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Abstract— This article presents instrumental variable meth-
ods for direct continuous-time estimation of a Hammerstein
model. The non-linear function is a sum of known basis
functions and the linear part is a Box–Jenkins model. Although
the presented algorithm is not statistically optimal, this paper
further shows the performance of the presented algorithms
and the advantages of continuous-time estimation on relevant
simulations.

I. INTRODUCTION

The need for non-linear identification grows as the studied

system complexity increases and non-linear models apply in

many fields [13]. Many different approaches were developed

to deal with black-box model identification, whether they

are non parametric, using Volterra series approach [10],

semi-parametric using neural network methods and support

vector machine classification [15], [8], or parametric such

as state dependent parameters [23] or extended Kalman

filter [4]. Other references can be found in e.g. [7]. Semi-

parametric approaches, even if performing efficiently, lack

the possibility of giving an a posteriori physical represen-

tation of the studied system. On the other hand, transfer

function models provide a generic approach to data-based

modelling of linear systems, encompass both discrete-time

and continuous-time applications and are in an ideal form

to interpret serial, parallel connections of sub-systems which

often have a physical significance.

Hammerstein block diagram model is widely represented

for modelling non-linear systems [5], [3], [18]. The non-

linear block can be represented as a piecewise linear function

[2] or as a sum of basis functions [14], [6]. The available

methods are often designed for discrete-time (DT) model

estimation and usually, extended least squares are used to

minimize a prediction error [5].

Even if acquired data are sampled, the underlying dynamic

of a real system is continuous. Therefore, direct continuous-

time model identification methods regained interest in the

recent years [9]. A survey by Rao and Unbehauen [17]

shows that CT model identification methods applied to

Hammerstein models are poorly represented in literature, and

to the best of our knowledge, no method uses instrumental

variable (IV) techniques to handle Hammerstein CT model

identification. Instrumental variables have the advantage of
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Fig. 1. Hammerstein block representation

producing an unbiased estimation independently on the noise

model assumed with an acceptable variance in parameter

estimation in many practical cases. Moreover, an optimal

choice of these instruments leads to a minimal variance

estimator [19], [22].

Therefore, the main contribution of this paper is to present

IV estimation methods for Hammerstein CT models where

the non-linear function is a sum of known basis functions

γ1, γ2, . . . , γl given as:

ū(t) =

l
∑

i=1

αiγi(u(t)). (1)

The proposed algorithms are based on the multi-input

single-output refined instrumental variable for CT systems

(MISO RIVC) first introduced by Young and Jakeman [26]

and recently extended to handle the case of Box–Jenkins

models [24], [25], [12].

II. PROBLEM DESCRIPTION

Consider the Hammerstein system represented in Figure 1

and assume that both input and output signals, u(t) and y(t)
are uniformly sampled at a constant sampling time Ts over N
samples. Notice first that this Hammerstein system produces

the same input-output data for any pair (βf(u), Go(p)
β

).
Therefore, to get a unique parametrization, one of the gains

of f(u) or Go(p) has to be fixed [5], [1]. Hence, the first

coefficient of the function f(.) equals 1, i.e. α1 = 1 in

(1). Moreover, ū(t) in (1) is an internal variable and is

actually not directly accessible. The Hammerstein system S,

is described by the following input-output relationship:

S











x(t) =
∑l

i=1 Go,i(p)γi(u(t))

ξ(tk) = Ho(q)e(tk),

y(tk) = x(tk) + ξ(tk),

(2)

where

Go,i(p) =
Bo,i(p)

Ao(p)
=

αiBo(p)

Ao(p)
. (3)
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Bo(p) and Ao(p) are polynomials in differential operator p

(pix(t) = dix(t)
dti ) of respective degree nb and na (na ≥ nb).

The method presented is based on the identification of a

Box–Jenkins model, where the linear and the noise models

are not constrained to have common polynomials. Given

the discrete-time, sampled nature of the data, an obvious

assumption is that the model of the basic dynamic system

is in CT, differential equation form while the coloured noise

associated with the sampled output measurement y(tk) has

rational spectral density and can be represented by a discrete-

time autoregressive moving average ARMA model ([27],

[28]):

ξ(tk) = Ho(q)e(tk) =
Co(q

−1)

Do(q−1)
e(tk) (4)

where Co(q
−1) and Do(q

−1) are polynomials in shift opera-

tor q−1 (q−rx(tk) = x(tk−r)) with respective degree nc and

nd. e(tk) is a zero-mean, normally distributed, discrete-time

white noise sequence: e(tk) ∼ N (0, σ2
e). Consequently, the

Hammerstein model estimation problem can be treated under

the previous assumptions using a MISO RIVC algorithm

where all inputs have a common denominator Ao(p) and

Bo,i(p) = αiBo(p). This method will be called Hammerstein

RIVC (HRIVC).

