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Abstract— In target-tracking applications, there may be sit-
uations where measurements from a given target arrive out of
sequence at the processing center. This problem is commonly
referred to as Out-of-Sequence Measurements (OOSMs). So
far, most of the existing solutions to this problem are based on
retrodiction, where backward prediction of the current state is
used to incorporate the OOSMs at the appropriate time. This
paper suggests a new method for tackling the OOSMs problem
without backward prediction. Based on a forward prediction
and de-correlation approach, the method has proved to be
as performing as the best retrodiction-based methods, while
requiring less data storage in most cases.

I. INTRODUCTION

The target-tracking involves a continuous monitoring of
the environment in order to collect and process data from the
available sources. This tracking process aims at producing a
model for the behavior history of the targets of interest [20].
It uses the past measurements of some features of the
target to estimate its behavior and predict it in the future.
Because of the temporal aspect of the tracking operation, the
chronological appearance of the measurements is of prime
importance to the estimation process. The measurements are
usually tagged with a stamp that indicates the instant at
which they were collected.

In many target-tracking applications there is a delay be-
tween the moment the measurement is collected from the
environment and the moment it is received and processed
by the tracking system. Such a delay may vary from one
measurement to another, and may arise from many factors,
such as sensor diversity, communication delays and unsteady
pre-processing times of the observed data. The delay may be
long enough so that a measurement taken at a time tτ reaches
the tracking system at a time td after the target track has
been updated with more recently collected measurements.
Such a delayed measurement is referred to as an Out-Of-
Sequence Measurement (OOSM) [1]. This problem is also
referred to as the problem of tracking with random sampling
and delays [14] or negative-time measurement update [1].

A straightforward solution to the OOSM problem is to
ignore and discard the OOSM in the tracking process. With
such a solution, the information contained in the discarded
OOSM is lost. To avoid this, a simple alternative consists
of reprocessing, in a chronological order, all measurements
collected from the OOSM time tτ to the last track update
time tk [6]. This solution yields optimal track quality, but
remains inefficient because of its high computation and

storage requirements. In most cases, it is even unfeasible
since most tracking systems keep only the current state
estimate and the corresponding error covariance matrix.

Several methods have been proposed to deal with the
OOSM problem. Most of these are based on backward
prediction of the current state to incorporate the OOSMs,
also referred to as the retrodiction approach [1, 2, 5, 6, 8, 10,
14–19, 21]. These methods have to deal with the problem of
taking into account the process noise during the retrodiction.
The suggested methods in [6, 14, 19] compensate partially
for the process noise, or simply ignore it. The major diffi-
culty with retrodiction is that there is a strong dependency
between the retrodicted process noise and the current state
in backward prediction.

In this paper, a new method is proposed that does not
rely on retrodiction, but rather on the forward prediction of
the OOSM. A pseudo-track (or tracklet) is created using the
OOSM and the track value at a time prior to the OOSM date.
Before being fused with the actual track, the created tracklet
is predicted forward and de-correlated from the actual track
using a track de-correlation method similar to the information
filter approach [11]. This method will be referred to as
Forward-Prediction Fusion and De-correlation (FPFD). The
proposed method has proved to compare favorably to the
best retrodiction-based algorithms, while requiring, in most
cases, less data storage.

This paper is organized as follows. The problem of
OOSMs is stated in Section II. In Section III are discussed
the retrodiction-based methods. The proposed FPFD ap-
proach is described in Section IV. In Section V, comparison
results and performance discussion of the FPFD method are
provided.

II. PROBLEM STATEMENT

The dynamical model of the target of interest is assumed
to be described by

x(k) = F (k, k − 1)x(k − 1) + υ(k, k − 1) (1)

with F (k, k− 1) being the state transition matrix from time
tk−1 to time tk and υ(k, k − 1) the effect of the process
noise from time tk−1 to time tk. The measurement model is

z(k) = H(k)x(k) + ω(k) (2)

where H(k) is the measurement matrix and ω(k) the
measurement noise. The process noise υ(k, k − 1) and the
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measurement noise ω(k) are assumed to be white with
zero mean and covariance matrices Q(k, k − 1) and R(k),
respectively. It is also assumed that there is no statistical
dependency between υ(k) and ω(k).

The role of the tracking system is to maintain tracks of the
targets within the area of interest. A track is composed of a
state estimate x̂ and the related estimation error covariance
matrix P . It is assumed that a measurement z is collected and
used to update the track after each time interval of length h.
At time tk, the tracking system computes x̂(k|k) and P (k|k)

x̂(k|k) = E

[
x(k)

∣∣∣∣Zk] &P (k|k) = cov
[
x(k)

∣∣∣∣Zk] (3)

where Zk corresponds to the measurement sequence up to
time instant tk, excluding a measurement z(τ) with a time
stamp tτ < tk, as shown on Figure 1.

delay

: OOSM

time -
discrete

time -
continuous

z(τ)

τ k d

h

tτ tk td

: Prediction : Update

Fig. 1. Out-of-sequence measurement

Once z(τ) arrives at the processing center, with a certain
delay, the problem is to calculate x̂(k|k, τ) and P (k|k, τ)
that take into consideration the OOSM z(τ), as follows

x̂(k|k, τ) = E

[
x(k)

∣∣∣∣Zk, z(τ)] (4)

P (k|k, τ) = cov
[
x(k)

∣∣∣∣Zk, z(τ)] (5)

III. BACKWARD PREDICTION METHODS

A widely used approach to tackle the problem of OOSMs
in tracking is based on the “prediction” of the state estimate
back to the time of the delayed measurement. Depending on
the authors, this approach may be referred to as retrodiction,
backward prediction or reverse-time prediction. It sums up
to predict the track from the last update time k backward to
the time τ of the OOSM, and then update the track using
the OOSM and then predict back forward from time instant
τ to time instant k.

