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Abstract— We consider a convex unconstrained opti-
mization problem that arises in a network of agents
whose goal is to cooperatively optimize the sum of
the individual agent objective functions through local
computations and communications. For this problem,
we use averaging algorithms to develop distributed
subgradient methods that can operate over a time-
varying topology. Our focus is on the convergence rate
of these methods and the degradation in performance
when only quantized information is available. Based on
our recent results on the convergence time of distributed
averaging algorithms, we derive improved upper bounds
on the convergence rate of the unquantized subgradient
method. We then propose a distributed subgradient
method under the additional constraint that agents can
only store and communicate quantized information, and
we provide bounds on its convergence rate that highlight
the dependence on the number of quantization levels.

I. INTRODUCTION

There has been much interest in developing dis-
tributed methods for optimization in networked-
systems consisting of multiple agents with local in-
formation structures. Such problems arise in a variety
of environments including resource allocation among
heterogeneous agents in large-scale networks, and
information processing and estimation in sensor net-
works. Optimization algorithms deployed in such net-
works should be completely distributed, relying only
on local observations and information, and robust
against changes in network topology due to mobility
or node failures.

Recent work [15] has proposed a subgradient
method for optimizing the sum of convex objective
functions corresponding to n agents connected over a
time-varying topology (see also the short paper [14]).
The goal of the agents is to cooperatively solve the
unconstrained optimization problem

minimize
∑n

i=1 fi(x)
subject to x ∈ Rm,

(1)
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where each fi : Rm → R is a convex function,
representing the local objective function of agent i,
and known only to this agent. The decision vector x
in problem (1) can be viewed as either a resource
vector whose components correspond to resources
allocated to each agent, or a global estimate vector to
be optimized by the agents using local information.
For example, such a problem arises in distributed
sensor networks where the sensors are spatially dis-
tributed over a field to measure and estimate certain
quantities. The objective function of sensor i has a
form fi(x) = E[Fi(Ri, x)], where Ri is some random
process observed locally by agent i, the function
Fi(Ri, x) captures the quality of agent i estimates,
and E denotes the expectation (see [21]).

Our proposed method builds on the work in [24],
[25] (see also, [3]). It relies on every agent main-
taining estimates of an optimal solution to problem
(1), and communicating these estimates locally to
its neighbors. The estimates are updated using a
combination of a subgradient iteration1 and an aver-
aging algorithm. The subgradient step optimizes the
local objective function while the averaging algorithm
is used to obtain information about the objective
functions of the other agents.

In this paper, we consider the distributed subgradi-
ent method discussed in [15], and provide improved
convergence rate results. In particular, we use our
recent results on the convergence time of averaging
algorithms [13] and establish new upper bounds on
the difference between the objective function value
of the estimates of each agent and the optimal value
of problem (1). These bounds have a polynomial
dependence on the number of agents n (in contrast
with the error bounds in [15], [14], which involve
exponential dependence on n). Furthermore, we study
a variation of the distributed subgradient method in

1For subgradient methods see, for example, [19], [22], [20], [8],
[1], [2].
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which the agents have access to quantized informa-
tion, and provide bounds on the convergence time that
contain additional error terms due to quantization.

In addition to the papers cited above, our work is
related to the literature on reaching consensus on a
particular scalar value or on computing exact averages
of the initial values of the agents, a subject moti-
vated by natural models of cooperative behavior in
networked-systems (see, e.g., [26], [9], [4], [16], [5],
and [17], [18]). Closely related is also the work in [10]
and [7], [6], which study the effects of quantization on
the performance of averaging algorithms. Our work
is also related to the utility maximization framework
for resource allocation in networks (see [11], [12],
[23]). In contrast to this literature, however, we allow
the local objective functions to depend on the entire
resource allocation vector.

