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Abstract— We present a negotiation paradigm for a simple
Supply Chain (SC) model, to improve the performances in
terms of bullwhip effect reduction, under a cooperative and
a competitive scenario. In the case of a single frequency
perturbation in the nominal demand, analytical results showed
that cooperation among the sites is beneficial for the SC
performances. In the case of multiple frequency perturbations
this has been described through numerical examples, which
confirm the analytical findings of the single frequency case.
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I. INTRODUCTION

In supply chain (SC) management, one of the most prob-

lematic issues to be faced is the bullwhip effect, the increase

in order variance going to the upstream levels of the chain

[10], [14], [5], [6]. Satisfactory control laws at the local level

(in the sense that they reduce the variance of the inventory

of a site considered as isolated) may cause the insurgence of

this pathological behavior at the global level, with a negative

repercussion on the overall system, and a modification of the

order policy must be sought (see e.g. [5], [6]).

Despite the complexity of real SC systems, simplified

models have provided insights on the development of this

phenomenon and on the possible control strategies to avoid

it (see e.g. [13], [7], [5], [10], [14]). In particular [14] intro-

duced a suitable metric for the measure of the bullwhip effect

which was the criterion in [1] to derive an optimal worst

case control paradigm, based on a H∞ approach, avoiding

the bullwhip phenomenon if applied at the global level of

the SC or if each site implemented it under an altruistic

constraint (specified in [1]). The necessity of an altruistic

behavior to optimize the performance of the whole SC has

been proved in [8], in a slightly different scenario. As for the

global level implementation, it has been actually recognized

in the literature (see e.g. among others [4], [3]) how better

would perform a SC if it could be governed by a centralized

controller who has information on the whole chain. If, as

often happens, the SC cannot be governed by a centralized

controller and the information on the various echelons is not

shared in the whole chain, a decentralized control scheme

with partial information must be considered. One possibility

to design a decentralized control scheme is based on a Multi-

Agent control paradigm, which appears more reasonable in

comparison to the possibility of applying in a real context

the altruistic constraint pointed out in [1]. The literature

about the SC seen as a multi-agent system is vast, see for
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example the survey [15], and the references therein; among

those works, [9], [12], [16] show how virtuous behaviors

may emerge by playing competing games, with a structure

of revenues/costs reflecting the management of the SC at

the operative level, whereas in [8], [11] it is shown how the

bullwhip effect can be reduced by introducing cooperation

and/or exchange of information among the sites of the chain.

In this paper we develop a negotiation mechanism for

the reduction of the bullwhip effect, directly considering

the costs related to its insurgence, hence according to a

performance defined in terms of the gain between the demand

and the inventory signals. The focus of this study is not

on solving the local optimal control problem (for this see

e.g., [1], [5], [10]) rather on analyzing the consequences of

encouraging altruistic (even if under a cost compensation,

subject of the negotiation) behaviors. For this reason, the

local policy considered here to set up the negotiation is

a simplified version of the order-up-to policy (see e.g.,

[5],[10]). Notice that similar negotiation schemes could be

developed by the choice of other local control policies.

The multi-agent idea considered in this paper was firstly

introduced in [2]. The contribution of this paper with respect

to [2] consists in the definition of a cooperative and a

competitive negotiation among sites and in an extension of

some analytical results which allows, here, to compare the

performance of the whole SC under the cooperative and the

competitive negotiation paradigms.

II. NOTATION AND PROBLEM FORMULATION

A SC comprising N sites is considered, where site i

receives raw materials from site i − 1, and ships finished

products to site i+1 (see Fig. 1). Let xi and bi be the levels

of stocked finished goods and backlogged demand of site

i, respectively, and denote by si(k), the shipment of goods

from site i to site i + 1, and by di(k) the demand of raw

materials to site i, at time k. Here, site 0 can be considered

as an infinite reservoir of raw materials while site N faces

a demand signal dN , made by a final customer. Then, the

dynamics of site i is given by:

xi(k + 1) = xi(k) + si−1(k − λi) − si(k) (1)

bi(k + 1) = bi(k) + di(k) − si(k) (2)

where λi ∈ Z
+ is the sum of the production lead time of

site i and the transportation time from site i − 1 to site i.

