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Abstract— This paper considers a deployment problem in-
volving omnidirectional sensors with potentially limited sensing
radius. The environment is modeled as a network and two
optimization problems are formulated and solved. The first
one introduces some simplifications, allowing sensors to be
located everywhere in the polytope enclosing the network,
and considering a reduced model for the environment called
collapsed network. It is made up of a finite discrete set of
points, barycenters, produced by collapsing the network edges.
The second problem considers a classical graph model and
forces sensors to stay on the network. We propose a discrete-
time gradient ascent algorithm to find a local optimum for these
problems. The present algorithm can also be implemented in a
distributed fashion.

I. INTRODUCTION

A great number of situations ranging from surveillance to
habitat and environment monitoring, from wild fire detection
to search and rescue operations, from exploration to intruder
detection, would greatly enjoy the use of network of sensors.
Many of the previous tasks are difficult, or impossible, to
be accomplished by a single sensor. The employment of a
large number of sensors increases the robustness to sensor
failure and communication disruption and make spatially-
distributed observations possible. If sensors are able to move,
the number of tasks they can perform is still greater.

Static and dynamic sensor networks need to be deployed
in the environment, and the way this problem is solved can
significantly affect the quality of service they have to provide.

A. Static Deployment and Locational Optimization

Sensors’ deployment problems are strictly related to re-
source or facilities allocation problems which are the subject
of the locational optimization discipline [1].

In locational optimization some objective functions are
used to describe the interactions between users and facilities
and among them. Users may find facilities desirable, hence
they would like to exert an attraction force to facilities,
or undesirable and they would repel them. The attractive
model can describe allocation problems of useful services
or facilities such as mailboxes, hospitals, fire stations, malls,
etc. (see [1]). The repulsive one, instead, can be used to
model problems where polluting or dangerous facilities (i.e.
nuclear reactors, garbage dumps, etc.) are to be located far
enough from urban conglomerations. An excellent survey
on undesirable facility locations problems is given by [2]
(see also [3]). These operational research problems can be
converted in sensors’ deployment problems by considering
sensors as facilities and points or areas, where events can
happen or some quantities has to be measured, as users.
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A basic distinction among location optimization problems
can be performed according to the number of facilities
involved (one or p > 1 facilities).

Two well known 1-facility problems are the classical
Weber and the obnoxious facility location problems (see [4],
[5] for a recent heuristic solution).

Three classical problems involving p facilities are the p-
center, p-median and p-dispersion problems. Some recent
results on the p-center problem are in [6] and [7]. The latter
paper addresses also the p-dispersion problem.

A classical p-median problem can be simply described as
the one of finding the optimal allocation of n facilities by
minimizing the average distance of the demand points to the
nearest facility. A more general formulation can be found in
[8] and [9]. In [8] a dynamical (gradient descent) version of
the Lloyd’s algorithm [10] has been presented to find a local
optimum for a generalized p-median problem. A different
algorithm to solve the classical version is reported in [11],
[12]. The aforementioned solutions to the p-median problem,
as long as many solutions to p-facilities problems, are based
on the construction of a Voronoi Tesselation ([9], [13]).

B. Dynamic Deployment and Distributed Solutions

The use of moving, instead of static, sensor network
provides a great flexibility in solving sensing tasks, mainly
when the environment is partially or completely unknown
or is not directly accessible for safety reasons. In these
cases, sensors are usually initially deployed randomly and
hence need to move in order to acquire knowledge of
the environment and to optimally re-deploy for their task.
Furthermore, environments are usually not static and the
network may experience sensor failure or losses. In these
situations the properties of adaptivity and reconfigurability
owned by a network of moving sensors turn out very useful.

A general tendency in robotic networks is to have sensors
(agents) endowed with the same computational and sensing
capabilities. This choice increases the overall robustness of
the network, but usually calls for distributed coordination
algorithms. Having equal sensors, indeed, naturally leads
to define optimization and coordination algorithms based
on local observations and local decisions ([14], [15], [16]).
Many of the algorithms proposed in the previous sections
involve the solution of a global optimization problem re-
quiring a complete knowledge of the environment and of
sensors’ distribution. The solutions to p-center, p-dispersion
and p-median problems proposed in [7], [8], [17], instead, are
all spatially distributed, with the meaning that each sensor
requires only the knowledge of positions of its neighbors (or
even less if it has a limited sensing radius). This fact allows
a distributed implementation where each sensor computes its
next movement without centralized coordination.