The rest of this paper is organized as follows. In
Section II, we describe the distributed subgradient
method and present an improved convergence rate
estimate using our recently established bounds on
the convergence time of our averaging algorithms
[13]. In Section III, we consider a version of the
method under the additional constraint that the agents
can only exchange quantized information. We provide
convergence and rate of convergence results as a
function of the number of quantization levels. Section
IV contains our concluding remarks.
Notation and Basic Notions. We view all vectors
as columns. We use ei to denote the vector with ith
entry equal to 1 and all other entries equal to 0. We
use 1 to denote a vector with all entries equal to 1.
For a matrix A, we use aij or [A]ij to denote the
matrix entry in the ith row and jth column. We write
[A]i and [A]j to denote respectively the ith row and
the jth column of a matrix A. A vector a is said
to be a stochastic vector when its components ai are
nonnegative and

∑
i ai = 1. A square matrix A is said

to be stochastic when each row of A is a stochastic
vector, and it is said to be doubly stochastic when
both A and its transpose A′ are stochastic matrices.

For a convex function F : Rm → R, we use the
notion of a subgradient (see [2]): a vector sF (x̄) ∈
Rm is a subgradient of a convex function F at x̄ if

F (x̄) + sF (x̄)′(x− x̄) ≤ F (x) for all x.

We use the notation f(x) =
∑n

j=1 fi(x). We
denote the optimal value of problem (1) by f∗ and
the set of optimal solutions by X∗.

II. DISTRIBUTED SUBGRADIENT METHOD

We first introduce our distributed subgradient
method for solving problem (1) and discuss the
assumptions imposed on the information exchange

among the agents. We consider a set V = {1, . . . , n}
of agents. Each agent starts with an initial estimate
xi(0) ∈ Rm and updates its estimate at discrete
times tk, k = 1, 2, . . .. We denote by xi(k) the vector
estimate maintained by agent i at time tk. When
updating, an agent i combines its current estimate xi

with the estimates xj received from its neighboring
agents j. Specifically, agent i updates its estimates by
setting

xi(k + 1) =
n∑

j=1

aij(k)xj(k)− αdi(k), (2)

where the scalars ai1(k), . . . , ain(k) are nonnegative
weights and the scalar α > 0 is a stepsize. The vector
di(k) is a subgradient of the agent i cost function
fi(x) at x = xi(k). We use the notation A(k) to
denote the weight matrix [aij(k)]i,j=1,...,n.

The evolution of the estimates xi(k) generated by
Eq. (2) can be equivalently represented using tran-
sition matrices. In particular, we define a transition
matrix Φ(k, s) for any s and k with k ≥ s, as follows:

Φ(k, s) = A(k)A(k − 1) · · ·A(s + 1)A(s).

Using these transition matrices, we relate the estimate
xi(k + 1) to the estimates x1(s), . . . , xn(s) for any
s ≤ k. In particular, for the iterates generated by Eq.
(2), we have for any i, and any s and k with k ≥ s,

xi(k + 1) =
n∑

j=1

[Φ(k, s)]ijxj(s)

− α

k−1∑
r=s

n∑
j=1

[Φ(k, r + 1)]ijdj(r)

− α di(k) (3)

(for more details, see [15]). As seen from the pre-
ceding relation, to study the asymptotic behavior
of the estimates xi(k), we need to understand the
behavior of the transition matrices Φ(k, s). We do this
under some assumptions on the agent interactions that
translate into some properties of transition matrices.

Our first assumption imposes some conditions on
the weights aij(k) in Eq. (2).

Assumption 1: For all k ≥ 0, the weight matrix
A(k) is doubly stochastic with positive diagonal.
Additionally, there is a scalar η > 0 such that if
aij(k) > 0, then aij(k) ≥ η.

The doubly stochasticity assumption on the weight
matrix will guarantee that the subgradient of the
objective function fi of every agent i will receive
the same weight in the long run. The second part of
the assumption states that each agent gives significant
weight to its own values and to the values of its
neighbors.
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Remark 1: For example, we can ensure in a dis-
tributed manner that the weight matrix A(k) satisfies
Assumption 1 when the agent communications are
bidirectional. In this case, we allow each agent i
to have planned weights ãij(k), j = 1 . . . , n that
the agent communicates to its neighbors together
with the estimate xi(k), where the matrix Ã(k) of
planned weights is a (row) stochastic matrix satisfying
Assumption 1, except for doubly stochasticity. In
particular, at time k, if agent j communicates with
agent i, then agent i receives xj(k) and the planned
weight ãji(k) from agent j. At the same time, agent
j receives xi(k) and the planned weight ãij(k) from
agent i. Then, the actual weights that an agent i uses
are given by

aij(k) = min{ãij(k), ãji(k)},

if i and j talk at time k, and aij(k) = 0 otherwise;
while

aii(k) = 1−
∑

{j|j↔i at time k}

aij(k),

where the summation is over all j communicating
with i at time k. It can be seen that the weights aij(k)
satisfy Assumption 1. Metropolis weights [27] are
another example of weights satisfying Assumption 1.