All the products requested by site i + 1 are shipped if there

is enough stock at site i, otherwise site i will send its whole

stock. Hence the shipment can be expressed as follows:

si(k) = min{xi(k) + si−1(k − λi), bi(k) + di(k)} (3)
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Fig. 1. The supply chain model: solid (dashed) arrows represent flow of
material (information)

Notice that according to this dynamics, at each time k, only

one between x and b is positive and the other is 0. Denote

the backlog/inventory level by χi := xi − bi (more details

on this model can be found in [1]).

In some real production enterprises the customer provides

the supplier the orders relative to a long time period ahead,

and these orders are confirmed or possibly modified shortly

before their due date. This behavior can be characterized

in terms of perturbations δdN about a nominal, known in

advance, demand signal d̄N , so that dN (·) = d̄N (·)+δdN (·).
At each site i it is possible to compute the nominal order

signal d̄i−1(·) which maintains a desired safety stock, if

there is no perturbation on the nominal demand. When such

desired stock level is large enough compared to the demand

perturbations which may occur1, Eq. (3) reduces to si(k) =
di(k), and the perturbed dynamics of the system is expressed

by the linear relation δxi(k+1) = δxi(k)+δdi−1(k−λi)−
δdi(k), where δxi is the deviation of the inventory from the

nominal (desired) stock level. For simplicity of notation, as in

the following we will always refer to the variational model,

we will drop δ to indicate variated quantities; also, as δdi−1

represents a control variable for site i, we denote it by ui;

hence, the (variational) dynamics of site i is expressed as:

xi(k + 1) = xi(k) + ui(k − λi) − di(k), (4)

with xi(k) = 0 and di(k) = 0 (and ui(k) as well) for all

k ≤ 0. This kind of model has been considered in several

papers (see e.g. [5] and [14]).

To define a cost index for this system, we consider the

spectral representation of a signal y(·), and denote by Y (f)
the module of the component of frequency f of y(·); with

this notation, the following cost index has been considered:

J =

N
∑

i=1

Qi L

[

Xi(f)

DN (f)

]

(5)

where Qi > 0 are weighing factors, f ∈ (fa, fb) (with

0 ≤ fa ≤ fb ≤ 1 two frequency values) is the frequency

component of the external demand, and L is a generic norm

(on the frequency domain). For instance, the adoption of

the L∞ norm in (5) i.e., L∞[Y (f)] = maxf∈(fa,fb) Y (f),
amounts to define, as remarked in [5], [10], [14], a cost

function that captures the insurgence of the bullwhip effect.

This norm has been considered also in [1] where a H∞

1A positive inventory for each site makes the dynamics of the chain
coupled, as observed in [10], and is the most significant for the (possible)
insurgence of the bullwhip effect (a negative χ̄i stops the propagation of
the fluctuations).

control policy has then been formulated for the local control

of a site or to control the whole chain if this is governed by

a centralized controller. When the L1 norm is used in (5),

the cost index gives a measure of the maximum fluctuation

experienced in the inventory and thus is related to holding

costs. In the following, to simplify notation, we will take,

in (5), Qi = 1 for all i. This is in fact not essential in the

development presented.

The reference policy considered is a Proportional policy

based on the Inventory Position (IP), whose dynamics is:

IPi(k + 1) = IPi(k) + ui(k) − di(k), (6)

with IPi(0) = 0 for all i. The above definition of IP is

in terms of variational quantities, so that also this variable

represents the deviation about a reference (time-varying)

value. The considered policy is defined as follows:

ui(k) = −αiIPi(k) (7)

and it is possible to show that it provides a stable behavior

if and only if αi ∈ (0, 2) for all i [10]. This policy, denoted

in the following as P-IP policy, is similar, apart from the

demand forecast term, to the generalized Order Up To (OUT)

policy considered e.g. in [6], [5], [8] and corresponds to the

one presented in [10] for a 0 set point level (in fact for the

variational model the reference inventory level is 0).

In this paper we address the following problem. If α∗
i ,

i = 1, . . . , N , denote the value of the αi minimizing the

index J in (5) for some specified norm L and J∗ denotes

the optimal cost, we want to evaluate how the cost obtained

from the negotiation schemes defined below differs from J∗.

