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Abstract— Approximate Dynamic Inversion is a method ap-
plicable to control of minimum phase, nonaffine-in-control
systems. We show that if all the system states are available for
feedback, the Approximate Dynamic Inversion controller can
be realized as a linear Proportional-Integral model reference
controller without knowledge of the nonlinear system beyond
the sign of the control effectiveness, and without any approxi-
mations. Similarities with earlier work on high-gain feedback
and variable structure control of affine-in-control nonlinear
systems are highlighted, which suggests a possible link between
Approximate Dynamic Inversion and variable structure control
for nonaffine-in-control systems.

I. INTRODUCTION

In [1], [2], the authors laid the foundation for a method of

Approximate Dynamic Inversion (ADI) for a class of min-

imum phase, nonaffine-in-control systems, assuming known

system dynamics. The method is founded on the time-scale

separation principle from singular perturbation theory [3,

Chapter 11], where the control is defined as a solution

of “fast” dynamics. The ADI control law as originally

formulated depends on the nonlinear function that describes

the system. When this function is known, implementation of

the ADI controller is straightforward. When this function is

unknown, one plausible way would be to estimate this func-

tion and construct an analogous ADI control law based on

that estimate [4], [5]. We show that with full state feedback,

and knowledge of the sign of the control effectiveness, the

ADI controller can be implemented exactly as a Proportional-

Integral (PI) model reference controller. This eliminates the

need for any approximation of the plant dynamics to realize

the ADI controller.

It will be apparent that the resulting PI control is a high-

gain controller given that the controls have fast dynamics

as required of the ADI method. Given these results, it is of

interest to observe the similarities with earlier work on high-

gain control and variable structure control of affine-in-control

systems [6].

The rest of the paper is organized as follows. Section II

outlines the ADI method. For single-input systems, sec-

tion III shows that every ADI control law has a PI controller

realization, and section IV discuss a few variants of ADI

control. Simulation results comparing an ADI variant to a PI

implementation is presented in section V. The final section
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highlights some similarities to earlier work on high-gain

control and variable structure control, suggesting a possible

link between the ADI method and variable structure control

of nonaffine-in-control systems.

II. BACKGROUND

For the purposes of this paper, the ADI method is outlined

here for single-input systems, and all but the bare essentials

are omitted. The reader is referred to [1], [2] for a complete

presentation, proofs and technical details.

Let the system to be controlled be an n-th order, single in-

put, minimum phase, nonaffine-in-control system expressed

in normal form [3, Section 13.2]

ẋ(t) = Ax(t) + Bf(x(t), u(t)), x(0) = x0, (1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T

∈ R
n is the state

of the system, u(t) ∈ R is the control, f(x(t), u(t)) is (in

general) a nonlinear function of the state and control, and A,

B have the form

A =











0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
0 0 . . . 0











, B =











0
...

0
1











. (2)

It is desired for x(t) to track the states of a stable n-th order

linear reference model described in the controllable canonical

form

ẋr(t) = Arxr(t) + Brr(t), xr(0) = xr0, (3)

where xr(t) = [xr1(t), xr2(t), . . . , xrn(t)]
T

∈ R
n is the

state of the reference model, r(t) ∈ R is the reference input,

and Ar, Br have the form

Ar =











0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
−ar1 −ar2 . . . −arn











, Br =











0
...

0
br











. (4)

Define the tracking error as

e(t) = x(t) − xr(t), (5)

where e(t) = [e1(t), e2(t), . . . , en(t)]
T

∈ R
n and ei(t) =

xi(t) − xri(t) for i ∈ {1, 2, . . . , n}. The ADI control law

in [2] is reproduced below

ǫu̇(t) = − sign

(

∂f

∂u

)(

f(e(t) + xr(t), u(t))

+

n
∑

i=1

ari

(

ei(t) + xri(t)
)

− brr(t)

)

, (6)
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with u(0) = u0. Here, ǫ is a design parameter, chosen

sufficiently small so that the controller dynamics are fast

enough to approximately achieve dynamic inversion. For

some insight into (6), observe that exact dynamic inver-

sion is achieved when the controls, u(t), satisfy f(e(t) +
xr(t), u(t)) +

∑n
i=1 ari

(

ei(t) + xri(t)
)

− brr(t) = 0. In

essence, (6) relaxes the requirement for strict dynamic inver-

sion while increasing the control in a direction that drives this

discrepancy to zero. In [2], it is assumed that some control

authority always exist, ie. |∂f
∂u

| ≥ b0 ≫ 0. This implies that

the sign of the control effectiveness, sign
(

∂f
∂u

)

∈ {−1, 1}, is

a constant. Let sign
(

∂f
∂u

)

= α for notational convenience.

