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Abstract— In this paper we illustrate how sensitivities can
be used to provide a practical precursor to dynamic transi-
tions and numerical uncertainty in parameterized nonlinear
parabolic partial differential equations. In particular, we focus
on reaction-diffusion equations and provide numerical examples
to illustrate the ideas and to suggest how one might use
sensitivities to address computational uncertainty.

I. INTRODUCTION

It is well known that the long time behavior of a nonlinear

dynamical system may not be captured even by convergent

approximating methods and additional requirements must

be placed on the scheme to ensure that the discretized

equations capture the correct asymptotic behavior. This issue

is particularly important when one is forced to use numerical

methods to evaluate the asymptotic behavior of a closed-loop

system when the model is defined by a nonlinear partial

differential equation (PDE). In addition, using feedback to

eliminate or delay transition in fluid flows often requires

some type of mechanism to predict that a transition is about

to occur. The recent papers [3], [4], [5], [21] and [22] provide

considerable evidence that, for certain nonlinear systems

that occur in fluid flows, sensitivity analysis can be used

to indicate a transition is about to occur. In [4] and [5] it

was shown that this information can be used to determine

when to turn on a controller to prevent transition. In this

paper we illustrate that similar sensitivity tools can also be

used to provide insight into the asymptotic behavior of the

closed-loop system. In particular, we show that time varying

sensitivities can be used to determine when a numerical

simulation is correctly predicting the longtime behavior of

the response. In the cases considered here, the trigger of a

transition can be a known parameter (wall roughness, etc.) or

an un-modeled uncertainty in the problem data. This includes

uncertainty in parameters, initial data, boundary conditions

and forcing terms. These uncertainties in the problem data

lead to uncertainty in the computed results and should be

considered as part of a verification step. In addition, although

we do not address this issue here, it has recently been

observed that finite precision arithmetic and sensitivity to

parameter uncertainty can lead to orders of magnitude errors

in simulations of simple nonlinear convection-diffusion equa-

tions (see [1] and [3]). In this paper we focus on nonlinear

reaction-diffusion equations to illustrate the problem and

method. However, we first present a simple ODE example

to illustrate some of the basic ideas.

A. A Finite Dimensional Example

We consider a 3D system that is typical of those found in

the papers [4], [5], [20], [21], [25], [26] and [27]. However,

we focus on the role that small constant disturbances play in

transition and illustrate how feedback can delay or eliminate

transition in these cases. The system is governed by three

ordinary differential equations and has the form

ẋ(t) = A(R)x(t) + ‖x(t)‖Sx(t) + Bu(t) + Dq, (1)

where A(R) = [ 1

R
A0 + R], A0 < 0 is diagonal, R is an

upper triangular 3×3 matrix with 1′s in the (1, 2) and (2, 3)
positions and S = −S∗ is skew-adjoint. In particular, this 3
dimensional system is defined by

A0 =





−α 0 0
0 −β 0
0 0 −γ



 , (2)

R =





0 1 0
0 0 1
0 0 0



 , (3)

S =





0 −b1 −b2

b1 0 b3

b2 −b3 0



 (4)

and

B =





0
0
1



 , D =





1
1
1



 , (5)

where all constants are positive. Here, q is considered a

“small” constant (un-modeled) disturbance. For the runs here

we set α = 0.5, β = 0.75, γ = 1.0, b1 = 1.0, b2 = 0.5
and b3 = 0.25. The linear operator A(R) is stable for all

R > 0 and for the no disturbance case (i.e. when q = 0)

the dynamical system is also dissipative. In particular, the

nonlinear system (1)-(5) has a compact global attractor. The

problem is sensitive to the parameter q and this sensitivity

plays an important role in the transition process.

Let

s(t) ,
∂x(t, q)

∂q
|q=0 =

∂x(t, 0)

∂q
(6)
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denote the sensitivity of the solution x(t) = x(t, q) at

q = 0. It follows that the sensitivity s(t) satisfies the linear

differential equation

ṡ(t) = A(R)s(t) + F (x(t))s(t) + D, s(0) = 0, (7)

where

F (x) =

{

‖x‖S + SxxT / ‖x‖ , x 6= 0
0, x = 0

.

Consider the case where x0 = [9, 9, 9]
T

× 10−6 and

q = 5 × 10−8. Figure 1 below contains the plots of the

norms of solution x(t, q) and the sensitivity s(t) (top plot) for

this system. Observe that the solution does not “transition”

to the (chaotic) attractor until t = 175 . However, in

the neighborhood of t = 50 the sensitivity s(t) satisfies

‖s(t)‖ > 103 while the norm of the solution ‖x(t)‖ remains

less than 10−6 well beyond t = 150. The vertical red line

at t = 50 provides a precursor to the upcoming transition

long before the transition is observable in the state. This

precursor was used by Singler to determine when to switch

on a capturing feedback controller which is then able to

prevent the transition (see [20]).