At each time k, the agents’ connectivity can be rep-
resented by a directed graph G(k) = (V, E(A(k))),
where E(A) is the set of directed edges (j, i), in-
cluding self-edges (i, i), such that aij(k) > 0. Our
next assumption ensures that the agents are connected
frequently enough to persistently influence each other.

Assumption 2: There exists an integer B ≥ 1 such
that the directed graph(

V, E(A(kB)) ∪ · · · ∪ E(A((k + 1)B − 1))
)

is strongly connected for all k ≥ 0.

A. Preliminary Results

Here, we provide some results that we use later in
our convergence analysis of method (2). These results
hold under Assumptions 1 and 2.

Consider a related update rule of the form

z(k + 1) = A(k)z(k), (4)

where z(0) ∈ Rn is an initial vector2. Define

V (k) =
n∑

j=1

(zj(k)− z̄(k))2 for all k ≥ 0,

2This update rule captures the averaging part of Eq. (2), as it
operates on a particular component of the agent estimates, with
the vector z(k) ∈ Rn representing the estimates of the different
agents for that component.

where z̄(k) is the average of the entries of the vector
z(k). Under the doubly stochasticity of A(k), the
initial average z̄(0) is preserved by the update rule
(4), i.e., z̄(k) = z̄(0) for all k. Hence, the function
V (k) measures the “disagreement” in agent values.

In the next lemma, we give a bound on the decrease
of the agent disagreement V (kB), which is linear in
η and quadratic in n−1. This bound is an immediate
consequence of Lemma 5 in [13], stating that3 under
Assumptions 1 and 2, for all k with V (kB) > 0,

V (kB)− V ((k + 1)B)
V (kB)

≥ η

2n2
.

This relation yields the following lemma.
Lemma 1: Let Assumptions 1 and 2 hold. Then,

V (k) is nonincreasing in k. Furthermore,

V ((k + 1)B) ≤
(
1− η

2n2

)
V (kB) for all k ≥ 0.

Using Lemma 1 we obtain the following result for
the transition matrices Φ(k, s) of Eq. (3).

Corollary 1: Let Assumptions 1 and 2 hold. Then,
for all i, j and all k, s with k ≥ s, we have∣∣∣∣[Φ(k, s)]ij −

1
n

∣∣∣∣ ≤ (1− η

4n2

)d k−s+1
B e−2

.

Proof: By Lemma 1, we have for all k ≥ s,

V (kB) ≤
(
1− η

2n2

)k−s

V (sB).

Let k and s be arbitrary with k ≥ s, and let

τB ≤ s < (τ + 1)B, tB ≤ k < (t + 1)B,

with τ ≤ t. Hence, by the nonincreasing property of
V (k), we have

V (k) ≤ V (tB)

≤
(
1− η

2n2

)t−τ−1

V ((τ + 1)B)

≤
(
1− η

2n2

)t−τ−1

V (s).

Note that k−s < (t−τ)B+B implying that k−s+1
B ≤

t− τ + 1, where we used the fact that both sides of
the inequality are integers. Therefore dk−s+1

B e− 2 ≤
t− τ − 1, and we have for all k and s with k ≥ s,

V (k) ≤
(
1− η

2n2

)d k−s+1
B e−2

V (s). (5)

By Eq. (4), we have z(k + 1) = A(k)z(k), and
therefore z(k+1) = Φ(k, s)z(s) for all k ≥ s. Letting
z(s) = ei we obtain z(k + 1) = [Φ(k, s)]i. Using the
inequalities (5) and V (ei) ≤ 1, we obtain

V ([Φ(k, s)]i) ≤
(
1− η

2n2

)d k−s+1
B e−2

.