Various retrodiction methods have been presented in the
literature recently. In [1], a retrodiction method is suggested,
which is presented as an exact solution compared to the
solutions in [6, 14, 19], insofar as the process noise is ac-
counted for entirely during the retrodiction. This solution
has proved to be optimal for the case where the OOSM lies
between the last two measurements, which is also called the
1-step lag case. The problem with this algorithm, compared
to those presented in [14, 19], where the process noise in
the retrodiction process is only partially compensated for,

is that it requires storage of the innovation. The optimal
approach described in [1] and the suboptimal approaches
in [14, 19] were extended in [2] to the case of an OOSM with
an arbitrary lag, that is an OOSM whose time stamp can be
earlier than the last sampling interval. The approach in [2]
for an arbitrary lag, which was originally presented in [5],
uses an equivalent measurement concept. This concept was
first presented in [12, 13] and was shown to provide some
advantage over the solutions presented previously in [15, 18,
21]. The equivalent measurement combines together all the
measurements that are more recent than the OOSM. This
concept was used to extend the algorithms in [1] to the case
of an n-step lag OOSM. The authors concluded in [2] that the
suboptimal algorithm, which ignores the retrodicted noise, is
a good compromise between accuracy and cost.

Still, all of the retrodiction-based methods have some
drawbacks. The optimal solutions presented in [18, 21]
require a large storage capacity compared to suboptimal
OOSM methods. The equivalent measurement concept with
backward prediction presented in [2] also necessitates a
considerable amount of data storage. Even in the case where
the retrodicted noise is ignored, covariance of the equivalent
innovation needs to be computed. This requires storage of the
error covariance matrices corresponding to the state estimates
based on all measurement time stamps that are subsequent
to the OOSM. The same applies to the Augmented State
Kalman Filter method presented in [8], which also uses
equivalent measurements.

IV. FPFD APPROACH

The proposed Forward-Prediction Fusion and De-
correlation (FPFD) method uses a de-correlation technique
originally presented in [11]. A forward predicted version of
a tracklet that uses the OOSM is fused with the current
track using the information form of the Kalman Filter. A
tracklet is used, instead of a complete track, to remove the
correlation created between the two pieces of information by
their common history. Such a de-correlation aims to render
the OOSM-based tracklet independent of the process noise
for the whole prediction interval.

A. Correlation between the process noise and the state

It is first assumed that there is no update between the
time tτ of the OOSM and the time of the current state tk,
which corresponds to the case of a 1-step lag OOSM. As
a consequence, the track from tτ to tk is estimated only
according to the state prediction model. The corresponding
target state can be written as

x(k) = F (k, τ)x(τ) + υ(k, τ) (6)

where x(τ) and υ(k, τ) are not correlated

E

[
x(τ)υ(k, τ)T

]
= 0 (7)

In the case where there is an update at time tτ < tk−1 < tk,
the state transition from tτ to tk is estimated according to the
measurement z(k − 1) and according to the state prediction
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model. The corresponding target motion model used by the
filter is such that the process noise is cumulated up to the
time tk−1 of the update, and then cumulated from time tk−1

to time tk. The corresponding target state can be written as

x(k) = F (k, k − 1)x(k − 1) + υ(k, k − 1) (8)
x(k − 1) = F (k − 1, τ)x(τ) + υ(k − 1, τ) (9)

where x(k − 1) and υ(k − 1, τ) are now correlated:

E

[
x(k − 1)υ(k − 1, τ)T

]
6= 0 (10)

and thus x(k) and υ(k − 1, τ) are also correlated:

E

[
x(k)υ(k − 1, τ)T

]
6= 0 (11)

This corresponds to the case of a 2-step lag OOSM. For the
n-step lag case and with n > 1, we have

E

[
x(k)υ(k−i, k−i−1)T

]
6= 0, i ∈ {1, . . . , n−1} (12)

Let x̂(τ) be the state estimate at time tτ . The forward
prediction of x̂(τ) up to time tk is

x̂(k|τ) = F (k, τ)x̂(τ) (13)

When there is no update between [tτ , tk[, the forward pre-
diction in (13) is optimal since the process noise υ(k, τ) for
the interval [tτ , tk[ is independent of the current state x(k).
When there are one or more updates between [tτ , tk[, the
forward prediction in (13) is not optimal because the current
state x(k) is dependent of the process noise υ(k − 1, τ) for
the interval [tτ , tk[.