III. A DECENTRALIZED CONTROL BASED ON AGENTS

We will associate an agent to each site of the chain and

assume that only neighboring sites may negotiate. Notice that

due to linearity the inventory cost of a site i is proportional

to the magnitude of the orders that it receives from its

downstream site i+1. Hence, the negotiation among two sites

i and i+1 arises when site i makes an offer to site i+1 asking

it to change αi+1 in order to reduce the magnitude of the

demand that site i+1 places to site i. The offer will be part

of the saved cost. Then, roughly, the idea of the agent-based

mechanism is the following one: each site i sets initially its

own αi to an egoistic/isolated value. Then, it will send a

request to its downstream site to make it change the control

coefficient αi+1 in order to reduce its own cost. The next

two sections will discuss the case of external demand with

a single frequency component f̄ . The performance index is

then:

J =

N
∑

i=1

Xi(f̄)

DN (f̄)
:=

N
∑

i=1

Jxi (8)

with Jxi denoting the local performance of site i. If, under

the considered P-IP policy, Vi(z) and Wi(z) denote respec-

tively the transfer function from Di(z) to Ui(z) and from

Di(z) to Xi(z), we have: Wi(αi, z) = 1−αi−z+αiz
−λi

(z−1)(z−1+αi)
and
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Vi(αi, z) = αi

z+αi−1 . Then it is possible to write:

Jxi = Wi(αi, f̄)

N
∏

j=i+1

Vj(αj , f̄)

where Wi(αi, f) := |Wi(αi, e
j2πf )| and Vi(αi, f) :=

|Vi(αi, e
j2πf )|. It can be seen that the function Vi(αi, f)

is increasing with respect to α ∈ (0, 2) for all f ∈ (0, 1). As

a consequence, it is clear that each site i−1 will try to make

its downstream site i to decrease its αi to 0. If this coincides

with the local optimum (i.e. minimizes also Wi(αi, f̄)) then

this will be the αi selected, otherwise the two sites should

negotiate to select a proper αi. As a matter of fact, it is

possible to see that the value of αi minimizing Wi(αi, f̄)
(called αeg , where eg stands for egoistic) is not 0 for all

frequencies f̄ and all delays λ.

The negotiation is defined according to a simple paradigm,

by which the selection of the parameters at site i when nego-

tiating with site i−1, only concerns the cost corresponding to

these two sites. Notice however that each site i could make

a selection of parameters considering at the same time all its

costs: local inventory, offer to site i+1, offer from site i−1.

In the following, given a function f(x), if

arg minx∈[xa,xb] f(x) comprises more elements, we

assume always to select the smallest of them. This is not

essential in our derivations but simplifies matters. In the

following discussion of the single frequency case, it will

be understood that V and W are evaluated at a frequency

value f̄ .

Algorithm 1: The negotiation algorithm.

Step 0. Let m = 0 and set for all i = 1, . . . , N , α
(0)
i =

arg minα∈(0,2) Wi(α).
Step m+1. To each site i, i = 2, . . . , N , is offered from its

upstream site i − 1 a fraction Pi−1 ∈ (0, 1) of what site

i−1 saves when the downstream site sets its α
(m+1)
i to a

certain α, that is, site i−1 offers to site i, Oi−1Di, where

Oi−1 := Pi−1Wi−1(α
(m)
i−1)(Vi(α

(0)
i ) − Vi(α)) and Di is

the amplitude of the input to site i. Hence site i selects

the α minimizing [(Wi(α) − Wi(α
(0)
i )) − Oi−1]Di, i.e.,

it will set:

α
(m+1)
i = argmin

α∈(0,2)
Pi−1Wi−1(α

(m)
i−1)Vi(α) + Wi(α) (9)

The procedure terminates if α
(m+1)
i ≡ α

(m)
i for all i. In

this case, let αL
i := α

(m)
i denote the final value, else set

m = m + 1 and return to Step m + 1. �

As proved in [2], the algorithm above, for any choice of

the Pi, converges in N − 1 steps and, if Pi = 1 for all i, the

following relation characterizes the final parameters: αL
i ≥

α∗
i , for all i, with αL

1 = α∗
1 and αL

2 = α∗
2. What about the

selection of the Pi? In [2] it was numerically observed in all

the examples considered how the negotiation with Pi = 1 for

all i provides the minimum value for the global cost, while it

could be not optimal for the local costs. Before introducing

some possible (cooperative or competitive) strategies to

select this negotiation parameter (see Section IV), we prove

that the larger are the Pi used in the negotiation algorithm,

the smaller is the global cost achieved by negotiation. This

introduces a partial order in the set of all possible choices of

vector P := (P1, . . . , PN−1)
T ∈ [0, 1]N−1. In the following,

J(P ) will denote the cost (5), when the αi are set as the final

values αL
i of the negotiation algorithm 1, with parameters Pi

as in vector P . To proceed, we need the following lemma.