Many other solutions to the area-coverage problem look
at sensors like particles subject to virtual forces or potential
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fields. The compositions of suitably defined attractive and
repulsive forces is then used to make the network behaving
in the desired fashion (spread sensors, avoid obstacles, keep
connectivity, etc.). Representative for this kind of approach,
are the algorithms presented in [18], [19]. Another example
of this kind of approach is [20], where also secure connec-
tivity issues are considered.

Power consumption is a relevant problem in wireless
networks as remarked in [21], where three energy-efficient
algorithms are presented for sensors’ deployment.

C. Network-like Environments

The area where locating facilities or sensors is sometimes
better described by a network-like environment. It happens,
for instance, whenever facilities have to be located on road
networks, or river networks, or networks of shipping lanes.
Or when the use of reduced model abstracting from many
of the geometrical features of the environment is desirable.
Consider, for instance, a surveillance task in an airport
environment. In this case people moving throughout the
airport is compared with a network flow and the focus is
on paths more than on corridors, halls and lounges.

Many of the previous problems have been formulated even
for network-like environment [22], [23]. Usually these prob-
lems consider a finite discrete set of demand points located
on the network’s nodes and try to optimize the locations
of facilities w.r.t. some objective function accounting for the
distance from them. A different problem involving a network
is presented in [5], where one facility can be located in any
point of the convex hull of the network and the network is
considered as the source of (or subject to) a nuisance.

In this paper we consider a generalized p-median prob-
lem involving a network environment and omnidirectional
sensors with potentially limited sensing radius. The task is
to find sensors’ position to cover the network optimizing an
objective function defined on the network and accounting for
the sensor features and preferential areas. This is a mixed
problem, since the network is considered as a subset of a
plane (there is not a discrete set of demand points) and the
planar euclidean distance is used. We present a discrete-time
gradient ascent Lloyd’s algorithm to find a local optimum to
this problem. It is worth noting that this solution can be used
to solve a static deployment problem as much as a dynamic
one, since it is suitable for a distributed implementation.

The overall formulation is indebted to the works of Bullo
and his coworkers [17], [8], [15], but our network-based
approach needs quite different solutions. Due to the different
topology induced by the network model, many issues related
to the explicit computation of the gradient must be consid-
ered along with convergence problems of the maximization
algorithm. In order to aptly tackle the deployment problem,
we solve first a subproblem involving a simplified network
that we call collapsed network and consisting of finite many
points (barycenters). In this problem sensors are also allowed
to move in the plane (R2). The solution found for this
simplified problem is then used to solve the general problem
involving the full network and sensors moving on it.

II. PRELIMINARIES

In this section we provide some useful definitions for the
network describing the environment and its Voronoi partition.

Definition 1: Given two points p1, p2 ∈ R2, with p1 �= p2,
s12 = [p1, p2] ⊂ R

2 is the segment joining p1 and p2 and
so12 = (p1, p2) is the open segment between them. We define
length of a segment s12 as ℓ(s12) = ‖p2 − p1‖, where ‖·‖ is
the Euclidean norm; barycenter of a segment s12 the point
b(s12) =

1
2 (p2 + p1) ∈ s12; partition of a segment s =

[p1, p2] in k sub-segments, the set of segments {si}i=1,...,k
given by

si =

[
p1 + (i− 1)

(p2 − p1)

k
, p1 + i

(p2 − p1)

k

]
.