Fusion

: Updates

: OOSM

: Prediction

Decorrelation

x̂(k|k, τ), P(k|k, τ)

x̂(k|k), P(k|k)
x̂(b), P (b)

z(τ), R(τ)

h

tb tτ tk td

x̂(k|τ)Ψ, P(k|τ)Ψ

x̂(k|τ)∗, P(k|τ)∗

x̂(k|b),P(k|b)

Fig. 2. FPFD method for track update with an OOSM

B. Algorithm

At time k, before the OOSM has been processed, the state
estimate and its error covariance matrix are represented by
x̂(k|k) and P (k|k) respectively. As shown in Figure 2, in
order to incorporate the OOSM z(τ) into the current state
estimate, the OOSM is predicted forwards up to time k. This
requires knowledge of the state estimate at a time tb < tτ .

The forward predicted OOSM x(k)∗ and the correspond-
ing covariance matrix P (k)∗ are used to update the track
x̂(k|k),P (k|k) at time k. The goal is to have a forward
predicted OOSM x(k)∗ and its covariance matrix P (k)∗

such that the state estimate obtained by using the forward
predicted OOSM will be the same as when all the measure-
ments (including the OOSM) are processed sequentially. This
requires independence of x(k)∗ and x̂(k|k). Consequently,
the covariance update for the forward predicted OOSM is
given by

P−1(k|k)∗ = P−1(k|k) + P−1(k)∗ = P−1(k|k, τ) (14)

where P−1(k|k, τ) represents the covariance matrix after the
OOSM has been included.

Equation (14) represents the optimal solution, where
x(k)∗ and x̂(k|k) are independent. In order to have inde-
pendence, x(k)∗ and P (k)∗ must be determined such as
the dependence between the process noise and the state is
totally taken into account in the interval [tb, tk]. As shown
in the previous section, the proposed forward prediction
approach is optimal for the 1-step lag case since there is
no dependence between the process noise and the state
when the OOSM has a 1-step lag. The independence is no
longer true for the multiple-step lag cases. In those cases, the
proposed algorithm compensates partially for the dependence
between the process noise and the current state. The partial
independence problem is similar to that of the retrodiction
algorithm presented in [2].

Let us consider a forward predicted OOSM x(k)Ψ and its
covariance matrix P (k)Ψ that depend on the current state
x̂(k|k). These are given based on the state estimate x̂(b),
with tb < tτ , and the corresponding error covariance matrix
P (b)

P (τ |b)Ψ = F (τ, b)P (b)F (τ, b)T +Q(τ, b) (15)

P−1(τ |τ)Ψ = P−1(τ |b)Ψ +H(τ)TR−1(τ)H(τ) (16)

P (k)Ψ = F (k, τ)P (τ |τ)ΨF (k, τ)T +Q(k, τ) (17)

and

x(τ |b)Ψ = F (τ, b)x̂(b) (18)

P−1(τ |τ)Ψx(τ |τ)Ψ = P−1(τ |b)Ψx(τ |b)Ψ+

H(τ)TR−1(τ)z(τ) (19)

x(k)Ψ = F (k, τ)x(τ |τ)Ψ (20)

where F (j, i) represents the state transition matrix from time
ti to time tj and Q(j, i) is the process noise error covariance
matrix for the time interval [ti, tj ].
x(k)Ψ and x̂(k|k) are correlated since they share the same

history (i.e., x̂(b)) and both rely on the same prediction
model between tb to tk.

The prediction process associates some process noise with
both x(k)Ψ and x̂(k|k) during the interval [tb, tk]. Such a
dependence can be compensated by the de-correlation of
x(k)Ψ from the prediction of the state estimate for the
interval [tb, tk].
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The prediction of the state estimate from time tb to tk and
the corresponding error covariance matrix are given by

x̂p(k) = F (k, b)x̂(b) (21)

Pp(k) = F (k, b)P (b)F (k, b)T +Q(k, b) (22)

The de-correlation of the forward predicted OOSM from the
current state x̂(k|k) is given by

P−1(k)∗ = P−1(k)Ψ − P−1
p (k) (23)

P−1(k)∗x(k)∗ = P−1(k)Ψx(k)Ψ − P−1
p (k)x̂p(k) (24)

where x(k)∗ is the resulting de-correlated measurement and
P−1(k)∗ is its corresponding covariance matrix. Again, the
de-correlation of (x̂(k|k),P (k|k)) and (x(k)Ψ, P (k)Ψ) is
only partial for the multi-step lag case.

Finally, the current state estimate x̂(k|k) is updated with
the forward predicted OOSM x(k)∗. Using the information
fusion form as in (14), the covariance update for the trans-
lated OOSM is

P−1(k|k, τ) = P−1(k|k) + P−1(k)∗ (25)

and the state update is

P−1(k|k, τ)x̂(k|k, τ) = P−1(k|k)x̂(k|k) + P−1(k)∗x(k)∗

(26)

C. Data storage

Data storage may be of a major importance based on the
storage capacity available in a tracking system. Algorithm
FPFD is compared to the Al1 and to the Bl1 retrodiction-
based algorithms from [2], as well as to the optimal algorithm
presented in [21], in terms of storage requirements.