Lemma 1: Let c1 ≥ c2 > 0 be constants, f(x), g(x) con-

tinuous functions with f(x) increasing, where x ∈ (0, B).
Let hi(x) := cif(x) + g(x) and xi = argminx∈(0,B) hi(x),
i = 1, 2. Then, x1 ≤ x2 and g(x1) ≥ g(x2).
Proof. If c1 = c2 the result trivially holds. Hence assume

c1 > c2. Since x2 is a minimum for h2(x), it follows that

h2(x) ≥ h2(x2) for all x and, in particular, for all x > x2.

Then, for all x > x2,

h1(x) − h1(x2) = c1f(x) + g(x) − c1f(x2) − g(x2) =

(c1 − c2)[f(x) − f(x2)] + c2[f(x) − f(x2)] + g(x) − g(x2)

= (c1 − c2)[f(x) − f(x2)] + [h2(x) − h2(x2)] > 0

because f(x) is increasing. This implies that the minimum

of h1(x) can not be larger than x2, that is x1 ≤ x2. Now,

assume by contradiction that g(x1) < g(x2). Then, since

f(x) is increasing, it follows: c2f(x1)+ g(x1) < c2f(x2)+
g(x2); that is h2(x1) < h2(x2) violating the assumption that

x2 is a minimum for h2(x). Hence, g(x1) ≥ g(x2). �

Theorem 1: Let P ′ and P ′′ be two choices of vector P

and assume 0 ≤ P ′
i < P ′′

i ≤ 1, ∀i. Then, J(P ′) ≥ J(P ′′).
Proof. Let α

L,P
i denote the final value of αi when applying

the negotiation algorithm with a given vector P . Notice that

for all P ∈ [0, 1]N−1, we have α
L,P
1 = α∗

1 (this follows

from the fact that both the value of α1 providing the global

minimum of J and the limit value of the negotiation α
L,P
1

minimize W1(α)). Consider now a two site SC (N = 2). In

this case P ′ and P ′′ are scalar. We have:

α
L,P ′

2 = arg min
α∈(0,2)

W2(α) + P ′W1(α
∗
1)V2(α) (10)

α
L,P ′′

2 = arg min
α∈(0,2)

W2(α) + P ′′W1(α
∗
1)V2(α) (11)

Applying Lemma 1 with c1 = P ′′W1(α
∗
1), c2 = P ′W1(α

∗
1),

x = α, f = V2 and g = W2, it follows α
L,P ′

2 ≥ α
L,P ′′

2 ,

V2(α
L,P ′

2 ) ≥ V2(α
L,P ′′

2 ) and W2(α
L,P ′

2 ) ≤ W2(α
L,P ′′

2 ).

Now, let a1 := W2(α
L,P ′

2 ), b1 := V2(α
L,P ′

2 ), a2 :=

W2(α
L,P ′′

2 ) and b2 := V2(α
L,P ′′

2 ).
Equations (10)-(11) imply:

a2 + P ′′b2 ≤ a1 + P ′′b1 (12)

a2 + P ′b2 ≥ a1 + P ′b1 (13)

Notice that the expression ak + Pbk is an affine function of

P and, according to what said above, a1 ≤ a2 and b1 ≥ b2.

So the two lines a1 + Pb1 and a2 + Pb2 intersect at some

P̄ and, according to (13), P ′ ≤ P̄ , and, according to (12),

P ′′ ≥ P̄ . Since 1 ≥ P ′′ and P ′′ ≥ P̄ , we have 1 ≥ P̄ .