3The assumptions in [13] are actually weaker.
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The matrix Φ(k, s) is doubly stochastic, because it is
the product of doubly stochastic matrices. Thus, the
average entry of [Φ(k, s)]i is 1/n implying that for
all i and j,(

[Φ(k, s)]ij −
1
n

)2

≤ V ([Φ(k, s)]i)

≤
(
1− η

2n2

)d k−s+1
B e−2

.

From the preceding relation and
√

1− η/(2n2) ≤
1− η/(4n2), we obtain∣∣∣∣[Φ(k, s)]ij −

1
n

∣∣∣∣ ≤ (1− η

4n2

)d k−s+1
B e−2

.

B. Convergence time

We now study the convergence of the subgradient
method (2) and obtain a convergence time bound.
We assume the uniform boundedness of the set of
subgradients of the cost functions fi at all points4:
for some scalar L > 0, we have for all x ∈ Rm and
all i,

‖g‖ ≤ L for all g ∈ ∂fi(x), (6)

where ∂fi(x) is the set of all subgradients of fi at x.
We define the time-averaged vectors x̂i(k) of the

iterates xi(k) generated by Eq. (2), i.e.,

x̂i(k) =
1
k

k−1∑
h=0

xi(h). (7)

The use of these vectors allows us to bound the
objective function improvement at every iteration;
see [15], [14]. Under the subgradient boundedness
assumption, we have the following result5.

Theorem 2: Let Assumptions 1 and 2 hold, and
assume that the set X∗ of optimal solutions of prob-
lem (1) is nonempty. Let the sets of subgradients be
bounded as in Eq. (6). Also, let the initial vectors
xi(0) in Eq. (2) be such that max1≤i≤n ‖xi(0)‖ ≤
αL. Then, the averages x̂i(k) of the iterates obtained
by the method (2) satisfy

f(x̂i(k)) ≤ f∗ +
n dist2(y(0), X∗)

2αk

+
αL2C

2
+ 2αnL2C1,

4This assumption can be relaxed, see [15].
5The assumption max1≤i≤n ‖xi(0)‖ ≤ αL in this theorem is

not essential. We use this assumption mainly to present a more
compact expression for the bound on the convergence time. A
bound that explicitly depends on ‖xi(0)‖ can be obtained by
following a similar line of analysis

where

C = 1 + 8nC1, C1 = 1 +
nB

β(1− β)
, β = 1− η

4n2
,

(8)
and y(0) = (1/n)

∑n
i=1 xi(0).

Proof: The proof follows from the forthcoming
Theorem 3, as discussed at the end of Section III.

The convergence rate result in the preceding theo-
rem improves that of Proposition 3 in [15], where an
analogous estimate is shown with a worse value for
the constant β. In particular, there the constant β in
[15] is given by β = 1− η(n−1)B , and C1 increases
exponentially with n. As seen from Eq. (8), our
new constants C and C1 increases only polynomially
with n indicating a much more favorable scaling as
the network size increases. When α is fixed, the
largest error is of the order of n4, indicating that for
high accuracy, the stepsize needs to be very small.
However, our bound is for general convex functions
and network topologies, and further improvements of
the bound are possible for special classes of convex
functions and special topologies.

III. QUANTIZATION EFFECTS

We next study the effects of quantization on the
convergence properties of the subgradient method. In
particular, we assume that each agent receives and
sends only quantized estimates, i.e., vectors whose
entries are integer multiples of 1/Q. At time k,
an agent receives quantized estimates xQ

j (k) from
some of its neighbors and updates according to the
following rule:

xQ
i (k + 1) =

 n∑
j=1

aij(k)xQ
j (k)− αd̃i(k)

 , (9)

where d̃i(k) is a subgradient of fi at xQ
i (k), and byc

denotes the operation of (componentwise) rounding
the entries of a vector y to the nearest multiple of
1/Q. We also assume that the agents’ initial estimates
xQ

j (0) are quantized.
To analyze the proposed method, we find it useful

to rewrite Eq. (9) as follows:

xQ
i (k + 1) =

n∑
j=1

aij(k)xQ
j (k)− αd̃i(k)− ei(k + 1),

(10)
where the error vector ei(k + 1) is given by

ei(k + 1) =
n∑

j=1

aij(k)xQ
j (k)− αd̃i(k)− xQ

i (k + 1).