As mentioned in [2], all OOSM algorithms necessitate, at
least, the storage of the following data: i) a scalar for the time
stamp of the next update; ii) n scalars for the state estimate;
and iii) n(n + 1)/2 scalars for the covariance of the state
estimate. Furthermore, algorithm FPFD requires; i) a scalar
for the time stamp tb associated with track x̂(b),P (b); ii) n
scalars for the state estimate x̂(b) held in memory at time
instant tb; iii) n(n+1)/2 scalars for the covariance P (b) of
the state estimate.

Based on the numbers given above, algorithm FPFD
requires a storage of n2 + 3n+ 2 scalars. Because the delay
of an OOSM cannot be predicted in advance, a maximum
number of lags lmax needs to be determined. This maximum
number of lags lmax has a direct impact on the storage
requirements of the retrodiction-based algorithms. As shown
below, the storage requirements for the FPFD approach do
not depend on lmax1. Details about the storage requirements
for algorithms Al1 and Bl1 are provided in [2]. The total
number of scalars stored for each OOSM algorithm is given

1Although the storage requirements of algorithm FPFD do not depend on
a predetermined maximum number of lags lmax, its performance in terms
of track accuracy does depend on lmax. This is discussed in Section IV-D

below

FPFD : CF = n2 + 3n+ 2 (27)

Al1 : CA =
[
lmax + 1

2

]
(n2 + 3n+ 2) (28)

Bl1 : CB =
[
lmax + 1

2

]
(n2 + 3n+ 2)− nlmax (29)

The data storage requirements of the FPFD, Al1 and Bl1
algorithms are less than those of the optimal algorithm
presented in [21], which requires at least2[

4lmax − 1
2

]
n2 +

[
8lmax − 1

2

]
n+ lmax (30)

scalars.
Table I shows the data storage requirements in terms of

lmax for a state vector of 4 dimensions.

lmax 1 2 3 4
FPFD 30 30 30 30
Al1 30 45 60 75
Bl1 26 37 48 59
Algorithm I in [21] 39 88 137 186

TABLE I
NUMBER OF SCALARS TO BE STORED

D. Determination of the storage time of the state estimate

Algorithm FPFD requires the storage of the state estimate
and its covariance matrix at a time tb < tτ . Depending on the
context of the tracking application, different approaches can
be used to determine the storage time tb of the state estimate.
For example, in the case where the observations’ sampling
rate is fixed, the estimate can be stored and the memory
refreshed at each measurement update until an anticipated
measurement update is missed due to a delay (of the OOSM).
This would ensure that the estimate is always stored at a time
tb < tτ and with tb = tτ − h.

Last track storage Next track storage

tb tτ tk

h

B

Fig. 3. Case where time tb is determined according to B. The state estimate
and its covariance matrix are held in memory after each time interval B,
where B > h.

In a more general case, the state estimate could be held in
memory after each time interval of length B, where B > h.
In that case the storage time tb of the state estimate changes
after each time interval of length B, as illustrated in Figure 3.
B corresponds to the maximum number of lags lmax that are
taken into consideration. Note that the state estimate is not
stored at the time of the OOSM tτ .

2Data storage requirements for Case I : Perfect knowledge about τ at
time j + 1 in [21]
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The value of B has some influence on the performance
of algorithm FPFD. On average, the performance will de-
teriorate as B increases. More exactly, the performance
deteriorates as the difference tτ−tb increases, where we have
max(tτ − tb) = B. The deterioration of the performance
for increasing tτ − tb differences is due to the correlation
between the process noise and the current state, as discussed
in Section IV-A.

V. RESULTS AND DISCUSSION

To demonstrate the performance of the FPFD method,
the latter is compared with the retrodiction-based algorithms
presented in [1, 2]. The results reported therein are compared
to those yielded by the FPFD method, using the same test
scenarios. First, a scenario with a delayed measurement
whose time stamp is within the last sampling interval (Exam-
ple 2 of [1]) is presented. It will be referred to as the 1-step
lag scenario. Afterward, we present a n-step lag scenario that
is identical to the one used in [2]. This scenario considers the
case of delayed measurements whose time stamps are within
one or more sampling intervals. Finally, we simulate three
OOSM scenarios with 2D nonlinear measurement model and
sensor communication delays. The three scenarios are similar
to some of the real-world examples presented in [2]. In order
to preserve symmetry of the covariance matrices, the Joseph
form is used for the covariance update [7]. Also, in every test
the storage of the state estimate related to algorithm FPFD
is made such that tb = tτ − h, except for the results shown
in Tables XII and XIII, where different values of the storage
interval B are tested.

A. 1-step lag scenario

The considered scenario (from [1]) uses a discrete-time
dynamical system with three different values for the contin-
uous time process noise variance (q = 0.5, 1, 4). The state
equation is given by

x(k) =
[
1 h
0 1

]
x(k − 1) + υ(k, k − 1) (31)

where h is the sampling interval, and where the process
noise υ(k, k − 1) is assumed white with a zero mean and a
covariance matrix

E

[
υ(k, k − 1)υ(k, k − 1)′

]
= q

[
h3/3 h2/2
h2/2 h

]
= Q (32)

The measurement z(k) of the state x(k) is given by

z(k) =
[
1 0

]
x(k) +w(k) (33)

where w(k) is white measurement noise, with a zero mean
and a covariance matrix

E

[
w(k)2

]
= R = 1 (34)

The estimation starts at time k = 1, with initial covariance
matrix

P (1|1) =
[
R R/h
R/h 2R/h2

]
(35)

An OOSM with time stamp τ = 1.5 has to be processed at
time k = 2.