A. Refined IV for Hammerstein CT Models

The model set to be estimated, denoted as M with system

(G) and noise (H) models parameterized independently, then

takes the form,

M : {Gi(p, ρ), H(q, η)}, i = 1 . . . l (5)

where ρ and η are parameter vectors that characterise the

system and noise model, respectively. In particular, the

system model is formulated in CT terms:

G : Gi(p, ρ) =
Bi(p, ρ)

A(p, ρ)
,

=
αi(b0p

nb + b1p
nb−1 + · · · + bnb

)

pna + a1pna−1 · · · + ana

, (6)

with i = 1 . . . l. The associated model parameters are stacked

columnwise in the parameter vector,

ρ =











a

α1b
...

αlb











∈ R
nρ , a =











a1

a2

...

ana











∈ R
na , b =











b0

b1

...

bnb











∈ R
nb+1,

(7)

with nρ = na+l(nb+1) while the noise model is in discrete-

time form

H : H(q, η) =
C(q−1, η)

D(q−1, η)
=

1 + c1q
−1 + · · · + cnc

q−nc

1 + d1q−1 + · · · + dnd
q−nd

(8)

where the associated model parameters are stacked column-

wise in the parameter vector,

η =
[

c1 · · · cnc
d1 · · · dnd

]T
∈ R

nc+nd (9)

Consequently, the noise transfer function takes the usual

ARMA model form:

ξ(tk) =
C(q−1, η)

D(q−1, η)
e(tk). (10)

More formally, there exists the following decomposition

of the parameter vector θ for the whole hybrid model,

θ =

(

ρ

η

)

(11)

such that the model can be written in the form

y(tk) =
1

A(p, ρ)

l
∑

i=1

Bi(p, ρ)γi(u(tk)) +
C(q−1, η)

D(q−1, η)
e(tk),

with Bi(p, ρ) = αiB(p, ρ). The HRIVC method derives

from the RIV algorithm for DT systems. This was evolved by

converting the maximum likelihood estimation equations to a

pseudo-linear form involving optimal prefilters [21], [26]. A

similar analysis can be utilised in the present situation since

the problem is very similar, in both algebraic and statistical

terms.

Following the usual prediction error minimisation ap-

proach in the present hybrid situation, a suitable error func-

tion ε(tk), at kth sampling instant, is given as:

ε(tk) =
D(q−1, η)

C(q−1, η)

{

y(tk) −
l
∑

i=1

Bi(p, ρ)

A(p, ρ)
γi(u(tk))

}

(12)

which can be written as

ε(tk) =
D(q−1, η)

C(q−1, η)

{

1

A(p, ρ)

[

A(p, ρ)y(tk)−

l
∑

i=1

Bi(p, ρ)γi(u(tk))

]}

, (13)

where the DT prefilter D(q−1, η)/C(q−1, η) will be recog-

nised as the inverse of the ARMA(nc,nd) noise model.

However, since the polynomial operators commute in this

linear case, (13) can be considered in the alternative form,

by using for sake of clarity ui(t) = γi(u(t)):

ε(tk) = A(p, ρ)yf(tk) −
l
∑

i=1

Bi(p, ρ)uif(tk) (14)

where yf(tk) and uif(tk) represent the sampled outputs of the

complete CT and DT prefiltering operation, involving the CT

filtering operations using the filter (see [25], [24]):

fc(p, ρ) =
1

A(p, ρ)
, (15)

as well as DT filtering operations, using the inverse noise

model filter:

fd(q
−1, η) =

D(q−1, η)

C(q−1, η)
. (16)

Therefore, from (14), the associated linear-in-the-parameters

model then takes the form [25]:

y
(na)
f (tk) = ϕT

f (tk)ρ + ς(tk) (17)
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where

ϕf(tk) =











−yf

u1f

...

ulf











, yf =











y
(na−1)
f (tk)

y
(na−2)
f (tk)

...

yf(t)











,

uif =











u
(nb)
if (tk)

u
(nb−1)
if (tk)

...

uif(tk)











,

v(n)(tk) is the nth time derivative of v(t) sampled at the kth

sampling instant and ς(tk) = A(p, ρ)ξ(tk).
Of course none of A(p, ρ), Bi(p, ρ), C(q−1, η) or

D(q−1, η) is known and only their estimates are available.