III. PROPORTIONAL-INTEGRAL CONTROLLER

REALIZATIONS

Observe that using (5), the ADI control law (6) can be

rewritten as

ǫu̇(t) = −α

(

f(x(t), u(t)) +

n
∑

i=1

ariei(t)

−

(

−

n
∑

i=1

arixri(t) + brr(t)

)

)

.

Using the last row of (4) in the above yields

ǫu̇(t) = −α

(

f(x(t), u(t)) +

n
∑

i=1

ariei(t) − ẋrn(t)

)

,

and using (1) and (2) gives

ǫu̇(t) = −α

(

ẋn(t) − ẋrn(t) +
n
∑

i=1

ariei(t)

)

= −α

(

ėn(t) +

n
∑

i=1

ariei(t)

)

.

The states of the reference model xr(t) can be easily

obtained by simulation. If the system states x(t) are available

for feedback, the error e(t) is easily computed, and the

control law can be implemented as

u(t) = −
α

ǫ
(en(t) + g(t, e(t))) , (7a)

where

g(t, e(t)) =

∫ t

0

n
∑

i=1

ariei(τ) dτ, (7b)

g(0, e(0)) = −en(0) − ǫαu0. (7c)

Note that (7c) is to recover the initial control u(0) = u0.

It can be seen that the result is a PI controller acting on

the error between the system states and the states of the

reference model. Note that (7) is written in a way to highlight

the PI structure that acts on some error. In reality, it can be

implemented in an even simpler way without simulating the

reference model by

u(t) = −
α

ǫ
(xn(t) + h(t, x(t), r(t))) (8a)

where

h(t, x(t), r(t)) =

∫ t

0

(

n
∑

i=1

arixi(τ) − brr(τ)

)

dτ, (8b)

h(0, x(0), r(0)) = −xn(0) − ǫαu0.

Additionally, observe that from (1)–(5), the following

holds
∫ t

0

xi(τ) dτ = xi−1(t) − xi−1(0) (9)

∫ t

0

ei(τ) dτ = ei−1(t) − ei−1(0) (10)

for i ∈ {2, 3, . . . , n}. These relations used only information

from the structure of the system descriptions and no explicit

information about the system. Using (9), controller (8) can

be rewritten as

u(t) = −
α

ǫ

(

xn(t) +

n−1
∑

i=1

ar(i+1)xi(t) + p(t, x(t), r(t))

)

,

(11a)

where

p(t, x(t), r(t)) =

∫ t

0

(

ar1x1(τ) − brr(τ)
)

dτ (11b)

p(0, x(0), r(0)) = −xn(0) −

n−1
∑

i=1

ar(i+1)xi(0) − ǫαu0.

An analogous form of (11) in the error coordinates can be

similarly written by using (10). Observe that even with-

out explicit knowledge of the nonaffine-in-control function

f(x(t), u(t)), controllers (7), (8) and (11) can be imple-

mented exactly without any approximations if the sign of

the control effectiveness, sign
(

∂f
∂u

)

= α, is known.

The preceding establishes that every ADI control law

admits a PI controller realization. The significance lies in

enabling new interpretations and/or ways of analyzing the

ADI and PI control. In section VI, controller (11) will be

used to highlight some similarities with earlier work on high-

gain state feedback and variable structure control of affine-

in-control nonlinear systems [6].

IV. VARIANTS OF APPROXIMATE DYNAMIC INVERSION

CONTROL

In this section, we discuss three variants of the ADI

method, and point out that, as a consequence of the existence

of an exact PI controller realization, two of the variants

appear to be unnecessary.

A. Known Dynamics

A variant of the original ADI control law is presented

in [7] assuming full knowledge of the system. This control

law is

ǫu̇(t) = −

(

∂f

∂u
(x(t), u(t))

)(

f(x(t), u(t))

+

n
∑

i=1

ari

(

ei(t) + xri(t)
)

− brr(t)

)

.
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This variant uses significantly more information about the

system through ∂f
∂u

(x(t), u(t)) in contrast to sign
(

∂f
∂u

)

. In

this case, the PI realization does not apply. This method

has been applied to a nonaffine-in-control double inverted

pendulum in [8].