Definition 2: A network N = (V,S) is a sub-
set of R

2 consisting of a set of points V ={
v1, . . . , vn ∈ R2, vi �= vj ∀i �= j

}
and a set of segments

S ⊆ {sij = [vi, vj ] ⊂ R
2, i, j ∈ {1, . . . , n} i �= j}, such

that:

i) ∀vi ∈ V , ∃vj ∈ V , vi �= vj such that sij ∈ S (no
isolated vertex);

ii) ∀i, j, h, k ∈ {1, . . . , n} , (i, j) �= (h, k), soij∩s
o
hk =

∅ (no segment intersection).
Definition 3: Given a network N and a set of points P =

{p1, . . . , pm} ⊂ N , the Voronoi partition of N generated by
P with respect to the Euclidean norm is the collection of
sets

{
V Ni (P)

}
i∈{1,...,m}

defined by

V Ni (P) = {q ∈ N | ‖q − pi‖ ≤ ‖q − pj‖ , ∀pj ∈ P} .

III. SENSOR DEPLOYMENT OVER A NETWORK

We adapt the framework provided in [17] to describe the
sensors’ and network features. Each sensor is modeled by
the (same) performance function f : R+ → R, that is a non-
increasing and piecewise differentiable map having a finite
number of bounded discontinuities at R1, . . . , RN ∈ R+,
with R1 < . . . < RN . We can set R0 = 0, RN+1 = +∞
and write

f(x) =
N+1∑

α=1

fα(x)1[Rα−1,Rα)(x), (1)

with fα : [Rα−1, Rα] → R, α ∈ {1, . . . , N + 1} non-
increasing continuously differentiable functions such that
fα(Rα) > fα+1(Rα) for α ∈ {1, . . . , N}. In order to model
regions of the network with different importance, we can
use a density function φ : N → R+, which is bounded
and measurable on N . Given g : R2 → R we indicate by∫

N
g(q)dq (respectively

∫

VN
i
(P)
g(q)dq) the sum of the linear

integrals of g over the segments of N (respectively V Ni (P))
using an arc-length parameterization. With these functions
we can define the multi-center function H : Nm → R for
m sensors located in P = {p1, . . . , pm} ⊂ N

H (P) =

∫

N
max

i∈{1,...,m}
f (‖q − pi‖)φ (q) dq. (2)

We can also provide an alternative expression for (2) based
on the Voronoi partition induced by P as follows

H(P) =
m∑

i=1

∫

VN
i
(P)
f (‖q − pi‖)φ (q) dq

−
∑

∆N
hk
∈∆N

∫

∆N
hk

f (‖q − ph‖)φ (q) dq, (3)
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where ∆Nhk � V Nh (P) ∩ V Nk (P) and ∆N �{
∆Nhk | h < k, ∀h, k ∈ {1, . . . ,m}

}
. The second term in (3)

is not null if and only if there exists a non trivial segment
s ⊆ sij ∈ S such that s ⊂ ∆Nhk for some i, j ∈ {1, . . . , n}
and h, k ∈ {1, . . . ,m}.

A. Collapsed network and sensors moving in R2

In a collapsed network each segment of the original
network is decomposed in one or more sub-segments and
each sub-segment is collapsed in a barycenter. Chosen a
value for r guaranteeing a good approximation, we can build
the r-collapsed network CNr as follows:

Definition 4 (r-Collapsed Network): Given a network
N = (V,S) and r > 0, ∀s ∈ S consider its partition in

ks =
⌈
ℓ(s)
r

⌉
sub-segments si (having at most length r) and

the associated set of barycenters {b (si)}i=1,...,ks . We define
the r-collapsed network associated to N the set of points

CNr =
⋃

s∈S
{b (si)}i=1,...,ks .

The multi-center function must be re-defined since the
integration domain is now a discrete set represented by the
barycentric points. Hence we have

H(P) =
∑

be∈CNr

max
i∈{1,...,m}

f (‖be − pi‖)φbe , (4)

where φbe are suitable (density) weights assigned to the
barycenters.

Also for the multi-center function (4) we can provide an
alternative expression using the Voronoi partition. We need
the following definition:

Definition 5: Given an r-collapsed network CNr for some
r ∈ R+ and a set of points P = {p1, . . . , pm} ⊂
R
2, the Voronoi partition of CNr generated by P with

respect to the Euclidean norm is the collection of sets{
V
CNr
i (P)

}
i∈{1,...,m}

defined by

V
CNr
i (P) =

{
b ∈ CNr | ‖b− pi‖ ≤ ‖b− pj‖ , ∀pj ∈ P

}
.

