissible perturbation radius
ρ. In particular, ρ(x, y) > 0 for each x = y > 0, and thus

for each such (x, y), Gρ(x, y) contains (0, z) with z > 0.
This leads to solutions, starting arbitrarily close to A in fact,
that experience infinitely many intervals of flow of length 1.
For such solutions φ, TR2\A(φ) = ∞.

IV. NECESSARY AND SUFFICIENT CONDITIONS FOR
UNIFORM ZENO STABILITY

The goal of this section is to develop conditions, with a
Lyapunov component, that are necessary and sufficient for
the existence of a Zeno equilibrium or compact set. This
motivation and the results of the previous section lead us to
consider definitions of Zeno behavior that incorporate pre-AS
and USOT pre-AS. Indirectly, we compare the definition we
use to other definitions that have been used in the literature.

Often a hybrid arc φ is called Zeno if it is complete but

supt domφ := sup{t ∈ R≥0 | ∃j s.t. (t, j) ∈ domφ}

is finite. In short, φ is Zeno if it experiences infinitely many
jumps in finite (ordinary) time. In such terminology, the “tail”
of the hybrid arc, or even the whole arc itself, may consist
of infinitely many instantaneous jumps. While this definition
of Zeno behavior can serve as the basis for necessary and
sufficient conditions, we choose to focus on a subset of these
behaviors, called “truly Zeno” behaviors, as characterized by
the following definition. (Cf. [19] for example.)

Definition 4.1: [Zeno arc] A hybrid arc φ is Zeno if
(i) φ is complete,

(ii) supt domφ <∞,
(iii) there does not exist j such that (supt domφ, j) ∈

domφ.

It is straightforward, from (i) and (iii) above, that each
Zeno arc φ satisfies supt domφ > 0. Note that TRn(φ) =
supt domφ, and so any Zeno arc satisfies 0 < TRn(φ) <∞.

Nonexistence of Zeno solutions is not robust. Indeed,
replacing the flow map in Example 3.5 with F (x, y) =
(1, 0) leads to a system with no Zeno solutions. For the
modified system A is USOT pre-AS, in contrast to the
original system. Moreover, arbitrarily small perturbations
lead to Zeno solutions. This can be argued along the lines
used in Example 3.5.

Below we consider two forms of stability in the presence
of Zeno solutions: Zeno stability and uniform Zeno stability.

A. Zeno stability

Definition 4.2: [Zeno stability] A compact set A ⊂ Rn

is called Zeno asymptotically stable for the hybrid system H
if the following hold:

(i) A is pre-asymptotically stable, and
(ii) there exists ε > 0 such that every maximal solution φ

to H with |φ(0, 0)|A ∈ (0, ε] is Zeno and

TRn(φ) = TRn\A(φ).
In words, a Zeno asymptotically stable compact set is one

that is pre-asymptotically stable with trajectories converging
toward the set using a finite amount of ordinary time, but

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB08.1

2754



never actually reaching a final ordinary time and never
actually reaching A. In fact, we have:

Lemma 4.3: Suppose that H satisfies Assumption 2.1, a
compact set A is pre-AS, and φ is a Zeno solution to H.
Then TRn(φ) = TRn\A(φ) if and only if φ(t, j) 6∈ A for all
(t, j) ∈ domφ.

Most other definitions of Zeno stability in the literature are
for an equilibrium point, say the origin, and insist that the
hybrid system admits no flowing solutions from the origin
by imposing f(0) 6= 0. See, for example, [5], [2], [19].
Our Zeno stability definitions make no assumption about the
solutions starting in A, other than that A is forward invariant.
One may have no flowing solutions in A and not have Zeno
stability; see Example 4.4 below. Conversely, one may have
flowing solutions in A yet have the stronger uniform Zeno
stability; we show this in Example 4.6 with the definition
of uniform Zeno stability coming in Definition 4.7. The
phenomenon reported in Example 4.4 was indicated in the
introduction of [19] when discussing [5, Proposition 1].

Example 4.4: [Behavior in A does not predict Zeno sta-
bility, I] Consider the hybrid system with the data

F (x) = −x+

[
−1

1

]
, G(x) =

[
x2

0

]
C = {x : x1 ≥ 0 , x2 ≥ 0} , D = {x : x1 = 0} .