B. Indirect Adaptive Control

In [4], [5], the original ADI method in [2] is extended

for the case where the system dynamics are unknown. In

this scheme, a stable observer is used to train a Radial Basis

Function (RBF) Neural Network (NN), which in turn is used

to estimate the unknown nonlinear function f(x(t), u(t))
in (6). This estimate is then used to construct a control

law that is analogous to (6). As noted above, if all the

system states are available for feedback, and the sign of the

control effectiveness is known, the exact controller can be

implemented without any further knowledge of f(x(t), u(t))
or any approximations. These conditions are precisely sat-

isfied by the assumptions in [5]. Hence the RBF NN and

the observer used to train it do not appear to be essential.

Refs. [9]–[11] further apply this method to other problems

but without significant alterations to the formulation.

C. Direct Adaptive Control

Ref. [12] presents a direct adaptive control variant to [5] in

which no reference models are used, but requires a bounded

n times continuously differentiable reference signal and all

its ith, i ∈ {1, 2, . . . , n − 1} time derivatives to be available

for feedback. In this case, a PI realization for the adaptive

augmentation control law can be derived in an analogous

manner. Under the assumptions made, it also appears that

this adaptive scheme is not necessary. Numerical examples

in [13] shows that the PI realization achieves/exceeds the

tracking performance of this adaptive scheme.

V. SIMULATIONS

This section uses the Van der Pol oscillator example in [10]

to compare the RBF NN based design with the simplified

PI controller implementation (8), where only sign
(

∂f
∂u

)

is

assumed to be known, and all system states are available for

feedback. The model of the Van der Pol oscillator is

ẋ1 = x2,

ẋ2 = −x1 +
(

1 − x2
1

)

x2 + tanh(x1 + u + 3)

+ tanh (u − 3) + 0.01u,

and the reference model is specified with

Ar =

[

0 1
−2 −3

]

, Br =

[

0
2

]

.

It is clear that sign
(

∂f
∂u

)

= 1. The controller parameter ǫ is

chosen to be 0.02 as in [10], and the initial condition is set as

u0 = 0. This specifies the PI controller (8) completely. The

additional parameters related to the NN and state observer for

the RBF NN based design is identical to that stated in [10]

and will not be repeated here.
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Fig. 1. System States and Reference Model States for r(t) = ra(t)
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Fig. 2. State Errors for r(t) = ra(t)
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Fig. 3. Control Signal for r(t) = ra(t)

For a reference command r(t) = ra(t),

ra(t) = −
1

1 + et−8
+

1

1 + et−15
−

1

4 (1 + et−30)
+

3

4
,

the results are shown in Fig. 1, 2 and 3.

For a reference command r(t) = rb(t)

rb(t) = sin (2πt) ,

the results are shown in Fig. 4, 5 and 6. The system states,

state error, and control signal using the controller (8) are

labeled with subscript “PI”, and those generated with the

RBF NN implementation are labeled with subscript “RBF”.

Fig. 1 and 4 show the system states using both controllers,

together with the states of the reference model for r(t) =
ra(t) and r(t) = rb(t) respectively. Fig. 2 and 5 show
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Fig. 6. Control Signal for r(t) = rb(t)

the state errors as defined by (5). Fig. 3 and 6 show the

corresponding control signals.

It is clear that in both cases, the PI implementation has

better tracking performance. In Fig. 2, observe that using

the RBF NN implementation, e1RBF has a non-zero steady

state error, while e1PI and e2PI both converge to zero as

t → ∞. In Fig. 5, observe that the amplitude of e2RBF is

larger than that of e2PI . Furthermore, as seen in Fig. 6, the

amplitude of uRBF is larger than that of uPI . In summary,

the PI controller achieves/exceeds the tracking performance

of the RBF NN implementation.

Note that Theorem 2 in [1] states that for some T > 0,

the error vector satistfy e(t) = O(ǫ) for t ∈ [T,∞). In other

words, no asymptotic convergence of the error to zero is

guaranteed. Numerical results in Fig. 5, which shows that

eiPI(t) is oscillating and eiPI(t) = O(ǫ) = O(0.02) for

t > 0, i ∈ {1, 2}, is thus consistent with the theorem.

VI. SIMILARITIES WITH HIGH-GAIN STATE FEEDBACK

AND VARIABLE STRUCTURE CONTROL

Having established equivalence between the ADI method

and high-gain PI control, we highlight some similarities to

earlier work on high-gain state feedback and variable struc-

ture control for affine-in-control nonlinear systems. In [6],

the author used singular perturbation techniques to analyze

these two control strategies for affine-in-control single-input

nonlinear systems

ẋ(t) = f(x) + g(x)u(t), x(t) ∈ R
n, (12)

and in particular, addressed their use in feedback-linearizable

systems.