Based on the above-described scenario, the FPFD method
is compared with the in-sequence measurements reprocessing
method (In-seq), OOSM discarding, and with the algorithms3

A, B, and C from [1]. Algorithm A is referred to as the
optimal retrodiction algorithm in that it accounts entirely for
the process noise. Algorithms B and C are called subop-
timal retrodiction algorithms since they ignore the retrod-
icted noise. Algorithm C is a simpler version of algorithm
B. Furthermore, the in-sequence measurement reprocessing
method is the simple approach that reprocesses all the past
measurements chronologically starting from the OOSM time.
It provides the optimal solution4). The discard approach
comes down to simply ignoring the OOSM.

Performance — As shown in Table II, algorithm A and
FPFD are both optimal since they yield the same P̂ (k|k, τ)
as the in-sequence measurements reprocessing method, and
this for the different values of the process noise. Table III
shows that discarding the OOSM has a significant impact
on the track quality, since the trace of P̂ (k|k, τ) is 6.1% to
18.4% higher than in the case of the optimal methods.

q 4 1 0.5

In-Seq
[
.6825 .7396
.7396 2.5725

] [
.6248 .5018
.5018 1.0539

] [
.6129 .4526
.4526 .7626

]

Discard
[
.8636 .6818
.6818 2.5909

] [
.8421 .5526
.5526 1.0658

] [
.8378 .5270
.5270 .7872

]

FPFD
[
.6825 .7396
.7396 2.5725

] [
.6248 .5018
.5018 1.0539

] [
.6129 .4526
.4526 .7626

]

A
[
.6825 .7396
.7396 2.5725

] [
.6248 .5018
.5018 1.0539

] [
.6129 .4526
.4526 .7626

]

B
[
.6826 .7396
.7396 2.5725

] [
.6249 .5018
.5018 1.0539

] [
.6129 .4526
.4526 .7626

]

C
[
.7143 .8571
.8571 2.3851

] [
.6364 .5455
.5455 1.0655

] [
.6190 .4762
.4762 .7754

]
TABLE II

COVARIANCE MATRICES FOR DIFFERENT PROCESS NOISE VALUES

(1-STEP LAG SCENARIO)

For further comparison, the actual Mean Square Error
(MSE) was also computed through 10000 Monte Carlo runs.
The results are summarized in Table IV, where, as a further
demonstration of their optimality, the MSE of algorithm
FPFD and that of algorithm A are equal to the MSE yielded
by in-sequence measurements reprocessing.

Cost — In terms of track quality, the FPFD method
was proved, based on the above results, to be as optimal
as method A. Algorithms FPFD and A provided a similar
performance, both in terms of MSE and estimation error

3Algorithm A is also referred to as the “Y-algorithm” in [9].
4Note that algorithm Zl presented in [16, 21] also provides an optimal

solution for the general n-step lag case. However, its storage requirements
is high compared to the other sub-optimal OOSM algorithm (see Table I)
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q 4 1 0.5
In-Seq 3.2550 1.6787 1.3754
Discard 3.4545 (6.1%) 1.9079 (13.7%) 1.6250 (18.4%)
FPFD 3.2550 (0%) 1.6787 (0%) 1.3754 (0%)
A 3.2550 (0%) 1.6787 (0%) 1.3754 (0%)
B 3.2551 (.003%) 1.6787 (0%) 1.3754 (0%)
C 3.0994 (-4.8%) 1.7019 (1.4%) 1.3944 (1.4%)

TABLE III
TRACE OF COVARIANCE MATRICES AND RELATIVE DEVIATION WITH

RESPECT TO THE OPTIMAL (1-STEP LAG SCENARIO)

q 4 1 0.5

In-Seq
[
.6895 .7684
.7684 2.5937

] [
.6274 .5327
.5327 1.1257

] [
.6192 .4704
.4704 .8063

]

Discard
[
.8571 .6988
.6988 2.6211

] [
.8494 .5868
.5868 1.1389

] [
.8565 .5416
.5416 .8273

]

FPFD
[
.6895 .7684
.7684 2.5937

] [
.6274 .5327
.5327 1.1257

] [
.6192 .4704
.4704 .8063

]

A
[
.6895 .7684
.7684 2.5937

] [
.6274 .5327
.5327 1.1257

] [
.6192 .4704
.4704 .8063

]
TABLE IV

MSE FOR 10000 MONTE CARLO RUNS (1-STEP LAG SCENARIO)

covariance estimation. For the cost associated with data
storage, and for lmax = 1, equations (27) to (29) lead
to identical requirements for algorithms FPFD and A (i.e.,
n2 + 3n + 2) and less storage requirement for algorithm B
(i.e., n2 + 2n + 2). The counterpart of this lower cost for
algorithm B is its lower performance in terms of tracking
quality, as shown in Tables II to IV.