(11)
Thus, the method can be viewed as a subgradient
method with external (possibly persistent) noise, rep-
resented by ei(k + 1). Due to the rounding down to
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the nearest multiple of 1/Q, the error vector ei(k+1)
satisfies

0 ≤ ei(k + 1) ≤ 1
Q

1, for all i and k, (12)

where the inequalities above hold componentwise.
Using the transition matrices Φ(k, s), we can

rewrite the update equation (10) as

xQ
i (k + 1) =

n∑
j=1

[Φ(k, 0)]ijx
Q
j (0)

−α

k∑
s=1

n∑
j=1

[Φ(k, s)]ij d̃j(s− 1)

−
k∑

s=1

n∑
j=1

[Φ(k, s)]ijej(s)

−αd̃i(k)− ei(k + 1). (13)

In addition, we consider a related stopped model,
where after some time k̃, the agents cease computing
subgradients d̃j(k), and also after time k̃ + 1 stop
quantizing (so that they can send and receive real
numbers). Thus, in this stopped model, we have

d̃i(k) = 0 and ei(k + 1) = 0, for all i and k ≥ k̃.

Let {x̃i(k)}, i = 1, . . . , n be the sequences gener-
ated by the stopped model, associated with a particu-
lar time k̃. In view of the preceding relation, we have
for each i,

x̃i(k) = xQ
i (k) for k ≤ k̃,

and for k ≥ k̃ + 1,

x̃i(k) =
n∑

j=1

[Φ(k, 0)]ijx
Q
j (0)

−α

k̃∑
s=1

n∑
j=1

[Φ(k, s)]ij d̃j(s− 1)

−
k̃∑

s=1

n∑
j=1

[Φ(k, s)]ijej(s). (14)

Using the result of Corollary 1, we can show that the
stopped process converges as k → ∞. In particular,
we have the following result.

Lemma 2: Let Assumptions 1 and 2 hold. Then,
for any i and any k̃ ≥ 0, the sequence {x̃i(k)}
generated by Eq. (14) converges and the limit vector
does not depend on i, i.e.,

lim
k→∞

x̃i(k) = y(k̃) for all i and k̃.

Furthermore, for the limit sequence y(k), we have:
(a) For all k,

y(k+1) = y(k)−α

n

n∑
j=1

d̃j(k)− 1
n

n∑
j=1

ej(k+1).

(b) When the subgradient norms ‖d̃j(k)‖ are uni-
formly bounded by some scalar L [cf. Eq.
(6)] and the agents’ initial values are such that
maxj ‖xQ

j (0)‖ ≤ αL, then for all i and k,
‖xQ

i (k)− y(k)‖ ≤

2
(

αL +
√

m

Q

) (
1 +

nB

β(1− β)

)
,

where β = 1 − η
4n2 and m is the dimension of

the vectors xQ
i .

Proof: By Corollary 1, for any s ≥ 0, the
entries [Φ(k, s)]ij converge to 1/n, as k → ∞. By
letting k → ∞ in Eq. (14), we see that the limit
limk→∞ x̃i(k) exists and is independent of i. Denote
this limit by y(k̃), and note that it is given by

y(k̃) =
1
n

n∑
j=1

xQ
j (0)− α

n

k̃∑
s=1

n∑
j=1

d̃j(s− 1)

− 1
n

k̃∑
s=1

n∑
j=1

ej(s). (15)

From the preceding relation, applied to different val-
ues of k̃, we see that

y(k + 1) = y(k)− α

n

n∑
j=1

d̃j(k)− 1
n

n∑
j=1

ej(k + 1).

This establishes part (a).
Using the relations in Eqs. (13) and (15), and the

subgradient boundedness, we obtain for all k,

‖xQ
i (k)− y(k)‖ ≤

n∑
j=1

∣∣∣∣[Φ(k, 0)]ij −
1
n

∣∣∣∣ ‖xQ
j (0)‖

+αL

k−1∑
s=1

n∑
j=1

∣∣∣∣[Φ(k, s)]ij −
1
n

∣∣∣∣
+

k−1∑
s=1

n∑
j=1

∣∣∣∣[Φ(k, s)]ij −
1
n

∣∣∣∣ ‖ej(s)‖

+2αL + ‖ei(k)‖+
1
n

n∑
j=1

‖ej(k)‖.