This implies that a1 + b1 ≥ a2 + b2, which is exactly the

result to be proved if N = 2 (being a1 + b1 = J(P ′) and

a2+b2 = J(P ′′)). Consider now a three site SC (N = 3) and

let for brevity WP
i := Wi(α

L,P
i ) and V P

i := Vi(α
L,P
i ), i =
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1, 2, 3 the value of the functions at the end of the negotiation

under a certain vector P . Considering the first two sites, we

have, as mentioned above, V P ′

2 ≥ V P ′′

2 . Also, we know that

α
L,P ′

1 ≡ α
L,P ′′

1 ≡ α∗
1. Considering sites 2 and 3, the same

reasoning applied to the N = 2 case (with c1 = P ′′
2 WP ′′

2 ≥
P ′

2W
P ′

2 = c2) allows to show that: (i) WP ′

2 V P ′

3 + WP ′

3 ≥
WP ′′

2 V P ′′

3 + WP ′′

3 and (ii) V P ′

3 ≥ V P ′′

3 . Then we have:

J(P ′) =
(

WP ′

1 V P ′

2 + WP ′

2

)

V P ′

3 + WP ′

3 =

W1(α
∗
1)V

P ′

2 V P ′

3 +
(

WP ′

2 V P ′

3 + WP ′

3

)

≥

WP ′′

1 V P ′′

2 V P ′′

3 +
(

WP ′′

2 V P ′′

3 + WP ′′

3

)

= J(P ′′).

The general N site case follows by induction: assuming

the result holds up to N − 1, the same reasoning of the

N = 3 case can be applied to the N case where in place of

WP ′

1 and WP ′′

1 we have to use, respectively, JN−2(P ′) and

JN−2(P ′′) (where JN−2(P ) :=
∑N−2

i=1

[

WP
i

∏N−2
j=i+1 V P

j

]

is the cost of the sub-chain composed by the first N − 2
sites of the SC after a negotiation with vector P ). Now,

by the inductive assumption, JN−2(P ′) ≥ JN−2(P ′′), and

V P ′

N−1 ≥ V P ′′

N−1. Then, from the negotiation of the last

two sites (with c1 = P ′′
N−1W

P ′′

N−1, c2 = P ′
N−1W

P ′

N−1

and c1 ≥ c2 by the inductive assumption), we also have

WP ′

N−1V
P ′

N + WP ′

N ≥ WP ′′

N−1V
P ′′

N + WP ′′

N and V P ′

N ≥ V P ′′

N .

This allows to conclude the proof as in the N = 3 case:

J(P ′) = JN−2(P ′)V P ′

N−1V
P ′

N +
(

WP ′

N−1V
P ′

N + WP ′

N

)

≥

JN−2(P ′′)V P ′′

N−1V
P ′′

N + WP ′′

N−1V
P ′′

N + WP ′′

N = J(P ′′).�

IV. COOPERATIVE AND COMPETITIVE NEGOTIATION

According to the above negotiation paradigm, site i − 1
and site i, i = 2, . . . , N involved in the negotiation at

step m will incur respectively in the costs Γ
d,(m)
i−1 (αi, Pi−1)

and Γ
u,(m)
i (αi, Pi−1) described below (where the term

∏N

j=i+1 Vj(α
(m)
j ) has been omitted in all the expressions,

being a common factor, hence uneffective in the negotiation

algorithm).

Γ
d,(m)
i−1 (αi, Pi−1) := J

(m)
x,i−1(αi) + O

(m)
i−1(αi, Pi−1)

represents the cost corresponding to site i − 1 at step m

when considering the negotiation with its downstream site i

(whence the apex d) with parameters to be negotiated αi ∈
(0, 2) and Pi−1 ∈ (0, 1), with

J
(m)
x,i−1(αi) = Wi−1(α

(m)
i−1)Vi(αi) (14)

the inventory cost of site i − 1 and

O
(m)
i−1(αi, Pi−1) = Pi−1Wi−1(α

(m)
i−1) [Vi(α

eg
i )− Vi(αi)] (15)

the expense of site i − 1 to make site i change its optimal

local α
eg
i (minimizing Wi(α)) to the value αi. Similarly,

Γ
u,(m)
i (αi, Pi−1) := Jx,i(αi) − O

(m)
i−1 (αi, Pi−1)

represents the cost corresponding to site i at step m when

considering the negotiation with its upstream site i − 1

(whence the apex u) with parameters to be negotiated αi ∈
(0, 2) and Pi−1 ∈ [0, 1], with Jx,i(αi) = Wi(αi).