Note that F is continuous and F (0) 6= 0. Consider the
function V (x) = x1 + x2 which, when restricted to C ∪D,
is positive definite with respect to the origin and radially
unbounded. We have 〈∇V (x), F (x)〉 = −x1− 1−x2 +1 =
−V (x) and, for x ∈ D, V (G(x)) = x2 = x2 + x1 =
V (x). It follows that, for each solution φ, V (φ(t, j)) =
exp(−t)V (φ(0, 0)). Thus, the only way that trajectories can
converge to the origin is if t is unbounded. It follows that the
origin is not Zeno stable. However, the origin is asymptoti-
cally stable. This follows by applying the invariance principle
of [23] since there are no solutions starting outside of the
origin that keep V constant.

Proposition 4.5: Suppose that H satisfies Assumption
2.1. Let the compact set A ⊂ Rn be pre-asymptotically stable
for H. Then, A is Zeno asymptotically stable for H if and
only if the following two conditions hold:
(a) (Positive yet bounded time of flow near A) there

exists ε > 0 such that every maximal solution φ with
|φ(0, 0)|A ∈ (0, ε] satisfies

0 < TRn\A(φ) <∞;

(b) (No backward flow out of A) there does not exist
an absolutely continuous x : [0, ε] → Rn with ε > 0
such that of ẋ(t) ∈ −F (x(t)), x(t) ∈ C for almost all
t ∈ [0, ε] and x(0) ∈ A while x(ε) 6∈ A.

Example 4.6: [Behavior in A does not predict Zeno sta-
bility, II] This example shows that the flow and jump maps
can be linear (including zero at zero) and still the origin is

Zeno stable. In fact, in this example the origin is uniformly
Zeno stable, a property defined below that is stronger than
Zeno stability. Consider the hybrid system H with data

F (x) =
[

0
x1

]
, G(x) =

[
0.5x1

0

]
C =

{
x : 0 ≤ x2 ≤ x3

1

}
, D =

{
x : x1 ≥ 0 , x2 = x3

1

}
.

It is straightforward to check that the conditions of Proposi-
tion 4.5 hold. Next, consider the Lyapunov function V (x) =
x3

1−0.5x2 which, when restricted to the set C∪D, is positive
definite with respect to the origin and radially unbounded.
We have 〈∇V (x), F (x)〉 = −0.5x1 ≤ −0.5V (x)1/3 for
all x ∈ C and V (G(x)) = 0.53x3

1 = 0.25V (x) for all
x ∈ D. It then follows from Proposition 3.2 that the origin
is (uniformly) Zeno stable. Homogeneity plays a strong role
in this example. For more information see [15].

B. Uniform Zeno stability

Definition 4.7: [Uniform Zeno stability] A compact set
A ⊂ Rn is called uniformly Zeno asymptotically stable for
the hybrid system H if the following hold:

(i) A is Zeno asymptotically stable, and
(ii) for each ε > 0 there exists δ > 0 such that every

maximal solution φ to H with |φ(0, 0)|A ≤ δ satisfies
TRn\A(φ) ≤ ε.

In words, uniform Zeno stability is Zeno stability plus
USOT pre-AS, i.e., the amount of ordinary time in the
domain of solutions converge to zero uniformly with the
initial condition distance to the set A. The gap between Zeno
stability and uniform Zeno stability is illustrated below.

Example 4.8: [The gap between Zeno stability and uni-
form Zeno stability, I] Take any decreasing, to 0, sequence of
positive numbers ai, i = 1, 2, . . . . Consider a hybrid system
in the xy-plane with A = [0, 1]× {0} and the data

C = A ∪
∞⋃

i=1

{(x, y) |x ∈ [0, 1], a2i−1x ≥ y ≥ a2ix} ,

D = A ∪
∞⋃

i=1

{(x, y) |x ∈ [0, 1], y = a2ix} ,

F (x, y) = (0,−x2),

G(x, a2ix) = (x, a2i+1x), i = 1, 2, . . . , G(x, 0) = (x, 0).