Here, the high-gain feedback strategy is outlined. The

system is first transformed by an appropriate change of

coordinates to x̃(t) = [x̃1(t), . . . , x̃n(t)]
T

such that the

control appears only in the nth state differential equation,

resulting in the transformed system

˙̃x1(t) = f̃1(x̃(t))

˙̃x2(t) = f̃2(x̃(t))

...

˙̃xn(t) = f̃n(x̃(t)) + g̃n(x̃(t))u(t).

(13)

The function g̃n(x̃(t)) and each of f̃i(x̃(t)), i ∈ {1, 2, . . . , n}
are obtained as the Lie derivative [3, pp. 509 – 510] of the

transformation functions x̃i(t) = φi(x(t)) with respect to

g(x) and f(x) in (12) respectively. The high-gain control

considered is

u(t) =
1

ǫ
sign

(

g̃n(x̃(t))
)(

us(x̃1(t), . . . , x̃n−1(t)) − x̃n(t)
)

,

(14)

where ǫ is a small parameter and us(x̃1(t), . . . , x̃n−1(t)) has

to be designed according to some desired “slow” reduced

dynamics. Tikhonov’s theorem [3, pp. 434] is then invoked

to show that the “fast” dynamics reaches the equilibrium

manifold

Ω = {x̃(t) ∈ R
n : x̃n(t) = us(x̃1(t), . . . , x̃n−1(t))}

for all initial conditions.

Next, it is shown in [6] that the “slow” or averaged

dynamics of the system using variable structure control (also

known as sliding mode control [3, Section 14.1]), where the

sliding manifold is defined by

w(x̃(t)) = x̃n(t) − us(x̃1(t), . . . , x̃n−1(t)) = 0,

coincides with that using the high-gain state feedback in (14).

This establishes the equivalence between high-gain state

feedback and variable structure control with regards to the

“slow” dynamics.

Ref. [6] then considered feedback linearizable systems

which can be transformed to the form of (13) with the
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property that f̃i(x̃(t)) = x̃i+1(t) for i ∈ {1, 2, . . . , n − 1}.

It was shown that, by using high-gain state feedback or

variable structure control, such systems can be approximately

transformed into linear systems of order n − 1. In other

words, one can approximately achieve dynamic inversion for

affine-in-control nonlinear systems while losing one degree

of freedom. The disadvantage of such approaches, as pointed

out in [6], is that x̃n(t) cannot be controlled arbitrarily, but

regulated to the value us(x̃1(t), . . . , x̃n−1(t)).

Observe the many similarities between the high-gain state

feedback strategy and the PI control of section III. By starting

off in normal form as in (1), (2), the system was implicitly

assumed to be feedback linearizable and the coordinate

transformation was applied apriori. It is easily seen that

the transformed system of (13) with f̃i(x̃(t)) = x̃i+1(t)
for i ∈ {1, . . . , n − 1} is a specialization of (1) and (2)

for affine-in-control systems. The similarities between (11)

and (14) are also striking. In (14), sign
(

g̃n(x̃(t))
)

is the sign

of the control effectiveness, and ǫ has the same meaning

as a control parameter, chosen sufficiently small to achieve

sufficiently fast controls. Comparing (11) and (14), a function

analogous to us(x̃1(t), . . . , x̃n−1(t)) in (14) can be defined

for the high-gain PI controller, but in this case, it is fully

specified by the linear reference model (3) and (4).

While no explicit relation is shown in this paper, the

similarities highlighted suggests a possible link between

high-gain PI control, and high-gain state feedback for non-

linear systems. The equivalence between ADI control and PI

control established in this paper, and the equivalence between

high-gain state feedback and variable structure control of

affine-in-control systems established in [6], then suggest a

possible link between the ADI method and variable structure

control for nonaffine-in-control systems.

VII. CONCLUSION

If full state feedback is available, the Approximate Dy-

namic Inversion control law in [2] can be integrated to yield

a linear PI controller. This controller can be implemented

exactly without knowledge of the nonlinear function beyond

the sign of the control effectiveness.

The main objective of this paper is to show that every

ADI control law admits a PI controller realization. This

links a fairly general control design method to a very simple

implementation, and would have great appeal to practitioners

seeking a method to control minimum phase, nonaffine-in-

control systems.

Similarities to early work on high-gain state feedback and

variable structure control of affine-in-control systems were

also highlighted. These suggests a possible link between Ap-

proximate Dynamic Inversion and variable structure control

of nonaffine-in-control systems.
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