Now the question is: are the two sites really cooperative

(hence the choice of Pi−1 and of αi can be made in col-

laboration) or are only negotiating, but remain competitive?

The following two subsections present the consequences of

the two different situations.

A. Cooperative negotiation

In this case actually the two sites behave like a single

entity, in the selection of Pi−1 and of αi. One possibility

is that the selection of these parameters is made in such a

way that the two sites will incur in the same penalty with

respect to their egoistic optimal situation (i.e. with respect

to the situation where the selection is performed in order

to minimize their own costs). However, as it is possible to

verify, this may bring to a situation where the penalty is

high for both the two sites, in the sense that an equilibrium

is reached only with a choice of Pi−1 and of αi giving a

bad performance of the couple. For this reason, it is more

convenient that, in the cooperative case, each couple of sites,

according to the fact that the minimum for the couple is

obtained when Pi−1 = 1 (see Theorem 1), directly selects:

α
(m+1)
i = arg min

α∈(0,2)
{Wi(α) + Wi−1(α

(m)
i−1)Vi(α)}

(which corresponds to (9) with Pi−1 = 1) with the agreement

that all profits will be equally shared. This corresponds to the

selection of αi and Pi−1 minimizing the sum of the inventory

cost of the two sites, that is, minimizing Jx,i+Jx,i−1. Notice

that this pairwise optimization will not bring in general to the

global optimization, being the αi selected only considering

the upstream site i − 1 and not all the upstream chain.

B. Competitive negotiation

In the competitive case, it is reasonable to assume that

the negotiation parameter Pi−1 is selected by site i − 1 and

its value can not be included in the negotiation, unless we

assume that site i gives back a fraction of what is offered

by site i − 1 to convince it to change Pi−1. This actually

corresponds to change the value of Pi−1 to the original value

that site i− 1 wanted. Hence it is definitely site i− 1 which

decides the value of Pi−1 corresponding to the part of the

saving it is prepared to share. And site i acts in consequence,

by selecting its αi according to the proposed value p of Pi−1:

α
(m)
i (p) := arg min

α∈(0,2)
Jx,i(α) − O

(m)
i−1 (α, p). (16)

In this case, site i−1 will select the p providing the minimum

cost to it. Hence it will set at the step m+1 of the negotiation:

P
(m+1)
i−1 = arg min

p∈(0,1)
J

(m)
x,i−1(α

(m)
i (p)) + O

(m)
i−1(α

(m)
i (p), p) (17)

Substituting (14) and (15) in (17), the (m+1)-th step of the

negotiation among sites i − 1 and i produces the following

parameter update:

P
(m+1)
i−1 = arg min

p∈(0,1)
(1 − p)Vi(α

(m)
i (p)) + pVi(α

eg
i ) (18)

α
(m+1)
i = α

(m)
i (P

(m+1)
i−1 ) (19)
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[N , λ, f̄ ] J∗ Jcoop Jcomp Jeg α∗ αcoop αcomp αeg Pcomp

[2, 3, 0.2] .82 .82 .84 .89 [.47 .23] [.47 .23] [.47 .37] .47 [.51]

[3, 3, 0.2] .85 .86 .93 1.03 [.47 .23 .01] [.47 .23 .16] [.47 .37 .36] .47 [.51 .54]

[4, 3, 0.2] .85 .86 .96 1.1 [.47 .23 .01 .01] [.47 .23 .16 .12] [.47 .37 .36 .36] .47 [.51 .54 .52]

[4, 4, 0.2] 0 0 0 0 [1 1 1 1] [1 1 1 1] [1 1 1 1] 1 [.45 .45 .45]

[4, 5, 0.2] .86 .86 .86 3.51 [1.99 .01 .01 .01] [1.99 .01 .01 .01] [1.99 .01 .01 .01] 1.99 [.31 .23 .23]

[4, 5, 0.13] 1.26 1.28 1.4 1.59 [.35 .19 .03 .01] [.35 .19 .15 .13] [.35 .28 .272 .27] .35 [.53 .54 .55]

TABLE I

GLOBAL OPTIMUM AND PERFORMANCE OF THE SC WITH COOPERATIVE AND COMPETITIVE NEGOTIATION, UNDER DIFFERENT SETTINGS.