Note: In general it is not always clear which parameters

are most likely to provide the type of sensitivities and

predictive information observed above. In this particular

example we have a good understanding of what causes this

type of “transition” because this model closely mimics what

is observed in channel flow instabilities (see [5], [20] and

[27]). The transition occurs because the initial data moves

outside a basin of attraction as the parameter q varies. It is

worth noting that the parameter in this case can represent

un-modeled dynamics and disturbances, but some analysis

of the dynamics is required to determine which parameters

are important. This is not a new issue since one is always

faced with the problem of determining “good” parameters to

conduct bifurcation analysis and this is a similar problem.

However, more research needs to be done to help provide a

better understanding of this issue.

In the next section we use a similar technique to investigate

the numerical simulation of the closed-loop behavior of a

nonlinear parabolic PDE control system. However, in the

PDE case the “sensitive” parameter is in the boundary

condition which is typical in parabolic diffusion-convection-

reaction equations (see [1], [3], [4], [5], [13], [20] and [21]).

II. THE CHAFFEE-INFANTE EQUATION

We consider a particular reaction-diffusion equation first

studied by Chaffee and Infante in [9] and [10]. This model

is a well understood dissipative dynamical system with a

global attractor consisting of a finite number of fixed points

and the corresponding unstable manifolds (see pages 301 -

306 in [18] for details). In particular, we focus on the partial

differential equation defined on the interval 0 < x < π by

zt(t, x) = zxx(t, x) + λ(z(t, x) − [z(t, x)]3), (8)
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Fig. 1. Norm of x(t) and s(t)

with initial condition

z(0, x) = φ(x), (9)

and Dirichlét boundary conditions

z(t, 0) = 0 = z(t, π). (10)

Here λ > 1 and in this setting it is helpful to think of

(8)-(10) as a closed-loop system that we wish to simulate. It

is sufficient to consider the case where λ = 4.1 so that the

following result holds (see page 303 in [18]).

Theorem 1 If λ = 4.1, then the system (8)-(10) has five

fixed points φ0(·) ≡ 0, φ+

1 (·), φ−

1 (·), φ+

2 (·) and φ−

2 (·) in

L2(0, π). The fixed points φ0(·) ≡ 0, φ+

2 (·) and φ−

2 (·) are

unstable and the attractor consists of the unstable manifolds

for these fixed points along with the stable fixed points φ+

1 (·)
and φ−

1 (·).

Figure 2 provides a schematic picture of the global attrac-

tor. However, for certain initial conditions trajectories are

pushed rapidly towards the unstable zero fixed point before

“transitioning” to one of the stable fixed points φ+

1 (·) or

φ−

1 (·). This is similar to the previous ODE example except

for the fact that this system is not chaotic. However, if one

uses standard simulation schemes to investigate the dynamic

behavior of this system it is easy to obtain misleading results.

Consider the case where the initial function is given by

φ(x) = 1.5 sin(3x). Using the MatlabTM routine PDEPE

to simulate (8)-(10) on the interval 0 < t < 8, yields the

solution shown in Figure 3.

It appears that by t = 2 the solution has “converged” to the

zero steady state solution. However, since the theorem above

tells us that this fixed point is unstable we know that this is

unlikely. Indeed, if one continues to run the simulation to

t = 16 we observe that the solution actually “transitions” to

the stable fixed point φ−

1 (·). This is shown in Figure 4 below.
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Fig. 2. Global Attractor for the Chaffee-Infante Equation
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Fig. 3. z(t, x) on 0 < t < 8

This is also clearly demonstrated in Figure 5 and Figure 6

which contain the plots of the L2 norms of the solution on

the intervals [0, 8] and [0, 16], respectively.

In more complex problems one does not always have the

type of qualitative information available for the Chaffee-

Infante equation. As illustrated by this example, it is not

always clear when a particular numerical solution is pro-

ducing the proper asymptotic results. Even if the algorithm

does eventually capture the correct limiting behavior, it is

not obvious how long one must run the simulation to see

this result. Therefore, it is important to devise numerical

methods that can help predict when a simulation has or has

not “converged” to the correct asymptotic behavior. Although

this is a difficult problem for general systems, in certain cases

sensitivity analysis can be helpful in dealing with this issue.