We define also the boundary of a Voronoi cell as

∂V
CNr
i (P) =

{
b ∈ CNr | ‖b− pi‖ = ‖b− pj‖ , ∀pj ∈ P

}
,

and, in order to simplify the problem, we make the following
assumption

Assumption 1: ∂V
CNr
i (P) = ∅ ∀i ∈ {1, . . . ,m}.

With this assumption the multi-center function (4) can be
written also as

H(P) =
m∑

i=1

∑

be∈V
CNr
i

(P)

f (‖be − pi‖)φbe . (5)

Theorem 1: The multi-center function H is continuously
differentiable on

(
R
2
)m
\
(
DCNr

)m
, where

DCNr �
⋃

be∈CNr

{
q ∈ R2 | ‖be − q‖ = Ri, ∀i = 1, . . . , N

}

is the discontinuity set of f(·) in R2. Moreover, for each
h ∈ {1, . . . ,m}

∂H(P)

∂ph
=

∑

be∈V
CNr
h

(P)

∂

∂ph
f (‖be − ph‖)φbe . (6)

Proof: The proof of this theorem has been removed
due to space limitations. The same holds for the proofs of
the other theorems throughout the paper.

The sensors’ location problem can be solved by means of a
gradient-like algorithm. If a continuous time implementation
is looked for, the following fictitious dynamics would be
associated to the sensors’ positions

Ṗ = ∇H(P). (7)

Unfortunately, this dynamics conveys many problems. It is
well defined as long as the hypotheses of Assumption 1 and
Theorem 1 are fulfilled, but these hypotheses are, in fact,
too stringent for the algorithm to work properly. Indeed,
they would require the evolution of the sensors to avoid any
position in the discontinuity set and the barycenters not to
enter or exit the Voronoi cells where they are at the initial
time instant.

First of all we can reduce the analysis to continuously dif-
ferentiable functions to avoid issues related to the existence
of the gradient. Still the relaxation of Assumption 1 induces
some problems on the definition of the gradient. Barycenters
on a boundary segment of a Voronoi cell belong to all the
cells sharing that segment. All sensors’ positions producing
these configurations are discontinuity points for ∇H(P).
Roughly speaking, the gradient takes different values de-
pending on which cell the shared barycenters are assumed to
belong to. This fact makes the equation (7) a set of differen-
tial equations with discontinuous right-hand side. BeingH(·)
at least locally Lipschitz (f(r) is assumed to be continuously
differentiable w.r.t. r), it would be natural to look for Filippov
solutions of the aforementioned differential equation ([24]).
This choice ensures the existence and uniqueness of solutions
for the equation (7), at least in a generalized sense, but the
proof of convergence of the gradient-like algorithm to the
local maxima of H(·) becomes harder. Indeed, there can
be many shared barycenters on boundary segments, thus
preventing the decomposition of H(·) in a sum of functions
each accounting for the contribution of a single cell.

In order to avoid the problems introduced by Filippov
solutions, a possible choice is to add a lexicographic criterion
to the definitions based only on the euclidean distance.
This criterion allows barycenters to belong univocally to the
sensor having the lower index (w.r.t. the Lexicographic Order
(L.O.)) among the sharing sensors. Let us define again the
Voronoi cell for a collapsed cell as follows (compare with
Definition 4):

V
CNr
i (P) = {b ∈ CNr | ‖b− pi‖ ≤ ‖b− pj‖ ∀pj ∈ P ∧

‖b− pi‖ < ‖b− pj‖ if j < i w.r.t. the L.O.}.

We must now define a generalized (lexicographic) gradient
of H, ∇lH(P), according to this new definition. ∀be ∈

V
CNr
i (P) \ ∂V

CNr
i (P) we use the classical formula given

by (6). ∀be ∈ ∂V
CNr
i (P) notice that the partial derivative

of f , ∂
∂ph
f (‖be − ph‖), exists and is well defined. In the

light of this remark we can write the h-th component of the
generalized (lexicographic) gradient of H as

∂lH(P)

∂ph
�

∑

be∈V
CNr
h

(P)

∂

∂ph
f (‖be − ph‖)φbe , (8)
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which is formally equal to (6).