By using Corollary 1, we have for all i and j, and
any k ≥ s,

‖xQ
i (k)− y(k)‖ ≤

n∑
j=1

βd
k+1

B e−2‖xQ
j (0)‖

+ αL

k−1∑
s=1

n∑
j=1

βd
k−s+1

B e−2

+
k−1∑
s=1

n∑
j=1

βd
k−s+1

B e−2‖ej(s)‖

+ 2αL + ‖ei(k)‖+
1
n

n∑
j=1

‖ej(k)‖.
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Since ei(k) ≤ 1/Q [cf. Eq. (12)], we have

‖ei(k)‖ ≤
√

m

Q
for all i and k.

From the preceding two relations, and the inequality
maxj ‖xQ

j (0)‖ ≤ αL, we obtain for all i and k,

‖xQ
i (k)− y(k)‖ ≤ αLnβd

k+1
B e−2

+αLn

k−1∑
s=1

βd
k−s+1

B e−2 +
√

m

Q
n

k−1∑
s=1

βd
k−s+1

B e−2

+2αL + 2
√

m

Q
.

By using
∑k−1

s=0 βd
k−s+1

B e−2 ≤ 1
β

∑∞
r=0 βd

r+2
B e−1,

and
∞∑

r=0

βd
r+2
B e−1 =

∞∑
r=0

βd
r+2
B e−1 ≤ B

∞∑
t=0

βt =
B

1− β
,

we finally obtain

‖xQ
i (k)−y(k)‖ ≤ 2

(
αL +

√
m

Q

)(
1 +

nB

β(1− β)

)
.

According to part (a) of Lemma 2, the vectors
y(k) can be viewed as the iterates produced by the
“fictitious” centralized algorithm:

y(k + 1) = y(k)− α

n

n∑
j=1

d̃j(k)− 1
n

n∑
j=1

ej(k + 1),

(16)
which is an approximate subgradient method with
persistent noise: The direction

∑n
j=1 d̃j(k) is an

approximate subgradient of the objective function
f because each vector d̃j(k) is a subgradient of
fi at xQ

i (k) instead of at y(k). The error term
(1/n)

∑n
j=1 ej(k + 1) can be viewed as the noise

experienced by the whole system. The noise is per-
sistent since the magnitudes of the errors ej(k) are
non-diminishing.

We now focus on establishing an error bound
for the function values at the points y(k) of the
stopped process of Eq. (16), starting with y(0) =
1
n

∑n
j=1 xQ

j (0), and with the direction d̃j(k) being a
subgradient of fj at xQ

j (k) for all j and k. The process
y(k) is similar to the stopped process analyzed in
[15], defined using xj(k) in place of xQ

j (k). Thus,
using the same analysis as in [15] (see Lemma 5
therein), we can show the following basic result.

Lemma 3: Let Assumptions 1 and 2 hold, and
assume that the set X∗ of optimal solutions of
problem (1) is nonempty. Let the sequence {y(k)}
be defined by Eq. (16), and the sequences {xQ

j (k)}
for j ∈ {1, . . . , n} be generated by the quantized

subgradient method (9). Also, assume that the sub-
gradients are uniformly bounded as in Eq. (6), and
that maxj ‖xQ

j (0)‖ ≤ αL. Then, the average vectors
ŷ(k) defined as in Eq. (7), satisfy for all k ≥ 1,

f(ŷ(k)) ≤ f∗ +
n dist2(y(0), X∗)

2αk
+

αL2C̃

2
,

where

C̃ = 1 +
8nC̃1

αL
,

C̃1 =
(

αL +
√

m

Q

)(
1 +

nB

β(1− β)

)
,

β = 1− η
4n2 and y(0) = 1

n

∑n
j=1 xQ

j (0).