B. n-step lag scenario

A dynamic system, identical to the one used in [2], is
considered with three different OOSM lags l = 1, 2, 3. The
system behavior is similar to the 1-step lag case, where
the dynamics are given by (31) and (32), except that here
both position and velocity are measured. The measurement
equation is then

z(k) =
[
1 0
0 1

]
x(k) +w(k) (36)

where w(k) has an error covariance matrix

R =
[
1 0
0 0.1

]
(37)

The filter is initiated at t0 = 0, with

x̂(0|0) = z(0), P (0|0) = R (38)

and ends up at t4 = 4s. The three OOSM lags l = 1, 2, 3
correspond to times τ = 1.5s, 2.5s, and 3.5s, as illustrated
in Figure 4.

The in-sequence measurements reprocessing method, al-
gorithm Al1, algorithm5 Bl1, the OOSM discard solution,

5Bl1 is the one-step equivalent measurement version of the “M-algorithm”
defined in [15].

1
3.5

2
2.5

3
1.5

l:
τ:

t0=0

Fig. 4. OOSM with three different lags l = 1, 2, 3

and algorithm FPFD are all compared. Algorithms Al1 and
Bl1 are the n-step lag extensions to the 1-step lag algorithms
A and B presented in [1], respectively. They both use an
equivalent measurement concept originally presented in [5].

Lag 1 2 3

In-Seq
[
.2287 .0225
.0225 .0759

] [
.2597 .0381
.0381 .0832

] [
.2854 .0387
.0387 .0833

]

FPFD
[
.2287 .0225
.0225 .0759

] [
.2563 .0372
.0372 .0827

] [
.2906 .0403
.0403 .0827

]

Al1
[
.2287 .0225
.0225 .0759

] [
.2563 .0372
.0372 .0827

] [
.2906 .0403
.0403 .0827

]

Bl1
[
.2330 .0254
.0254 .0779

] [
.2667 .0389
.0389 .0830

] [
.2955 .0403
.0403 .0828

]

Discard
[
.3142 .0370
.0370 .0834

]
TABLE V

COVARIANCE MATRICES FOR DIFFERENT LAG VALUES, q = 0.5

Performance — As shown in Tables V and VI, for the
n-step lag case (l > 1), algorithm FPFD has a performance
equal to algorithm Al1. According to the estimated covari-
ance matrix P̂ (k|k, τ), the performance of algorithm FPFD
does degrade as the number of step-lag increases, compared
to the in-sequence reprocessing of the measurements. The
difference is represented in Table VI, where the trace of
P̂ (k|k, τ) is presented for the different algorithms, along
with the trace´s relative deviation compared to the optimal
in-sequence measurements reprocessing. This degradation is
due to the dependence issue between the process noise and
the state (discussed in Section IV).

Lag 1 2 3
In-Seq .3046 .3429 .3687
Discard .3976 (30.5%) .3976 (16.0%) .3976 (7.8%)
FPFD .3046 (0%) .3390 (-1.1%) .3733 (1.2%)
Al1 .3046 (0%) .3390 (-1.1%) .3733 (1.2%)
Bl1 .3109 (2%) .3497 (2%) .3783 (2.6%)

TABLE VI
TRACE OF COVARIANCE MATRICES AND RELATIVE DEVIATION WITH

RESPECT TO THE OPTIMALITY (n-STEP LAG SCENARIO), q = 0.5

Table VII presents the MSE of each algorithm for the n-
step lag cases. MSE for algorithms FPFD and Al1 are close
to the MSE provided by the in-sequence measurement re-
processing method. Algorithm Bl1 is also relatively close to
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the optimal method. Note that the performance of algorithms
Al1 and Bl1 was discussed thoroughly in [2].

Lag 2 3

In-Seq
[
.2564 .0371
.0371 .0813

] [
.2835 .0404
.0404 .0845

]

Discard
[
.3110 .0356
.0356 .0814

] [
.3120 .0382
.0382 .0847

]

FPFD
[
.2592 .0380
.0380 .0817

] [
.2887 .0408
.0408 .0848

]

Al1
[
.2592 .0380
.0380 .0817

] [
.2887 .0408
.0408 .0848

]

Bl1
[
.2613 .0375
.0375 .0815

] [
.2894 .0403
.0403 .0847

]
TABLE VII

MSE FOR DIFFERENT LAG VALUES, q = 0.5

Cost — According to equations (27) to (29), the FPFD
method has a storage requirement that is equal to the one
of algorithm Al1 only for lmax = 1 (1-step lag situation).
For n-step lag scenarios, where lmax > 1, algorithm FPFD
requires less storage space than algorithm Al1. This is also
the case with algorithm Bl1. As shown previously, algorithm
Bl1 requires less storage for the 1-step lag case (lmax = 1).
However, its storage requirements are larger with the n-step
lag scenarios (lmax > 1).