Therefore, IV estimation normally involves an iterative (or

relaxation) algorithm in which, at each iteration, the ‘auxil-

iary model’ used to generate the instrumental variables, as

well as the associated prefilters, are updated, based on the

parameter estimates obtained at the previous iteration [24],

[25].

B. Iterative HRIVC Algorithm

Let us consider the jth iteration where we have access to

the estimate:

θ̂
j−1

=

(

ρ̂j−1

η̂
j−1

)

(18)

obtained at iteration j − 1. The most important aspect of

optimal IV estimation is the definition of the instrumental

variable. It has been shown that this instrument requires the

knowledge of the noise free regressor [19], [22]. Therefore,

in this context, the associated optimal IV vector ϕ̂f(tk), is

then an estimate of the noise-free version of the vector ϕf(tk)
in (17) and is defined as follows:

ϕ̂f(tk) =











−x̂f

u1f

...

ulf











, x̂f =











x̂
(na−1)
f (tk)

x̂
(na−2)
f (tk)

...

x̂f(tk)











(19)

where the filtered noise-free output x̂f(tk) is obtained from:

x̂(t, ρ̂j−1) =
l
∑

i=1

Gi(p, ρ̂j−1)ui(t). (20)

The IV optimisation problem can now be stated in the form

ρ̂j(N) = argmin
ρ

∥

∥

∥

∥

∥

[

1

N

N
∑

k=1

ϕ̂f(tk)ϕf(tk)T

]

−

[

1

N

N
∑

k=1

ϕ̂f(tk)y
(na)
f (tk)

]∥

∥

∥

∥

∥

2

Q

(21)

where ‖x‖2 = xTQx and Q = I. This results in the solution

of the IV estimation equations:

ρ̂
j(N) =

[

N
∑

k=1

ϕ̂f(tk)ϕT
f (tk)

]−1
N
∑

k=1

ϕ̂f(tk)y
(na)
f (tk) (22)

where ρ̂
j(N) is the IV estimate of the system model param-

eter vector at the jth iteration based on the appropriately

prefiltered input/output data ZN = {u(tk); y(tk)}N

k=1. if

G0,i ∈ Gi, HRIVC provides a consistent estimate under the

conditions: limN→∞

1
N

∑N

t=1 Eϕ̂f(tk)ϕf(tk)T is full col-

umn rank and limN→∞

1
N

∑N

t=1 Eϕ̂f(tk)ςf(tk) = 0.

An estimate of the sampled noise signal ξ(tk), at the jth

iteration, is obtained by subtracting the sampled output of

the auxiliary model equation (20) from the measured output

y(tk), i.e.:

ξ̂(tk) = y(tk) − x̂(tk, ρ̂j−1). (23)

This estimate provides the basis for the estimation of the

noise model parameter vector ηj , using in this case the

MATLAB identification toolbox ARMA estimation algo-

rithm. The process is iterated until a stopping criterion or

a certain number of iterations is reached. At the end of

the iterative process, coefficients α̂i are not directly acces-

sible. They are however deduced from polynomial B̂i(p) as

Bi(p, ρ) = αiB(p, ρ). The hypothesis α1 = 1 guarantees

that B̂1(p, ρ) = B̂(p, ρ) and α̂i can be computed from:

α̂i =
1

nb + 1

nb
∑

k=0

b̂i,k

b̂1,k

, (24)

where b̂i,k is the kth coefficient of polynomial term B̂i(p, ρ)
for i = 2 . . . l.

C. Comments

• A simplified version of HRIVC algorithm named

HSRIVC follows the exact same theory for estimation

of Hammerstein CT output-error models. It is mathe-

matically described by, C(q−1, ηj) = Co(q
−1) = 1

and D(q−1, ηj) = Do(q
−1) = 1. All previous given

equations remain true, and it suffices to estimate ρj as

θj = ρj . The implementation of HSRIVC is much sim-

pler than HRIVC as there is no model noise estimation

in the algorithm.

• The present paper considers CT model identification.

However, the DT versions of both IV-based methods

can be easily developed and will be also evaluated in

the next section,

• Even if the proposed algorithm performs well, it is not

statistically optimal as discussed in section III-C.