Let c =
∑∞

i=1(a2i−1 − a2i). The solution φ from the initial
point (x, a1x) converges to (x, 0) and is Zeno, with Zeno
time TRn(φ) = cx/x2 = c/x. Similarly, solutions with initial
points (x, y) ∈ C ∪ D converge to (x, 0) and have smaller
Zeno times. Clearly, A is Zeno asymptotically stable but not
uniformly Zeno asymptotically stable.

Example 4.9: [The gap between Zeno stability and uni-
form Zeno stability, II] The data of this example, denoted
(f̃ , C̃, g̃, D̃), is a modification of the data (f, C, g,D) in
Example 4.4. In particular, C̃ ⊂ C and D ⊂ D̃ are
constructed by removing parts of the flows set C (but not
the origin) and adding them to the jump set D. The jump
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map satisfies g̃(x) = g(x) for all x ∈ D and is extended to
D̃ as discussed below. The flow map satisfies f̃(x) = f(x)
for all x ∈ C̃. In particular, f̃(0) 6= 0. Define

P :=
{
x ∈ R2 : 0 ≤ x2 ≤ 2x1 , 0 ≤ x1 ≤ 2x2

}
Ri :=

{
x ∈ R2 :

3
4
2−iε ≤ x1 + x2 ≤ 2−i

}
∩ P

C̃ := C \
(
∪i∈Z≥0Ri

)
D̃ := D ∪

(
∪i∈Z≥0Ri

)
.

Note that the sets Ri, i ∈ Z≥0 are closed, disjoint, and do
not intersect D. Now let

g̃(x) =
[

2−(i+1)

0

]
∀x ∈ Ri

and note that, with g̃(x) = g(x) for all x ∈ D, g̃ is
continuous since g(0) = 0 and g̃(x) → 0 as x → 0. Note
that, for each x ∈ D̃\{0}, g̃(x) /∈ D. It can be shown that the
origin is asymptotically stable, again using V (x) = x1 + x2

and the invariance principle.
Now, take the sequence of initial conditions xi =

2−1

[
0.75
0

]
. Solutions from such initial conditions evolve

like the solutions in Example 4.4 until they reach Ri+1.
Thus, the function V will start with the value 0.75(2−i) and
will evolve according to

V1(φi(t, j)) = exp(−t)V1(xi) = exp(−t)0.75(2−i)

at least until t is such that exp(−t)0.75(2−i) = 2−(i+1), i.e.,
at least until exp(−t) = 2/3, equivalently, t = ln(1.5). Since
the sequence xi converges to the origin, this establishes that
the origin is not uniformly Zeno stable.

To see that the origin is Zeno stable, we will establish that
each solution φ has TRn(φ) bounded. Then the conditions of
Proposition 4.5 can be verified to establish Zeno stability.
First note that each solution eventually reaches some set Ri,
with i arbitrarily large, where it must jump to the point

xi :=
[

2−(i+1)

0

]
.

So, it is enough to show that from each such initial condition
solutions are Zeno. Note that the time to pass from such an
initial condition to the line x1 = x2 (if missing Ri+1) is
upper bounded by 2−(i+2). So, for i sufficiently large, these
initial conditions must hit Ri+1 with flowing time not more
than 2−(i+2). Repeating this argument, it follows that, for
each solution φ with φ(0, 0) = xi, with i sufficiently large,
TRn(φ) is bounded by∑

i∈Z≥0

2−(i+2) = 1/2 .

This establishes Zeno stability.
A combination of Theorem 3.3 and Proposition 4.5 yields

the following.
Corollary 4.10: Let A ⊂ Rn be compact. Then, A is

uniformly Zeno asymptotically stable for H if and only if:

(a) conditions (a) and (b) of Proposition 4.5 hold, and
(b) there exist a function V : Rn → R≥0 that is continu-

ously differentiable on Rn\A and class-K∞ functions
α1, α2, α3 such that
(i) for all x ∈ Rn,

α1(|x|A) ≤ V (x) ≤ α2(|x|A),

(ii) for all x ∈ C\A, f ∈ F (x),

〈∇V (x), f〉 ≤ −1;

(iii) for all x ∈ D, g ∈ G(x),

V (g) ≤ V (x)− α3(V (x)).

V. THE SUFFICIENT CONDITIONS OF [19]

Below we give a set of sufficient conditions for the
Lyapunov conditions in Corollary 4.10. Then we relate those
to sufficient conditions given in [19].