C. 2D nonlinear measurement model and sensor communi-
cation delays

The following example is drawn from the practical exam-
ples in [2, 16]. It aims at comparing the FPFD method against
other OOSM algorithms when nonlinear measurements con-
version are considered. As in [2, 16], a target is tracked using
two GMTI sensors. The target motion follows the constant
velocity model in two dimensions with process noise spectral
density q = 1m2/s3. The two GMTI sensors have nearly
orthogonal lines-of-sight and both have a slant range of about
100km from the target. Each sensor observation is in polar
coordinates and includes range (r), azimuth (θ) and range
rate (ṙ). The related standard deviations are 10m, 1mrad
and 1m/s respectively. Since the bias significance factor
is below 0.4 (rσ2

θ/σr ≈ 0.001), the measurements are
converted to Cartesian coordinates using the conventional
coordinate transformation [3, 6]. Three scenarios are simu-
lated. Scenario 1-SL, 3-SL and 5-SL see sensor 1 have its
last measurement delayed with one lag, three lags and five
lags respectively. The lists of the measurements sent to the
central tracker by the two GMTI sensors are presented in
Table VIII for the three scenarios. The initial target state
is [70000m 70000m 60m/s 20m/s]. Track initialization is
made according to the two-point initialization technique [4].

Table IX shows the trace of the average filter covariance
matrix and the trace of the actual MSE matrix for the OOSM
algorithms Al1 and FPFD. Clearly, for the three scenarios,
the results are the same whether algorithm Al1 or algorithm

Trace(P) Trace(MSE)
Scenario 1l 3l 5l 1l 3l 5l
FPFD 252.39 249.24 253.62 251.63 259.68 260.03

Al1 252.39 249.24 253.62 251.63 259.68 260.03

TABLE IX
TRACES OF COVARIANCE AND MSE MATRICES FOR Al1 AND FPFD

Scenario 1l 3l 5l
In-Seq 3.87 3.97 4.01
FPFD 3.87 4.00 4.14

Al1 3.87 4.00 4.14
Bl1 3.87 4.01 4.08

TABLE X
NORMALIZED ESTIMATION ERROR SQUARED (NEES) AT LAST UPDATE

TIME

FPFD is used. Table X shows the normalized estimation error
squared (NEES) [4] for the 4-dimensional state based on
1000 runs. Both algorithms Al1 and FPFD result in a NEES
of 3.87 in scenario 1l, 4.00 in scenario 3l and 4.14 in scenario
5l. The NEES for algorithms Al1, Bl1 and FPFD all lie
within the two-sided 95% confidence bounds based on the
χ2

4000 distribution (3.8261, 4.1767) [4]. Therefore, algorithms
Al1, Bl1 and FPFD are statistically consistent for the three
scenarios.

The aim of this practical example is to show that algorithm
FPFD has the same performance as algorithm Al1 in a prac-
tical OOSM example that involves nonlinear measurement
conversions. The results presented in Tables IX and X are
conclusive, since the measured performance of algorithm
FPFD is identical to the measured performance of algorithm
Al1.

Moreover, Table XI shows the CPU times of algorithms
Al1, Bl1 and FPFD for 1000 Monte Carlo runs. Although
the measured CPU times represent only imprecise approxi-
mations of the computational complexity of the algorithms,
they are used here for comparison purpose. The measured
CPU times of algorithm FPFD are comparable to those of
algorithm Bl1, which are lower than those of algorithm Al1
in all of the three lag cases shown in Table XI.

Lag 1 3 5
FPFD 0.71 0.67 0.73

Al1 0.82 0.84 0.82
Bl1 0.75 0.68 0.69

TABLE XI
CPU TIMES (s) FOR 1000 MONTE CARLO RUNS.

B 1 4 6
FPFD 3.99 4.01 4.02
In-Seq 3.99

TABLE XII
NEES FOR FPFD AT LAST UPDATE TIME, FOR THE 1-STEP LAG OOSM
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Scenario 1-SL Sensor ID 1 2 1 2 1 2 1 2 1 2 2 1
Time Stamp (s) 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 27.5 25

Scenario 3-SL Sensor ID 1 2 1 2 1 2 1 2 2 1 2 1
Time Stamp (s) 0 2.5 5 7.5 10 12.5 15 17.5 22.5 25 27.5 20

Scenario 5-SL Sensor ID 1 2 1 2 1 2 2 1 2 1 2 1
Time Stamp (s) 0 2.5 5 7.5 10 12.5 17.5 20 22.5 25 27.5 15

TABLE VIII
COMMUNICATION DELAYS IN A 2 GMTI RADAR NETWORK, FOR 1, 3, 5-STEP LAG OOSM SCENARIOS

Trace(P) Trace(MSE)
B 1 4 6 1 4 6

FPFD 252.3 250.8 250.4 247.1 247.4 247.9
In-Seq 252.3 247.1

TABLE XIII
TRACES OF COVARIANCE AND MSE MATRICES FOR FPFD

Finally, Tables XII and XIII show the performance of
algorithm FPFD according to the storage interval B for the
1-step lag scenario described in Table VIII (Scenario 1-SL).
The NEES obtained with algorithm FPFD and shown in
Table XII are 3.99, 4.01 and 4.02 for B = 1, B = 4 and B =
6 respectively. Therefore, the NEES increases slightly as B
augments. Recall that the related two-sided 95% confidence
bounds for 1000 Monte Carlo are [3.8261, 4.1767]. The
traces of the actual MSE matrices shown in Table XIII also
increase slightly as B augments, while the traces of the
average filter covariance matrices decrease as B augments.
Note that for B > 1 algorithm FPFD loses its optimality
compared to the in-sequence measurements reprocessing
method.