III. NUMERICAL EXAMPLES

This section presents numerical evaluation of both sug-

gested HRIVC and HSRIVC methods. For all presented

examples, the non-linear block has a polynomial form, i.e.

γi(u(t)) = ui(t), ∀i and ū(t) = u(t)+0.5u2(t)+0.25u3(t),
where u(t) follows a uniform distribution with values be-

tween −2 and 2. To highlight the performance of CT model

IV-based methods, two simulated systems are considered. All

systems are simulated with a zero order hold on the input.
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A. Second-order System

The linear dynamic block is first a second-order system

described by:

Go(p) =
10p + 30

p2 + p + 5
. (25)

The sampling time equals Ts = 0.48s. Based on this

process, two different systems S1 and S2 are defined. S1

is a Hammerstein output error model and therefore

Ho(q) = 1.

while S2 is a Hammerstein Box–Jenkins model with:

Ho(q) =
1

1 − q−1 + 0.2q−2
.

The models considered for estimation are:

MHRIVC



















G(p, ρ) =
b0p + b1

p2 + a1p + a2
,

H(q, η) =
1

1 + d1q−1 + d2q−2
,

f(u(t)) = u(t) + α1u
2(t) + α2u

3(t)

(26)

for the HRIVC method and

MHSRIVC















G(p, ρ) =
b0p + b1

p2 + a1p + a2
,

H(q, η) = 1,

f(u(t)) = u(t) + α1u
2(t) + α2u

3(t)

(27)

for HSRIVC.

500 Monte Carlo simulation runs with a new noise real-

ization for each run were realized under a signal to noise

ratio (SNR) of 30dB and 10dB with:

SNR = 20log

(

Pe

Px

)

, (28)

Pg being the average power of signal g. The number of

samples is N = 2000. Table I exhibits the mean value of

the estimated parameters, their standard deviation and their

normalised root mean square error (RMSE) defined as:

RMSE(θ̂j) =

√

√

√

√

1

Nexp

Nexp
∑

i=1

(

θo
j − θ̂j(i)

θo
j

)2

,

with θ̂j the jth estimated parameter of θ.

Table I shows that the HRIVC and HSRIVC methods

provide similar, unbiased estimates of the model parameters

with reasonable standard deviations. Results obtained using

the HRIVC algorithm, have standard deviations which are

always smaller than the ones produced by HSRIVC. Even

though, the HSRIVC algorithm based on an output-error

model is a reasonable alternative to the full HRIVC algorithm

based on a Box–Jenkins model.

B. Fourth-order System

The aim of this paper is not to compare direct continuous-

time and indirect discrete-time model estimation methods.

However, authors show through a chosen example the interest

of using the direct CT methods with respect to the traditional

DT methods. The linear part of the second system is based

on a benchmark proposed by Rao and Garnier in [16] (see

also [11]). It is a fourth-order, non-minimum phase system

with complex poles. Its transfer function is given by:

Go(p) =
−6400p + 1600

p4 + 5p3 + 408p2 + 416p + 1600
. (29)

The sampling frequency is chosen to be about ten times the

bandwidth of the system under study which leads to Ts =
0.0314s. White noise is added to the output samples. 500

Monte Carlo simulation runs were realized with a SNR of

10dB using the proposed HSRIVC method and its discrete-

time version HSRIV. The models take the forms:

MHSRIV C















G(p, ρ) =
bop + b1

p4 + a1p3 + a2p2 + a3p + a4
,

H(q, η) = 1,

f(u(t)) = u(t) + α1u
2(t) + α2u

3(t)

(30)

for HSRIVC and

MHSRIV











G(q, ρ) = b̃0q−1+b̃1q−2+b̃2q−3+b̃3q−4

1+ã1q−1+ã2q−2+ã3q−3+ã4q−4 ,

H(q, η) = 1,

f(u(t)) = u(t) + α1u
2(t) + α2u

3(t)