Proposition 5.1: If there exist λ ∈ [0, 1), a continuous
function W : Rn → R that is continuously differentiable on
Rn \ A and K∞ functions α̃1, α̃2 such that

α̃1(|x|A) ≤W (x) ≤ α̃2(|x|A) x ∈ C ∪D ∪G(D)

〈∇W (x), f〉 ≤ 0 ∀x ∈ C , f ∈ F (x)
V (g) ≤ λV (x) ∀x ∈ D , g ∈ G(x) (2)

constants a, b, c > 0, and a continuous function B : Rn → R
that is continuously differentiable on an open set containing
C\A such that

〈∇B(x), f〉 ≤ −c ∀x ∈ C \ A , f ∈ F (x)

while

|B(x)| ≤ b(W (x))a ∀x ∈ C ∪D ∪G(D)

then, with σ > (1 + λa)/(1− λa), the functions

V (x) :=
1
c

[B(x) + σb(W (x))a]

α1(s) :=
1
c
(σ − 1)bα̃1(s)a

α2(s) :=
1
c
(σ + 1)bα̃2(s)a

α3(s) :=
(

1− σ + 1
σ − 1

λa

)
s

satisfy item (b) of Corollary 4.10.
Now let ` be a positive integer and consider the “periodic”

hybrid system

ξ̇ ∈ Fk(ξ)
k̇ = 0

}
ξ ∈ Ck

ξ+ ∈ Gk(ξ)
k+ = mod`(k) + 1

}
ξ ∈ Dk

Let Ã be a compact set to which ξ should converge.
Proposition 5.2: If there exist λ◦ ∈ [0, 1), a family of

continuous functions Wk : Rn → R that are continuously
differentiable on Rn \ Ã, and class-K∞ functions α̃1, α̃2

such that, for each k ∈ {1, . . . , `},
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(i) for all ξ ∈ Ck ∪Dk ∪Gk(Dk),

α̃1(|ξ| eA) ≤Wk(ξ) ≤ α̃2(|ξ| eA),

(ii) for all ξ ∈ Ck \ Ã, f ∈ Fk(ξ),

〈∇Wk(x), f〉 ≤ 0;

(iii) for all ξ ∈ Dk, g ∈ Gk(ξ),

V mod`(k)+1(g) ≤ Vk(ξ);

an integer k∗ ∈ {1, . . . , n} such that
(iv) for all ξ ∈ Dk, g ∈ Gk∗(ξ),

V mod`(k∗)+1(g) ≤ λ◦Vk∗(ξ);

positive constants a, b, and c, and a family of continuous
functions Bk : Rn → R with Bk continuously differentiable
on an open set containing Ck\Ã such that
(v) for all ξ ∈ Ck \ Ã, f ∈ Fk(ξ),

〈∇Bk(ξ), f〉 ≤ −c;

(vi) for all ξ ∈ Ck ∪Dk ∪Gk(Dk)

|Bk(ξ)| ≤ b(Wk(ξ))a;

then the conditions of the Proposition 5.1 hold with A :=
Ã × {1, . . . , `}, x := (ξ, k), C := {(ξ, k) : ξ ∈ Ck}, D :=
{(ξ, k) : ξ ∈ Dk},

F (x) :=
[
Fk(ξ)

0

]
, G(x) :=

[
Gk(ξ)

mod`(k) + 1

]
,

B(x) = Bk(ξ), and W (x) := ρkWk(ξ) where, for each
k ∈ {1, . . . , `}, ρk > 0 and ρ mod`(k)+1 = γkρk where
γk = λ

1/`
◦ for k ∈ {1, . . . , `} , k 6= k∗ and γk∗ = λ

−1+1/`
◦ .

Remark 5.3: This conditions of Proposition 5.2 align
with the conditions used in [19]. In particular, [19, EC1]
corresponds to (i) in Proposition 5.2; [19, EC2] corresponds
to (ii) in Proposition 5.2, [19, EC3+C2] provides a special
case of (vi); [19, EC4] corresponds to (v); [19, ED1] corre-
sponds to (iii); and [19, C1] corresponds to (iv). �
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