Unfortunately, the differential equation using this new
definition for the gradient does not imply, as in the Filippov
case, the existence and uniqueness of the solution, and this
proof may turn out to be complex due to special sensors’ and
barycenters’ configurations. Moreover, the formula (8) based
on the lexicographic criterion accounts only for infinitesimal
perturbations of sensors’ position not inducing any change
in the allocation of barycenters to cells. In other terms, each
barycenter is not allowed to enter or exit the cells. In order
to avoid all these problems, we look for a discrete-time
implementation of the gradient algorithm. It is worth noting
that the discrete-time implementation is not the solution
for any problem with discontinuity gradients. It works in
our case due to the properties of the function H and its
discontinuity points, as it is shown by the following theorem.

Theorem 2: Consider the following discrete-time evolu-
tion for the sensors’ positions

P(k+1) = P(k) + δk∇lH(P
(k)), (9)

where the h-th component of ∇lH is given by (8) and H :
R
2m → R as in (5). If f(·) has locally bounded second

derivatives, then, for suitable δk, P(k) lies in a bounded set
and

i) H(P(k)) is monotonically nondecreasing;
ii) P(k) converges to the set of critical points of H.

Remark 1: In the previous theorem, for sake of simplicity,
we did not consider degenerate configurations where differ-
ent sensors have the same position (pi = pj for i �= j). But
it can be proved that if the initial positions of sensors are
not degenerate, we can always choose a suitable δk to avoid
the occurrence of these configurations.

Remark 2: The use of a gradient ascent algorithm based
on a Voronoi partition, allows us to solve not only a static
deployment problem, but also a dynamic one. As shown in
[17], this kind of algorithms is spatially distributed, with the
meaning that each sensor needs only to know the position of
its neighbors in order to determine the boundary of its cell
and, hence, to compute its next movement. This property
makes the algorithm suitable for a realistic asynchronous
distributed implementation, provided that some further con-
ditions are imposed (see [8]). In the same paper algorithms
for the computation and maintenance of the Voronoi cell by
each sensor, are also presented.

Remark 3: The dynamics in (7) should be considered as
an abstraction of the real sensors’ dynamics as well as the
network model is an abstraction of the real environment.
A realistic implementation of our discrete-time algorithm
requires each sensor to be endowed with a local controller
charged with motion planning tasks.

B. Full network and sensors moving on it

To start with, let us define the boundary of a Voronoi cell
as ∂V Ni (P) = {q ∈ N | ‖q − pi‖ = ‖q − pj‖ , ∃pj ∈ P},
and the instantaneous discontinuity set of f(·) as

DN (P) �
⋃

pj∈P
{q ∈ N | ‖q − pj‖ = Ri, ∀i = 1, . . . , N} .

Assumption 2: We make the following assumptions:

i) orthogonality assumption: ∀h, k ∈ {1, . . . , n}, ∀i ∈
{1, . . . ,m} and for any segment s = [a, b] ⊆ shk ∈
S with a �= b, s �⊂ ∂V Ni (P);

ii) ∂V Ni (P) ∩DN (P) = ∅, ∀i ∈ {1, . . . ,m};
iii) V ∩ DN (P) = ∅;
iv) ∀h, k ∈ {1, . . . , n}, ∀i ∈ {1, . . . ,m}, ∀q ∈ shk ∩

V Ni (P), if (q − pi) · (vh − vk) = 0⇒ ‖q − pi‖ /∈
{R1, . . . , RN};

With the orthogonality assumption the expression (3)
simplifies to

H(P) =
m∑

i=1

∫

V N
i
(P)
f (‖q − pi‖)φ (q) dq. (10)

Since the sensors have to remain on the network, we can-
not use directly the gradient. We must consider now the
directional derivative of H along the edges of the network.
Unfortunately, this fact implies that on the vertices of the
network the directional derivative is a multivalued function
as more than one edge can share the same vertex.