(31)

for HSRIV. Figures 2(a) and 3(a) display the magnitude Bode

plots of the DT and CT estimated linear models. It can be

firstly noticed that both models present similar results for low

frequencies whereas for high frequencies, the CT method

exhibits a superiority in model estimation. Both methods

correctly estimate both resonance peaks. On the other side,

the DT method appears to be less reliable, as for some

realizations, the algorithm did not converge to acceptable

values even though the initialization step is the same for

both methods. By only looking at Bode diagram and consid-

ering only realizations which converged, both methods give

satisfactory results. However, when looking at non-linear

function estimations (Figures 2(b) and 3(b)), the DT method

hands out results with a very large variance while the CT

approach delivers a set of estimated functions centered nearly

exactly on the true non-linear function. This can be explained

by two facts: the DT version of the Hammerstein model

(assuming the appropriate zero order hold) rises the number

of parameters to be estimated for the numerator polynomial

and therefore results in worse estimation. Furthermore, in the

DT case, the numerator coefficients are so close to null that a

small absolute error produces a large relative error. Estimated

α̂i coefficients, which are directly deduced from B̂ (see (24)),

dramatically suffer from this particular situation.
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TABLE I

ESTIMATION RESULTS FOR DIFFERENT NOISE MODELS

b0 b1 a1 a2 α1 α2 d1 d2

system SNR method

true value 10 30 1 5 0.5 0.25

mean(θ̂) 9.9869 30.0251 1.0003 4.9996 0.5005 0.2507

30 HSRIVC std(θ̂) 0.3053 0.6984 0.0084 0.0236 0.0113 0.0116

RMSE 0.0305 0.0233 0.0084 0.0047 0.0227 0.0464

S1 mean(θ̂) 9.9834 29.8845 0.9987 4.9960 0.5061 0.2553

10 HSRIVC std(θ̂) 0.9508 2.3145 0.0267 0.0789 0.0359 0.0383

RMSE 0.0950 0.0772 0.0267 0.0158 0.0728 0.1544

true value 10 30 1 5 0.5 0.25 -1 0.2

mean(θ̂) 9.9957 29.8760 1.0001 4.9991 0.5026 0.2523

HSRIVC std(θ̂) 0.3670 1.5660 0.0170 0.0436 0.0201 0.0180

RMSE 0.0367 0.0523 0.0169 0.0087 0.0405 0.0723

30 mean(θ̂) 9.9906 30.0172 1.0006 5.0020 0.5008 0.2506 -1.0002 0.2005

HRIVC std(θ̂) 0.2497 0.8954 0.0119 0.0265 0.0118 0.0115 0.0219 0.0223

RMSE 0.0250 0.0298 0.0119 0.0053 0.0236 0.0460 0.0218 0.1112

S2 mean(θ̂) 10.0882 29.6146 1.0010 4.9814 0.5080 0.2604

HSRIVC std(θ̂) 1.0764 4.4585 0.0517 0.1291 0.0610 0.0542

RMSE 0.1079 0.1490 0.0517 0.0261 0.1230 0.2208

10 mean(θ̂) 10.049 30.0277 0.9998 4.9980 0.5015 0.2522 -0.9997 0.1994

HRIVC std(θ̂) 0.7861 2.8278 0.0379 0.0871 0.0369 0.0366 0.0227 0.0219

RMSE 0.0787 0.0942 0.0378 0.0174 0.0738 0.1466 0.0227 0.1096

C. Discussions

It can be noticed that results present a higher parameter

variance than for a linear model estimation problem. This

comes mainly from the redundancy of the B(p) parameters

contained in θ and by the higher number of estimated

parameters: when the Hammerstein model relies on only

na + l − 1 + nb parameters, the proposed algorithm needs

to estimate na + l(nb + 1) parameters. Hence, even if not

optimal, this algorithm can produce a very good starting

value for statistically optimal prediction error methods. How-

ever, the low variance in estimated parameters makes it an

interesting method for practical data. An alternative RIV ap-

proach that can handle other types of nonlinearity, including

nonlinear terms in variables other than the input, is ’state-

dependent parameter’ (SDP) estimation (e.g. [20]). Here,

the parameters in the nonlinear function are estimated by a

nonlinear, iterative optimization procedure in which the RIV

estimation algorithm is incorporated to estimate the linear

TF parameters, based on the nonlinearly transformed input.

Although computationally less efficient, this is statistically

more efficient than the method proposed in the present paper.

Some further research about introducing constraint to avoid

the parameters redundancy might be therefore relevant.

IV. CONCLUSION

The theory of multi-input single-output refined instrumen-

tal variable for CT systems has been applied to a non linear

Hammerstein model composed of a linear dynamic CT Box-

Jenkins transfer function and a non-linear function defined

as the sum of known basis functions. The performance and

consistency for both HSRIVC and HRIVC methods have

been highlighted. Finally, some advantages of using the

suggested CT method with respect to its DT version have

been illustrated.
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