VI. CONCLUSIONS

A forward prediction and decorrelation-based method for
processing OOSMs was presented. In terms of track quality,
the proposed method was proved to be optimal for the 1-step
lag case. For the multiple-step lag case, the method loses
its optimality compared to the in-sequence measurements
reprocessing. Nonetheless, its results are valuable since they
are equal to those obtained with some of the most recent
retrodiction methods presented in the literature, while requir-
ing less data storage. Finally, the performance of the FPFD
method depends on the storage time of the track. However,
when the sampling rate is fixed so that it is known when
a measurement has not arrived, the time of track storage
can be brought close to the OOSM time. In such conditions,
the FPFD method can represent a good choice for practical
applications.

REFERENCES

[1] Y. Bar-Shalom, “Update with out-of-sequence measurements in track-
ing: Exact solution,” IEEE Transactions on Aerospace and Electronic
Systems, vol. AES-38, no. 3, pp. 769–778, 2002.

[2] Y. Bar-Shalom, H. Chen, and M. Mallick, “One-step solution for the
multistep out-of-sequence measurement problem in tracking,” IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-40, no. 1,
pp. 27–37, 2004.

[3] Y. Bar-Shalom and X. R. Li, Multitarget-Multisensor Tracking: Prin-
ciples and Techniques. Storrs, CT: YBS Publishing, 1995.

[4] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Appli-
cations to Tracking and Navigation, Wiley, Ed. New York: Wiley,
2001.

[5] Y. Bar-Shalom, M. Mallick, H. Chen, and R. Washburn, “One-step
solution for the general out-of-sequence measurement problem in
tracking.” in Proceedings of the 2002 IEEE Aerospace Conference,
Big Sky, MT, March 2002.

[6] S. S. Blackman and R. Popoli, Design and Analysis of Modern
Tracking Systems. Artech House, 1999.

[7] R. Bucy and P. Joseph, Filtering for Stochastic Processes, with
Applications to Guidance, N. York:, Ed. Wiley, 1968.

[8] S. Challa, R. J. Evans, and X. Wang, “Track-to-track fusion using
out-of-sequence tracks,” in Proceedings of the Fifth International
Conference on Information Fusion, Annapolis, Maryland, jul 2002.

[9] ——, “A bayesian solution to oosm problem and its approximations,”
Information Fusion, vol. 4, no. 3, Sept. 2003.

[10] S. Challa, R. J. Evans, X. Wang, and J. Legg, “A fixed lag smoothing
framework for oosm problems,” Communications in Information and
Systems, vol. 2, no. 4, pp. 327–350, 2002.

[11] C. Chee-Yee, S. Mori, and K. Chang, “Information fusion in dis-
tributed sensor networks,” in American Control Conference, 1985, pp.
830–835.

[12] J. M. Covino and B. J. Griffiths, “A new estimation method for
multisensor data fusion,” in Proceedings of SPIE Conference on Sensor
and Sensor Systems for Guidance and Navigation, vol. 1478, 1991,
pp. 114–125.

[13] O. Drummond, “Track fusion with feedback,” in Proceedings of SPIE
Conference on Signal and Data Processing of Small Targets, vol. 2759,
1996, pp. 342–360.

[14] R. D. Hilton, D. A. Martin, and W. D. Blair, “Tracking with time-
delayed data in multisensor systems,” Dahlgren, VA, Tech. Rep.
NSWCDD/TR-93/351, aug 1993.

[15] M. Mallick, S. Coraluppi, and C. Carthel, “Advances in asynchronous
and decentralized estimation,” in Proceedings of 2001 IEEE Aerospace
Conference, mar 2001.

[16] M. Mallick, K. Zhang, and X. Li, “Comparative analysis of multiple-
lag out-of-sequence measurement filtering algorithms,” in Proc. Signal
and Data Processing of Small Targets, San Diego, CA, August 4-7
2003.

[17] S. Maskell, R. Everitt, R. Wright, and M. Briers, “Multi-target out-
of-sequence data association,” in Proceedings of 7th International
Conference on Information Fusion, 2004.

[18] E. W. Nettleton and H. Durrant-Whyte, “Delayed and asequent data in
decentralized sensing networks,” in Proceedings of SPIE Conference,
vol. 4571, oct 2001.

[19] S. C. A. Thomopoulos and L. Zhang, “Decentralized filtering with
random sampling and delay.” Inf. Sci., vol. 81, no. 1-2, pp. 117–137,
1994.

[20] E. Waltz and J. Llinas, Multisensor data fusion. Artech House. Inc,
1990.

[21] K. S. Zhang, X. R. Li, and Y. M. Zhu, “Optimal update with out-of-
sequence observations for distributed filtering,” in Proceedings of the
Fifth International Conference on Information Fusion, jul 2002.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC02.6

1333