Following the guidelines of the previous section, the
following theorem can be proved.

Theorem 3: Given a network N = (V,S) if Assumption
2 holds, the multi-center function H is continuously differ-
entiable almost everywhere on Nm. In particular, on each
open segment soij such that sij ∈ S, given the unit vector
wij such that sij · wij = ‖sij‖, the directional derivative in
ph ∈ soij along wij is

DwijH(P)[ph] =
∂H

∂ph
(P) ·wij (11)

∂H

∂ph
(P) =

Mh(P)∑

k=1

Ik,

where Ik is reported at the top of the next page, γk(t) =
ak + (bk − ak) t, t ∈ [0, 1] is a parameterization for the
k-th segment [ak, bk] ∈ V

N
h (P), Mh(P) is the number of

segments in V Nh (P) and tkα,j ∈ [0, 1], j ∈ {1, 2} are the
zeros of ‖γk(t)− ph‖ −Rα = 0 (if any).

In order to define a gradient-like algorithm, also in this
case, we must relax Assumptions 2. First of all, focus on the
orthogonality assumption. It has been introduced to avoid the
presence of entire segments in the boundary of a cell, because
these configurations induce problems in the definition of
the gradient (they represent points on which the gradient
may assume different values). Even in this case we opt
to use the lexicographic rule in order to univocally assign
a segment on the boundary to only one cell. As in the
case with barycenters, this choice conveys some problems
as long as a continuous-time implementation is looked for
the deployment algorithm. In particular, with this definition,
the gradient can be univocally defined if all the infinitesimal
perturbations inducing a change in the assignment of entire
segments are ignored. Therefore, we consider a discrete-time
dynamics for the gradient-like algorithm.

Using the lexicographic rule, we re-define the Voronoi cell
as follows

V Ni (P) = {q ∈ N | ‖q − pi‖ ≤ ‖q − pj‖ ∀pj ∈ P ∧

‖b− pi‖ < ‖b− pj‖ if j < i w.r.t. the L.O.}
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Ik = ‖bk − ak‖

∫

[0,1]\{tk1,1,tk1,2,...,tkN,1,tkN,2}

∂

∂ν
f (ν)

ph − γk(t)

‖ph − γk(t)‖
φ (γk(t)) dt

+ ‖bk − ak‖
N∑

α=1

(fα+1(Rα)− fα(Rα))
2∑

j=1

ph − γk(tkα,j)∥∥ph − γk(tkα,j)
∥∥φ
(
γk(t

k
α,j)

)

and verify that the expression (10) for H(P) is still formally
correct. We remove the orthogonality hypothesis by adding
to (11) an Ik term for each segment entirely included in
the boundary of a Voronoi cell. This fact does not change
the expression (11), since, with the new definition V Nh (P),
Mh(P) accounts now also for segments on the boundary.

The relaxation of the other assumptions would imply some
discontinuities in the integration domain induced by the dis-
continuities of the function f . These discontinuities, without
additional assumptions, would prevent us from guaranteeing
H(P) to be monotonically nondecreasing along the evolution
of P given by the gradient dynamics. Hence, we assume
now f to be continuous and piecewise differentiable. Being
f continuous, the second term in Ik in (11) is null.

The directional derivative must be univocally defined on
the vertices. To this aim, we fix a choice rule such that the
directional derivative in a vertex is given by the maximum
among all the derivatives defined for each possible direction
that does not lead the sensor out of the network. If all the
directional derivatives in a vertex point outward the network,
then the derivative is set equal to zero.

Definition 6: Given the set

Svi =
{
s ∈ S | ∃vj ∈ V,∃δ̄ > 0 s.t. s = [vi, vj ] ∨ s = [vj , vi],

∀δ ∈ [0, δ̄] vi + δDwijH(P)[vi] ∈ N
}

, (12)

we define the directional derivative of H(P) in any point
ph ∈ N as follows

D̃hH(P) =





DwijH(P)[ph] given by (11) ∀ph ∈ N \ V

max
sij∈Svi

DwijH(P)[ph] ∀ph ≡ vi ∈ V
Svi �= ∅

0
∀ph ≡ vi ∈ V
Svi = ∅

(13)
Using these definitions we can state the following theorem.
Theorem 4: Consider the following discrete-time evolu-

tion for the sensors’ positions

P(k+1) = P(k) + δkD̃H(P
(k)), (14)

where the h-th component of D̃H is given by (13) and
DwijH(P)[ph] by (11) and H : Nm → R as in (10). If f(·)
has locally bounded second derivatives, then, for suitable δk,
P(k) lies in a bounded set and

i) H(P(k)) is monotonically nondecreasing;
ii) P(k) converges to the set of critical points of H.