Notice that the Pi−1 and αi selected depend on the particular

f̄ considered, on the sites i − 1 and i (that is on the delays

λi−1 and λi) but also on the step m of the iteration (notice

in fact that this dependence is due to the presence, through

the term O
(m)
i−1 (α, p), of α

(m)
i−1 in the expression of α

(m)
i (p)

given in (16)). If, as here, we deal with a unique frequency f̄ ,

actually the same convergence property (mentioned above)

for the case of Pi fixed holds and the terminal values PL
i

and αL
i of the Pi and the αi verify the following equations:

αL
1 = α

eg
1 = arg min

α∈(0,2)
W1(α).

PL
1 = arg min

p∈(0,1)

{

(1 − p)V2(α
L
2 (p)) + pV2(α

eg
2 )

}

where αL
i (p) = arg minα∈(0,2) Wi(α)+pWi−1(α

L
i−1)Vi(α).

So:

αL
2 = arg min

α∈(0,2)

{

W2(α) + PL
1 W1(α

L
1 )V2(α)

}

(20)

PL
2 = arg min

p∈(0,1)

{

(1 − p)V3(α
L
3 (p)) + pV3(α

eg
3 )

}

(21)

αL
3 = arg min

α∈(0,2)

{

W3(α) + PL
2 W2(α

L
2 )V3(α)

}

(22)

And so on. In this case, being the Pi selected different in gen-

eral from one, the global cost will be not smaller in general

than the one obtained with the cooperative negotiation (by

Theorem 1). Remembering that Pi = 0 for all i corresponds

to the egoistic situation where no negotiation arises and each

site selects its isolated αi, Theorem 1 allows to establish the

following intuitive result, illustrated in the example section,

which shows how the egoistic objectives negatively impact

on the behavior of the overall chain.

Corollary 1: Let Jeg be the global cost corresponding

to the case each site selects its egoistic α, Jcomp and

Jcoop the global cost corresponding to the competitive and

the cooperative negotiation (after convergence), respectively.

Then Jeg ≥ Jcomp ≥ Jcoop ≥ J∗.

V. THE MULTI FREQUENCY CASE

The case comprising two or more frequencies in the

disturbance signal is much more involved since the optimal

αi also depends on downstream nodes, unlike the single

frequency case. To easily see this, consider a two site system

perturbed by a two frequency signal and take hereafter

L = L1. The optimal α∗
i , i = 1, 2 are the ones mini-

mizing
∑2

k=1[W1(α1, fk)V2(α2, fk) + W2(α2, fk)]. While

for the single frequency case α∗
1 was the value minimizing

W1(α1, f̄), which is independent of the downstream sites,

now, since each frequency is weighed differently due to the

effect of downstream sites (one is weighed by V2(α2, f1)
the other by V2(α2, f2)), the optimal α∗

1 depends on the

downstream sites. To capture this dependence, we have

decided to modify the negotiation algorithm by considering

the gain of the downstream site (this would have been useless

in the single frequency case). So the selection of αi at Step

m+1 will be performed not according to (9) but as follows:

α
(m+1)
i = arg min

α∈(0,2)

∑

fk∈F

[

Pi−1Wi−1(α
(m)
i−1 , fk)

Vi(α, fk) + Wi(α, fk)] Vi+1(α
(m)
i+1 , fk)

where F := {f1, . . . , fK} is the set of frequencies present

in the perturbation signal. At step 0 we simply assign

αi according to: α
(0)
i = argminα∈(0,2)

∑

fk∈F
Wi(α, fk).

Notice that in this case the convergence is not assured (the

value of αi has an impact not only on the choice of site

i + 1 as it was in the single frequency case, but also on

the choice of site i − 1, which makes the interaction of

sites bidirectional). However, such a bidirectional interaction

seems to facilitate the algorithm in approaching the global

optimum, as observed in the numerical examples (see Section

VI-B). A cooperative and a competitive version of the

algorithm can be set up similarly to the single frequency

situation: in the first case each pair of sites minimizes the

sum of the two inventory costs (selecting Pi = 1, for all i);

in the second case each site i selects the Pi with the objective

of maximizing its gain in the negotiation with site i + 1.