Proof: Using the same line of analysis as in the
proof of Lemma 5 in [15], we can show that for all
k,
dist2(y(k + 1), X∗) ≤ dist2(y(k), X∗)

+
2α

n

n∑
j=1

(
‖d̃j(k)‖+ ‖gj(k)‖

)
‖y(k)− xQ

j (k)‖

− 2α

n
[f(y(k))− f∗] +

α2

n2

n∑
j=1

‖d̃j(k)‖2,

where gj(k) is a subgradient of fj at y(k). By using
the subgradient boundedness, we further obtain
dist2(y(k + 1), X∗) ≤ dist2(y(k), X∗)

+
4αL

n

n∑
j=1

‖y(k)− xQ
j (k)‖

−2α

n
[f(y(k))− f∗] +

α2L2

n
.

By using Lemma 2(b), we have

dist2(y(k + 1), X∗) ≤ dist2(y(k), X∗)

+8αLC̃1 −
2α

n
[f(y(k))− f∗] +

α2L2

n
,

where C̃1 =
(
αL +

√
m

Q

) (
1 + nB

β(1−β)

)
. Therefore,

f(y(k)) ≤ f∗ + αL2

2 + 4nLC̃1

+
n

2α

(
dist2(y(k), X∗)− dist2(y(k + 1), X∗)

)
,

and by regrouping the terms and introducing
C̃ = 1 + 8nC̃1

αL , we have for all k,

f(y(k)) ≤ f∗ + αL2C̃
2

+
n

2α

(
dist2(y(k), X∗)− dist2(y(k + 1), X∗)

)
.

By adding these inequalities for different values of
k, and by using the convexity of f , we obtain the
desired inequality.
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Assuming that the agents can store real values
(infinitely many bits), we consider the time-average
of the iterates xQ

i (k), defined by

x̂Q
i (k) =

1
k

k−1∑
h=0

xQ
i (h) for k ≥ 1.

Using Lemma 3, we have the following result.
Theorem 3: Under the same assumptions as in

Lemma 3, the averages x̂Q
i (k) of the iterates obtained

by the method (9) satisfy, for all i,

f(x̂Q
i (k)) ≤ f∗+

n dist2(y(0), X∗)
2αk

+
αL2C̃

2
+2nLC̃1,

where C̃, C̃1, and y(0) are as in Lemma 3.

Proof: By the convexity of the functions fj , we
have, for any i and k,

f(x̂Q
i (k)) ≤ f(ŷ(k)) +

n∑
j=1

gij(k)′(x̂Q
i (k)− ŷ(k)),

where gij(k) is a subgradient of fj at x̂Q
i (k). Then,

by using the boundedness of the subgradients and
Lemma 2(b), we obtain for all i and k,

f(x̂Q
i (k)) ≤ f(ŷ(k)) + 2nLC̃1,

with C̃1 =
(
αL +

√
m

Q

)(
1 + nB

β(1−β)

)
. The result

follows by using Lemma 3.
The result of Theorem 2 follows from Theorem 3

by letting the quantization level Q be increasingly
finer (i.e., Q →∞). Specifically, when Q →∞, the
constants C̃1 and C̃ of Theorem 3 satisfy

lim
Q→∞

C̃1 = αL

(
1 +

nB

β(1− β)

)
= αLC1,

lim
Q→∞

C̃ = 1 +
8n

αL
lim

Q→∞
C̃1 = 1 + 8nC1,

with C1 = 1 + nB
β(1−β) . Thus, for the error term of

Theorem 3, we have

lim
Q→∞

(
αL2C̃

2
+ 2nLC̃1

)
=

αL2

2
C + 2nαL2C1

where C = 1 + 8nC1 and C1 = 1 + nB
β(1−β) . Hence,

in the limit as Q → ∞, the estimate in Theorem 3
yields the estimate in Theorem 2.

IV. CONCLUSIONS

We studied distributed subgradient methods for
convex optimization problems that arise in networks
of agents connected through a time-varying topology.
We first considered an algorithm for the case where
agents can exchange and store continuous values, and
proved a bound on the convergence rate. We next
studied the algorithm under the additional constraint

that agents can only send and receive quantized
values. We showed that our algorithm guarantees
convergence of the agent values to the optimal ob-
jective value within some error. Our bound on the
error highlights the dependence on the number of
quantization levels, and the polynomial dependence
on the number n of agents. Future work includes
studying the effects of other quantization schemes and
of noise in the agents’ estimates.
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