IV. SIMULATIONS

In this Section we show some simulations illustrating
the effectiveness of the presented algorithm in the two

cases previously analyzed. In the examples we used the
same randomly generated network with 50 vertices and 122
segments. The network can be enclosed in a box whose
side has length 5. We considered the presence of 30 sensors
with the following continuous performance function f(x) =
1
2

(
1− tanh

(
x− 1

2
R

R
6

))
, where R is a parameter fixed to the

value R = 0.8. Even if, with this function, sensors have
an infinite visibility radius, we represent them with a circle
whose radius is 7

8R = 0.7 to emphasize that the performance
function assumes values lesser than 0.01 for larger distances.

In the first example (see Fig. 1) sensors
can move in R

2, the performance function is

given by φ = 20 exp
(
− (x− 1)2 − (y − 4)2

)
+

20 exp
(
− (x− 4)2 − (y − 1)2

)
and the network has

been collapsed with collapsing factor r = 0.3. As apparent
from the figures, sensors gather near the red barycenters
having a higher value of the density function (preferential
areas).

a) b)

c)

Fig. 1. Deployment problem of 30 sensors in an environment described
by a collapsed network. Collapsing factor r = 0.3, density function

20
(
exp

(
− (x− 1)2 − (y − 4)2

)
+ exp

(
− (x− 4)2 − (y − 1)2

))
.

Figure a) illustrates the initial positions and the Voronoi partition, whereas
figure b) illustrates the final positions. Figure c) shows the gradient ascent
flow. Notice that sensors can move in R2.

The second example (see Fig. 2), shows a network not
collapsed but with the same density function of the first
example. Sensors are now forced to move on the network
(see the gradient ascent flows in Fig. 2-c). The last example
shows different solutions with respect to the first one, mainly
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a) b)

c)

Fig. 2. Deployment problem of 30 sensors in an
environment described by a (full) network. Density function

20
(
exp

(
− (x− 1)2 − (y − 4)2

)
+ exp

(
− (x− 4)2 − (y − 1)2

))
.

Figure a) illustrates the initial positions and the Voronoi partition, whereas
figure b) illustrates the final positions. Figure c) shows the gradient ascent
flow. Notice that sensors are now forced to move on the network.

due to the stringent constraint on the motion of sensors.
The use of collapsed vs uncollapsed network also affects
the results depending on the collapsing factor.

These examples also point out that sensors may get stuck
early, due to the presence of many local maxima. Moreover,
the local maximum found by the gradient ascent algorithm,
is usually greatly related to the initial sensors’ deployment.
Therefore, as long as a global optimization problem is
concerned, as it is the case for a static allocation, the initial
deployment may be driven by the density function φ so as
to put more sensors in preferential areas. This is a way to
provide a good starting point for the optimization algorithm.

V. CONCLUSIONS AND FUTURE WORKS

This paper focused on the problem of optimally deploying
sensors in an environment modeled as a network. The alloca-
tion of omnidirectional sensors, that can have limited sensing
radius, has been considered. Two optimization problems have
been formulated and solved. The first one involves some
relaxations in the model of the network and in the location
of sensors. We proposed a discrete-time gradient ascent
algorithm capable of solving both the static and the dynamic
deployment problem.

A main future research direction will consider the integra-
tion of classical Operative Research methods with the present
gradient algorithm. The aim is to build an overall global
optimization technique to solve allocation problems of large
dimensions with many facilities. Moreover, future research,
more related to deployment problems, will consider other
sensor’s models such as those with limited sensing cone.
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