VI. NUMERICAL EXAMPLES

A. Single frequency case

We report in Table I the αi and the corresponding total cost

J under the different control policies for different systems.

We have reported only systems with homogeneous delays

(λi = λ for all i). The SC is then characterized by the number

of sites N , the delay λ, the frequency of the disturbance f̄ .

In the table, Pcomp represents the values of the Pi selected

at the sites of the SC under the competitive negotiation (i.e.

according to (18)). Notice that if λ = 4 and f̄ = 0.2, since

W (α, f̄) = 0 when α = 1, we get a 0 cost for any method

used. The αeg is the same for all the sites, being the SC

homogeneous with respect to the delay, hence it is reported as

a scalar. It is also possible to see from the first 3 cases of the

table (which only differ for the number of the sites in the SC)

how the first N−1 elements of vector α are like the α of the
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[N , λ, (f1, f2)] J∗ Jcoop Jcomp Jeg Convergence
Coop. [Period]

Convergence
Comp. [Period]

Pcomp

[2, 3, (.02, .15)] 9.61 9.61 9.61 11.91 Yes Yes [.65]

[3, 3, (.02, .15)] 9.92 9.92 9.92 18.34 Yes Yes [.03 .65]

[4, 3, (.02, .15)] 10.02 [10.02 - 10.3] 10.3 25.14 No [4] Yes [.62 .03 .65]

[4, 4, (.02, .15)] 10.1 10.1 10.1 26.24 Yes Yes [.85 .85 .52]

[4, 5, (.02, .15)] 10.17 10.17 10.17 26.04 Yes Yes [.54 .54 .48]

[4, 3, (.02, .4)] 9.44 [9.44 - 9.71] 9.71 19.74 No [4] Yes [.63 1 .87]

[4, 5, (.02, .4)] 9.6 9.6 9.6 27.72 Yes Yes [.51 .51 .32]

TABLE II

MULTIPLE FREQUENCY CASE: GLOBAL OPTIMUM AND PERFORMANCE OF THE SC WITH COOPERATIVE AND COMPETITIVE NEGOTIATION.

previous case. The same happens for P . This depends on the

fact that, in the case of a single perturbation frequency, the

selection of each αi only impacts on the upstream sites (so

the situation of the first k sites of a chain with N sites is the

same for all N ≥ k for all the control methods considered).

For this reason in the other three cases (lines 4-6 of the table)

we have only reported the N = 4 case.

From the table it is evident the relation between the global

cost under the different methods established in the paper

(Corollary 1) and how under the cooperative negotiation the

first two parameters (α1 and α2) attain their global optimum,

according to what mentioned above.

B. Multiple frequency case

As mentioned above, in the multi frequency case the

convergence of the algorithm is not assured (although we

observed that the value of the global cost achieved is often

near to the global optimum). A modification of the negoti-

ation algorithm could be considered to obtain convergence,

where the modification consists in an incremental update of

the parameters toward the computed value. This actually may

improve the convergence of the algorithm but may reduce its

capacity in approaching the global optimum. This has been

observed in some simulation runs not reported in this paper.

In Table II we give other examples: when there is no

convergence we report the minimum and the maximum

of the performance and the period of the limit cycle. As

before, Pcomp denotes the set of Pi selected in the compet-

itive negotiation scheme. We observed how this negotiation

paradigm, although very simple, improves the performance

of the whole SC toward the global optimum J∗. This fact,

which has not been analytically justified, is possibly due to

the upstream and downstream propagation of information in

the negotiation paradigm for the multiple frequency case,

which couples the dynamics of the whole chain.

VII. CONCLUSIONS

We investigated the effect of simple cooperative and com-

petitive negotiation paradigm among the sites of a SC model.

Some analytical results in the case of a single frequency

perturbation in the nominal demand allowed to establish a

relation among the performances achieved by the different

versions of the negotiation algorithm, showing that the larger

is the cooperation degree in the chain, the better the chain

will perform. Under multiple frequency perturbations this has

been described through numerical examples. In the simplified

setting discussed, cooperation or simply an exchange among

sites (like in the competitive case) show improvements of

the performance of the whole SC. This may provide useful

guidelines in the definition of control strategies for more

complex and realistic problems.
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