A. Boundary Sensitivity for the Chaffee-Infante Equation

Here we consider the sensitivity of the Chaffee-Infante

equation with respect to the boundary condition. In par-

ticular, we replace the boundary condition (10) with the

nonhomogeneous boundary condition

z(t, 0) = q = z(t, π), (11)

where q is a “small” number. It is well known that

reaction-convection-diffusion equations are highly sensitive
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Fig. 4. z(t, x) on 0 < t < 16
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Fig. 5. L2 norm of z(t, ·) on 0 < t < 8

to changes in the boundary conditions (see [1], [2], [3], [5],

[12], [13], [16] and , [17]). Therefore, we focus on this

sensitivity and define s(t, x) by

s(t, x) ,
∂z(t, x, q)

∂q
|q=0 =

∂z(t, x, 0)

∂q
,

where z(t, x, q) is the solution to the Chaffee-Infante equa-

tion (8) with initial data (9) and nonhomogeneous boundary

condition (11).

The sensitivity function s(t, x) satisfies the linear bound-

ary value problem on the interval 0 < x < π given by

st(t, x) = sxx(t, x) + λ(s(t, x) − 3[z(t, x)]2s(t, x)), (12)

with initial condition

s(0, x) = 0, 0 < x < π, (13)

and boundary conditions

s(t, 0) = s(t, π) = 1, t > 0. (14)
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Fig. 6. L2 norm of z(t, ·) on 0 < t < 16

This time varying sensitivity provides considerable insight

into the long term behavior of the solution to the Chaffee-

Infante equation. First note that if the solution z(t, x) −→
φ̂(x) and φ̂(x) is a stable equilibrium state, then one would

expect that the the sensitivity s(t, x) would approach a steady

state ŝ(x) satisfying

0 = s′′(x) + λ(s(x) − 3[φ̂(x)]2s(x)), 0 < x < π,

with boundary conditions

s(0) = s(π) = 1.

In particular, one would have lim
t−→+∞

‖s(t, ·)‖L2 −→ c where

c is a constant.

Figure 7 and Figure 8 below illustrate this point. Although

the solution z(t, x) shown in Figure 3 above appears to have

“converged” to the fixed point φ0(x) = 0 by t = 2, and

seemingly remains at zero for 2 < t < 8, the sensitivity

s(t, x) plotted in Figure 7 is growing at an exponential rate

on the entire interval [0, 8]. Moreover, when the solution

transitions to the stable fixed point φ−

1 (·) at t ≈ 9 the

sensitivity is maximized and then converges to a (small)

steady state as expected. If one compares Figure (8) with

Figure 6 above, then it is clear that this sensitivity provides

insight into the transition.

The most important observation about the numerical re-

sults presented here is that even on the “short” time interval

0 < t < 8, when the numerical solution z(t, x) appears to

have stabilized at zero, the sensitivity indicates otherwise.

In particular, in Figure 9 and Figure 10 below we see the

exponential growth of s(t, x) on [0, 8] and at t ≈ 7 the

norm of the sensitivity is of the order 109. Thus, even on

the short time interval [0, 8] the sensitivity provides a clear

indication that the solution z(t, x) has not stabilized at a fixed

point. As noted above, this insight can be used to turn on

feedback controllers to prevent transition. Perhaps even more

importantly, sensitivity analysis of this type can be used to

help evaluate numerical simulations in problems where little

is known about the actual asymptotic behavior of the system.

We also note that the transition and the time to transition
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Fig. 7. s(t, x) on 0 < t < 16
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Fig. 8. L2 norm of s(t, ·) on 0 < t < 16

is not a function of the particular spatial grid. These are

properties of the partial differential equation. However, in

order to check this we ran the problem on various meshes

and observed the same quantitative behavior.

III. CONCLUSIONS AND FUTURE WORK

In this short paper we presented two examples to illus-

trate how time varying sensitivity analysis can be used for

control and provide insight into the validation of numerical

simulations in nonlinear systems. These ideas have also been

applied to a wide variety of reaction-convection-diffusion

systems and a complete paper will appear in the future.

We note that many convection-diffusion problems such as

Burgers’ equation, show extreme sensitivity to boundary

perturbations and sensitivity analysis for these systems has

provided amazing insight into the asymptotic behavior of

numerical solutions (see [1], [2], [3], [5], [6], [7], [8], [12],

[13], [14], [15], [11], [16], [17], [20], [21] and [22]). Prob-

lems of this type are infinitely sensitive to small parameter

changes and can have a dramatic impact on the convergence
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of optimal control and design algorithms.

We note that although the numerical results here pro-

vide considerable evidence that time varying sensitivities

can play an important role in control design and analysis,

considerable work needs to be done to place these ideas

on a mathematically rigorous foundation. We have some

theoretical results for parabolic dissipative systems similar to

the Chaffee-Infante equations. However, much work remains

to be done to place these ideas on a sound theoretical

basis. Finally, it is clear that in order to implement some

of these ideas one needs to have some indication of which

parameters (modeled or un-modeled) are important to use in

the sensitivity analysis. We are currently looking into using

Fisher information theory as a mechanism to identify these

crucial parameters.
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